Vis enkel innførsel

dc.contributor.authorTedesco, Paulina Souza
dc.contributor.authorLenkoski, Frank Alexander
dc.contributor.authorBloomfield, Hannah C.
dc.contributor.authorSillmann, Jana
dc.date.accessioned2023-10-06T08:47:37Z
dc.date.available2023-10-06T08:47:37Z
dc.date.created2023-05-04T10:42:24Z
dc.date.issued2023
dc.identifier.citationEnvironmental Research Letters. 2023, 18 (3), .en_US
dc.identifier.issn1748-9326
dc.identifier.urihttps://hdl.handle.net/11250/3094754
dc.description.abstractA transition to renewable energy is needed to mitigate climate change. In Europe, this transition has been led by wind energy, which is one of the fastest growing energy sources. However, energy demand and production are sensitive to meteorological conditions and atmospheric variability at multiple time scales. To accomplish the required balance between these two variables, critical conditions of high demand and low wind energy supply must be considered in the design of energy systems. We describe a methodology for modeling joint distributions of meteorological variables without making any assumptions about their marginal distributions. In this context, Gaussian copulas are used to model the correlated nature of cold and weak-wind events. The marginal distributions are modeled with logistic regressions defining two sets of binary variables as predictors: four large-scale weather regimes (WRs) and the months of the extended winter season. By applying this framework to ERA5 data, we can compute the joint probabilities of co-occurrence of cold and weak-wind events on a high-resolution grid (0.2◦).Our results show that (a) WRs must be considered when modeling cold and weak-wind events, (b) it is essential to account for the correlations between these events when modeling their joint distribution, (c) we need to analyze each month separately, and (d) the highest estimated number of days with compound events are associated with the negative phase of the North Atlantic Oscillation (3 days on average over Finland, Ireland, and Lithuania in January, and France and Luxembourg in February) and the Scandinavian blocking pattern (3 days on average over Ireland in January and Denmark in February). This information could be relevant for application in sub-seasonal to seasonal forecasts of such eventsen_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectCopula modelsen_US
dc.subjectCopula modelleren_US
dc.subjectGaussian copulaen_US
dc.subjectWeather regimesen_US
dc.subjectVærregimeren_US
dc.subjectRenewable energyen_US
dc.subjectFornybar energien_US
dc.subjectWind poweren_US
dc.subjectVindkraften_US
dc.subjectSubseasonal variabilityen_US
dc.titleGaussian copula modeling of extreme cold and weak-wind events over Europe conditioned on winter weather regimesen_US
dc.title.alternativeGaussian copula modeling of extreme cold and weak-wind events over Europe conditioned on winter weather regimesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1088/1748-9326/acb6aa
dc.identifier.cristin2145373
dc.source.journalEnvironmental Research Lettersen_US
dc.source.volume18en_US
dc.source.issue3en_US
dc.source.pagenumber10en_US
dc.relation.projectNorges forskningsråd: 303411en_US
dc.relation.projectNorges forskningsråd: 309562en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Meteorologi: 453en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal