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Abstract
A transition to renewable energy is needed to mitigate climate change. In Europe, this transition
has been led by wind energy, which is one of the fastest growing energy sources. However, energy
demand and production are sensitive to meteorological conditions and atmospheric variability at
multiple time scales. To accomplish the required balance between these two variables, critical
conditions of high demand and low wind energy supply must be considered in the design of energy
systems. We describe a methodology for modeling joint distributions of meteorological variables
without making any assumptions about their marginal distributions. In this context, Gaussian
copulas are used to model the correlated nature of cold and weak-wind events. The marginal
distributions are modeled with logistic regressions defining two sets of binary variables as
predictors: four large-scale weather regimes (WRs) and the months of the extended winter season.
By applying this framework to ERA5 data, we can compute the joint probabilities of co-occurrence
of cold and weak-wind events on a high-resolution grid (0.2◦).Our results show that (a) WRs must
be considered when modeling cold and weak-wind events, (b) it is essential to account for the
correlations between these events when modeling their joint distribution, (c) we need to analyze
each month separately, and (d) the highest estimated number of days with compound events are
associated with the negative phase of the North Atlantic Oscillation (3 days on average over Finland,
Ireland, and Lithuania in January, and France and Luxembourg in February) and the Scandinavian
blocking pattern (3 days on average over Ireland in January and Denmark in February). This
information could be relevant for application in sub-seasonal to seasonal forecasts of such events.

1. Introduction

Affordable and clean energy is one of the UN Sus-
tainable Development Goals (SDGs). Energy is also
crucial for achieving many of the other SDGs. The
energy sector currently accounts for more than two-
thirds of the global greenhouse gas emissions [1].
Consequently, a decarbonization of the energy sec-
tor is required to meet the SDGs and the Paris

agreement [2], by increasing the share of renewable
power generation [3]. Europe is leading this trans-
ition, although it is still one of the world’s biggest
energy consumers and greenhouse gas emitters [4].

The production of clean energy is highly weather-
dependent. Very cold or warm temperatures increase
the demand due to heating and cooling, respectively
[5]. Extreme weather conditions, such as European
blocking in wintertime, can lead to high electricity
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demand and low renewable power production
(energy shortfall). How to deal with periods of low
renewable production is a big challenge in the design
of renewable energy systems [6]. Better subseasonal
and seasonal forecasts help improve decision-making
and planning [e.g. 7]. They are of value for power pro-
ducers to better prepare for extreme meteorological
events, and could be an important planning tool for
traders, plant operators, and investors for managing
climate variability related risk [8], as they provide rel-
evant information for price forecasting [9]. Although
studies have traditionally focused on single drivers
[10], more recent research is considering the interac-
tions between them [e.g. 11–16].

Given that electricity production and demand
depend on the weather, they vary on multiple
timescales [ e.g. 17–19]. Hence, it is important to
understand how large-scale circulation systems influ-
ence peaks of demand and energy production to
identify periods of over- and under-supply. Over
time, the impact of large-scale atmospheric patterns
on extreme winter temperatures mostly does not
change, despite slow fluctuations of these patterns
[20]. Meteorological conditions preceding energy
shortfall are described as anomalous high pressure
systems combined with below normal temperatures
[11, 21, 22]. Moreover, moderate energy droughts
(with duration and severity exceeding the 75th per-
centile), are expected every half a year [16]. Further
research is still needed to understand the impact of
atmospheric variability on surface variables that com-
bined lead to low supply. As far as we know, no other
research has proposed a meteorological based meth-
odology to model the bivariate probabilities of cold
spells and weak-winds.

Several indices exist that describe European cli-
mate variability through daily synoptic-scale weather
patterns. A method that has been proven to be use-
ful in weather forecasting and climate change applic-
ations is the computation of weather regimes (WRs)
with the k-means algorithm [e.g. 23–27]. Under-
standing the surface impact of these WRs is relev-
ant for subseasonal to seasonal energy applications
[11, 12, 28, 29]. Furthermore, the response of power
systems to these patterns across Europe has recently
been studied, with a focus on the North Atlantic
Oscillation (NAO) [e.g. 22, 30–33].

Modeling the dependence between demand and
energy production is of key importance to under-
stand the occurrence of energy shortfall and pre-
vent it by redesigning the energy systems. However,
modeling multivariate distributions can be a chal-
lenge. Copulas offer a powerful and flexible tool that
returns the joint probability of events as a func-
tion of the marginal probabilities of each event. This
makes copulas attractive, as the univariate marginal
behavior of random variables can be modeled sep-
arately from their dependence. The semi-parametric

Bayesian Gaussian copula method used here estim-
ates multivariate relationships between variables with
univariate marginal distributions that cannot be well
approximated with a simple parametric model [34],
making it a promising candidate for modeling the
joint probabilities of cold and weak-wind events. This
method has been used in the post-processing of a
multivariate mesoscale weather forecast [35].

Our goal is to develop amethodology for diagnos-
ing the probabilities of meteorological compound
events associated with high energy shortfall in the
winter, when electric heating is highest [21]. In this
study, we focus only on wind power and do not assess
solar or hydro.We apply themethodology to cold and
weak-wind events over Europe and analyze the res-
ults obtained over the continent, where local onshore
wind power generation can meet a fraction of the
demand. First, we show that the WRs improve the
estimation of marginal probabilities of low temperat-
ure and weak wind events and that these events are
correlated. Then, with Gaussian copulas, we model
the dependency between cold and weak-wind events
as a function of their marginals, separately from their
dependence, and we show where the models are sig-
nificantly improved when accounting for the correl-
ations between the events. Furthermore, the strong
spatial and intraseasonal variability indicates that we
need to analyze everymonth separately on a grid level.

The paper proceeds as follows. Section 2 describes
the data and the methodology developed to com-
pute the probabilities of cold and weak-wind events.
Section 3 presents the univariate and bivariate prob-
abilities, and the number of expected compound
events. Finally, discussions and conclusions are
provided in section 4. Additional figures and their
respective analysis can be found in the supplementary
material.

2. Data andmethods

This section describes the data and methods used to
estimate joint probabilities of cold and weak-wind
events conditioned on the WRs using a Gaussian
copula framework.

2.1. Reanalysis data
Temperature is well established as the main weather
driver of electricity demand. We use hourly 2 m
temperature and 10 m wind data from the ERA5
reanalysis [36], produced by the European Centre
for Medium-Range Weather Forecasts. The data are
provided on a regular latitude-longitude grid at
0.25◦ × 0.25◦, and the period covered in this work is
from 1979–2021. We compute daily minimum tem-
peratures from these hourly data. Wind speeds are
calculated from the eastward (u) and northward (v)
components at an hourly frequency and then aggreg-
ated to daily maximum values. Daily minimum wind
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speeds are usually close to zero, but low daily max-
imum values represent well conditions for poor wind
power generation. Despite the good coverage and
long records, and the fact that ERA5 outperforms
other global reanalyses frequently used in the literat-
ure, it is discouraged to use global reanalyses to estim-
ate mean winds because of the uncertainty in these
data [37].

2.2. Weather regimes
Atmospheric circulation is well known for its vari-
ability at multiple time scales being reflected in
weather patterns and circulation systems. These WRs
are quasi-stationary large-scale circulation patterns
[38]. They typically persist for 6–10 days, are spatially
well defined, and limited in number. The under-
standing of the causes of their recurrence, persist-
ence, and transition is crucial for medium-range,
subseasonal, and seasonal-to-interannual climate
prediction [27, 29], as they influence the weather at
the surface and, subsequently, the renewable power
generation and electricity demand [12, 31, 39].

WRs are obtained here by applying the k-means
algorithm with four centroids on geopotential height
at 500 hPa (Z500) data [26, 27]. The algorithm leads
to four winter regimes in the Euro-Atlantic area
(27◦N–81◦N, 85.5◦W–45◦E), and has been adopted
by other authors [e.g. 11, 12]. The Z500 fields of the
obtained regimes are similar, although not identical,
to the teleconnection patterns defined by theNational
Oceanic and Atmospheric Administration, and can
be interpreted as the negative and positive phases of
the NAO, the Atlantic Ridge (AR), and the Scand-
inavian blocking (SCAND) (see figure 1 in the supple-
mentary material). We will therefore use these names
to refer to the fourWRs. Moreover, it has been shown
that temporal sub-sampling [27] and the use of dif-
ferent reanalysis data [11, 12] do not change the spa-
tial structure of the regimes nor the optimal partition
(k = 4).

The classification method consists of two steps.
First, a cosine weight as a function of latitude is
applied to the Z500 data and the first fourteen empir-
ical orthogonal functions are computed. The asso-
ciated principal components (PCs) were used as
coordinates of a reduced phase space. Then, the PCs
are clustered into four groups with the K-means
algorithm, choosing 30 random starts and a max-
imumof 100 iterations. Every dailymap is assigned to
a centroid based on its closest Euclidean distance. The
number of regimes, k = 4, corresponds to the most
robust regime partition during winter months [26].

2.3. Logistic regression
In this study, we use logistic regressions to classify
cold and weak-wind events. The predictors consist of
two sets of indicator variables, one for the five winter
months and one for the four WRs. The variables in

each group are dichotomous and take only the val-
ues 1 or 0. The univariate distributions will later be
used in the copula framework to estimate the joint
probabilities.

Logistic regressions are widely used linear models
for binary classification. Let Y be the binary outcome
variable indicating failure or success with 0,1. Then, p
stands for the probability of a positive event, i.e. p =
P(Y = 1). The mathematical expression of the logit
function is:

logit(p) = log

(
p

1− p

)
. (1)

It is assumed that the logit transformation of the
outcome variable has a linear relationship with the
predictor variables: x1,x2, . . . ,xk. Then β0,β1, . . . ,βk
are the parameters estimated via the maximum like-
lihood method when performing a logistic regression
of Y on x1,x2, . . . ,xk:

logit(p) = log

(
p

1− p

)
= β0 +β1x1 + . . .+βkxk.

(2)

We are usually interested in predicting the prob-
ability that a particular sample belongs to a particular
class. The formula of the probability P(Y = 1) is:

p=
eβ0+β1x1+...+βkxk

1+ eβ0+β1x1+...,βkxk
=

1

1+ e−(β0+β1x1+...+βkxk)
.

(3)

2.4. Copulas
Our goal is to establish a methodology for modeling
the probabilities of co-occurrence of cold temperat-
ures andweakwinds. However, estimating joint dens-
ities is not an easy task since only a few non-Gaussian
families are defined, and non-parametric estimation
is demanding. Nonetheless, density estimation in one
variable is relatively easy, given that many conveni-
ent families exist (e.g. logistic, exponential, uniform)
and that the non-parametric approach is efficient and
accurate. The copulas framework for modeling mul-
tivariate distributions provides a flexible represent-
ation and separates the univariates from their true
nature of dependence.

In the field of probability theory and statistics, a
copula functionC : [0,1]n → [0,1] is defined as amul-
tivariate distribution:

C(u1,u2, . . . .,un) = P(U1 ⩽ u1,U2 ⩽ u2, . . .Un ⩽ un),
(4)

such that marginalizing gives Ui ∼ uniform(0,1).
Copulas are useful because we can transform any
arbitrary random variable into a uniform and back.
The function that transforms uniforms to any other
univariate distribution is the inverse of the cumulat-
ive distribution function (CDF). To do the oppos-
ite transformation, from an arbitrary distribution to
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the uniform(0, 1), we apply the inverse of the inverse
CDF, the CDF.

2.4.1. Gaussian copulas
Copula theory ensures that, for every joint multivari-
ate distribution, there exists a unique copula. In the
case of the Gaussian copula function, finding its para-
meters is limited to finding the correlation matrix of
the random variables we want to study.

A Gaussian copula is given by:

C(u1,u2, . . . ,un) = ΦΣ

(
Φ−1(u1),Φ

−1(u2), . . . ,Φ
−1(un)

)
,

(5)

where ΦΣ represents the CDF of a multivariate nor-
mal with covariance Σ and mean 0, and Φ−1 is the
inverse CDF for the standard normal.

Given a multivariate distribution:

FX(X) = P(X1 ⩽ x1,X2 ⩽ x2, . . . ,Xn ⩽ xn)

= ΦΣ(x1,x2, . . . ,xn), (6)

we can extract its Gaussian copula:

FX(X) = ΦΣ

(
F−1
1 (F1(X)),F

−1
2 (F2(X)), . . . ,F

−1
n (Fn(X))

)
= ΦΣ

(
F−1
1 (u1),F

−1
2 (u2), . . . ,F

−1
n (un)

)
= ΦΣ

(
Φ−1(u1),Φ

−1(u2), . . . ,Φ
−1(un)

)
= C

(
Φ−1(u1),Φ

−1(u2), . . . ,Φ
−1(un)

)
,

(7)

and plug in anymarginal into the copula function.
The inverse CDF transforms the uniforms into

normal distributions. Then, themultivariate normal’s
CDF squashes the distribution so that the marginals
are uniform and with Gaussian correlations. Thus,
the Gaussian Copula is a distribution over the unit
hypercube [0,1]n with uniform marginals.

2.4.2. Semiparametric copula estimation
It is often the case that the marginal distributions do
not belong to standard families. In such cases, itmight
be appropriate to use a semi-parametric strategy that
involves representing the associations among vari-
ables with a simple parametric approach and estim-
ating the marginals nonparametrically.

We use an extended rank likelihood method of
semiparametric inference for copula, which is a func-
tion of the association parameters only [34]. It can be
applied without any assumptions of the marginal dis-
tributions,making it appropriate for the joint analysis
of continuous and ordinal discrete data. The R pack-
age ‘sbgcop’ [40] provides a tool for estimation and
inference for the Gaussian copula parameters.

2.5. Model performance
We use permutation tests to evaluate the significance
of the results at a 10% level in terms of the BSS. In
the logistic regression framework, the BSS is used to
assess the performance of models against a seasonal
baselinemodel that does not include any information
about the WRs (the only predictors are the indicator
variables for themonths). The BSS is also used to eval-
uate the copula model’s performance against an inde-
pendent model with no correlation.

Themost commonmeasure for probabilistic fore-
casts is the Brier score (BS) [41, 42]. It is assumed that
the events only can occur in one class on each of the n
occasions. For dichotomous events, the forecast prob-
abilities are f i for an occasion i and the BS is:

BS =
1

n

n∑
i=1

( fi − Ei)
2, (8)

where Ei, takes the value 1 if the event occurred and
0 otherwise. The score is negatively oriented, mean-
ing that a perfect forecast has a BS = 0. Less accurate
forecasts exhibit higher scores, but since individual
forecasts and observations are both bounded by zero
and one, the range of possible values for the BS is
0⩽ BS⩽ 1.

The BSS is often used and, since BSperfect = 0, it
takes the form:

BSS =
BS−BSref
0−BSref

= 1− BS

BSref
. (9)

Negative values mean that the forecast is less
accurate than the reference forecast; when the forecast
presents no skill compared to the reference BSS = 0;
and a perfect skill compared to the reference forecast
reflects in a skill score equal to 1.

3. Results

We first illustrate the marginal probabilities. Then,
we analyze the joint probabilities, which can be inter-
preted as the percentage of days we expect compound
events for a given month and regime.

3.1. Marginal probabilities of cold and weak-wind
events
Marginal probabilities of cold events and weak-wind
events aremodeled for each pair of regime andmonth
using logistic regressions.

Figure 1 illustrates the regions where the BSS
computed for cold events is significant, i.e. where
the WRs provide relevant information to the logistic
model. It shows, in addition, the probabilities of
observing temperatures lower than the 10th in these
regions. What stands out from figure 1 is that regions
with significant BSS cover extended areas. Even when
probabilities are close to zero, like in November or
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Figure 1.Marginal probabilities of cold events where the BSS is significant. Colors show the probabilities of cold events for each
month and WR estimated with logistic regressions. Cold events are defined for each grid box as days with daily minimum
temperature below 10th percentile computed for the entire winter season (NDJFM). Probability values where the BSS is negative
or not significant at a 10% level are masked out. The BSS was computed with respect to a climatology model. Area of study:
35◦N–72◦N, 11◦W–40◦E. Figure based on ERA5 data (1979–2021).

over continental areas inMarch, considering theWRs
improves the performance of the logistic regressions
used to model cold events. If we focus on contin-
ental areas where the BSS is significant, we observe
probability values higher than 0.3 over Scandinavia
for NAO− and over the Iberian Peninsula for AR.
Furthermore, although the areas with significant BSS
are similar throughout the season for a given regime,
the strong intraseasonal variability of the probabilities
indicates that it is convenient to analyze the temper-
ature events for eachmonth separately rather than for
the whole season.

A strong negative NAO index is usually associ-
ated with cold winter temperatures across Northern
Europe and Northern Asia, which agrees with the
pattern observed for the NAO− cluster in figure 1.
Provided that the 10th percentile was computed at
each grid box for the entire season (NDJFM), the
highest probabilities are observed during the cold-
est months. Probabilities are higher than 0.2 from
December to February over land, in smaller areas of
Northern Europe and Scandinavia, and fromDecem-
ber to March over the sea, which we speculate is due
to a slower response of the water.

The AR pattern is characterized by an anticyc-
lonic circulation over the Atlantic with a weak sur-
face temperature anomaly over Western Europe (see
figure 2 in the supplementary material). Despite
the weak anomaly pattern, the AR is the regime
with the second highest significant probabilities of
cold events, reaching local probability values higher

than 0.3 across the Iberian Peninsula in January.
Furthermore, the pattern shows a significant sig-
nal in the North Atlantic, with probabilities increas-
ing from November to March. Still, we are mostly
concerned about strong signals over land, which is
the case of the Iberian Peninsula in December and
January.

The other two regimes, SCAND and NAO+,
exhibit probabilities close to zero when the BSS is sig-
nificant and positive. Thus, for NAO+ and SCAND,
the model is only improved by the WRs in regions
where cold events are less likely to occur.

Figure 2 is analogous to figure 1 but has been com-
puted for daily maximum wind speeds lower than
the 10th percentile. This variable presents persist-
ent zonal bands of significant probabilities at dif-
ferent latitudes when NAO+, NAO−, or SCAND
are dominant. However, significant probabilities
of weak-wind events are lower than 0.3 for all
the regimes. The WRs improve the results mainly
over the North Atlantic and Scandinavia during
NAO−, and in Northern and Central Europe dur-
ing SCAND. On the other hand, NAO+ shows two
zonal bands of significant probabilities, one with
probabilities under 0.2 over the Mediterranean and
one with probabilities close to zero over Northern
Europe.

In general, we observe that the marginal probab-
ilities obtained for the NAO−, NAO+, and SCAND
patterns support earlier results [11, 12]. However, the
monthly probabilities calculated for AR conditions
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Figure 2.Marginal probabilities of weak-wind events where the BSS is significant. Colors show the probabilities of weak-wind
events for each month and WR estimated with logistic regressions. Weak-wind events are defined for each grid box as days with
daily maximum wind speeds below 10th percentile computed for the entire winter season (NDJFM). Probability values where the
BSS is negative or not significant at a 10% level are masked out. The BSS was computed with respect to a climatology model. Area
of study: 35◦N–72◦N, 11◦W–40◦E. Figure based on ERA5 data (1979–2021).

indicate a stronger response of the temperatures to
large-scale upper-level circulation than the seasonal
aggregated results reported in previous studies
[11, 12]. Given that November is the warmest month
of the winter season and fewer temperature events are
registered, the results for this month excluded from
the analysis in the following. We have also excluded
the results for NAO+ for the same reason. In addi-
tion, figures of unmasked marginal probabilities are
provided in the supplementary material for both
variables.

3.2. Joint probabilities of cold and weak-wind
events
The Gaussian copula framework makes it possible to
generate a joint distribution from arbitrary marginal
probabilities taking as an argument the covariance
matrix (illustrated in the supplementary material). In
this case, the BSS was computed with respect to a
model with no correlations.

Significant joint probabilities of cold and weak-
wind events are shown in figure 3. Here, we mean
by significant that the correlations estimated with the
rank likelihoodmethod [40] improve the results. This
occurs in smaller regions of Northern and Central
Europe when NAO−, SCAND, or AR conditions are
dominant, in particular, in January and February.
However, probabilities higher than 0.1, where the BSS
is significant, occur only for NAO− in January and
SCAND in February at specific locations. For NAO+
(not shown), the correlations do not significantly
improve the results.

3.3. Estimated number of days with compound
cold and weak-wind events
By considering the number of days in eachmonth, we
can translate the joint probabilities into the number
of days we expect compound events.

Figure 4 shows that the number of events varies
with the regime, month, and region considered. Two
regimes stand out during the coldest months: NAO−
and SCAND. In December, at a country level, com-
pound events are expected to occur 0–1 on average
in most countries. For NAO−, this number rises to
2 days in France, Belgium, Switzerland, and the UK
and 3 days in Ireland. In January, during NAO− and
SCAND, several countries in Northern Europe and
Scandinavia experience compound events on aver-
age 2–3 days. We also see that these two patterns
have a strong north-south gradient. Contrarily, when
AR dominates, there is no evident gradient, and the
number of compound events is 1–2 in the Iberian
Peninsula, Ireland, the UK, and Scandinavia. The
highest number of average days per country is estim-
ated for France, Luxembourg, and Belgium during
NAO− conditions in February, and local values of
5–6 days are observed in France. Also, in February,
but during SCAND, an average of 2 days is expec-
ted in the Baltic countries and Poland. Finally, in
March, the average number of expected compound
events per country drops again to 0–1, except in Esto-
nia, where the average is 2 days. We highlight the spa-
tial and temporal variability of the results. Although
the maximum average number of days at a country
level is 3, and only for a few combinations of WR
and month, figure 4 shows smaller regions where we
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Figure 3. Joint probabilities of cold and weak-wind events where the BSS is significant. Colors show the probabilities of
co-occurrence of cold and weak-wind events for each WR and month. The events were computed for daily minimum
temperatures and maximum wind speeds below the 10th percentile of the data in the extended winter season (NDJFM).
Probability values where the BSS is not significant at a 10% level are masked out. The BSS was computed with respect to a model
with no correlation between cold and weak-wind events. Area of study: 35◦N–72◦N, 11◦W–40◦E. Figure based on ERA5 data
(1979–2021).

Figure 4. Number of compound cold and weak wind events. The events were computed as the daily minimum temperatures and
maximum wind speeds below the 10th percentile of the data in the extended winter season (NDJFM). Area of study: 35◦N–72◦N,
11◦W–40◦E. Figure based on ERA5 data (1979–2021).

expect compound events 5 days a month in January
and February associated with blocking conditions.

Overall, figure 4 supports what previous stud-
ies have found: (a) that large-scale circulation pat-
terns influence the energy demand [22, 30, 31] and
the wind power generation over Europe [22, 32, 33,
43], and (b) that blocking patterns are associated
with anomalous cold and low-wind speed conditions
over Northern and Central Europe, which, in turn,

increase the demand and reduce the wind power
generation [22, 30, 33, 43–45].

4. Discussion and conclusions

Low temperatures are associated with high electricity
demand during the winter, while wind speed is dir-
ectly related to electricity production. The position
of anomalous pressure systems and planetary waves
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disturb the zonal flow at 500 hPa, which, in turn,
influences the progression of WRs that impact sur-
face variables, such as temperature and wind speed.
Here, we develop aGaussian copula-based framework
for modeling monthly bivariate distributions of cold
weak-wind events conditioned on large-scale WRs.
This flexible methodology can be adapted to different
univariate distribution models.

Blocking conditions usually cause above-average
demand and below-average wind and solar genera-
tion in Central and Northern Europe [11, 39]). Com-
posites of temperature and wind speed indicate that
the impacts of NAO− and SCAND on near-surface
variables are associated with cold and weak-wind
conditions [11, 12]. Thus, more extreme events are
expected for these two clusters. We confirmed this
hypothesis by analyzing the number of past events
divided by the possible outcomes, which provides
insight into howmany events we can expect given the
defined threshold instead of relying on the departures
from average conditions, as most studies do.

First, we estimated the correlations with the ‘sbg-
cop’ package andmodeled themarginals probabilities
with logistic regressions using two sets of binary pre-
dictors, one for the months in the winter season and
one for theWRs. Permutation tests were used to assess
the performance of the logistic models in terms of
the BSS computed with respect to a seasonality model
that only considers the set of monthly predictors. The
results indicate that incorporating the WR informa-
tion into the models improves the performance over
large geographical areas. This means that large-scale
systems impact the occurrence of extreme temper-
ature and wind speed events and, consequently, the
peaks of demand and production of energy.

Then, we computed the joint probabilities with
Gaussian copulas using the estimated correlations
and marginal probabilities. The BSS for joint prob-
abilities reveals an improved skill in smaller regions
when accounting for the associations between the
event variables, mainly in latitudes higher than 45◦N.
It follows from the calculation of the joint probabil-
ities that the co-occurrence of cold and weak-wind
events is restricted to specific geographical areas,
depending on the month and the predominant WR.
These probabilities have been converted to the num-
ber of days we expect compound events for a given
month and WR. Overall, the highest number of days
is expected during NAO− and SCAND from Decem-
ber to February, in particular, in coastal and inland
regions in Northern Europe with high wind farm
density. The results also expose the need to consider
each month separately when analyzing compound
events of cold and weak winds. We conclude that the
gridded results exhibit a spatial variability of extreme
events that is not captured by the national aggregates
presented in other studies [e.g. 28].

There is an unavoidable degree of uncertainty
affecting reanalysis datasets; the most significant dis-
agreements in DJF are encountered within contin-
ental areas [37]. Representativeness can also be a
problem because wind farms are often located in
places where the wind is stronger than its surround-
ings, and thus the mean value of the grid box might
be inaccurate. Moreover, one of the challenges of
working with wind speed data from reanalyses is
that they are available at 10 meters, whereas typical
hub heights are 80–120meters. Therefore, an extra-
polation method is typically used to estimate hub
height winds from surface winds. The power law
[e.g. 21] was tested for the computation of marginal
weak-wind probabilities (not shown) but discarded
because it adds even more uncertainty to the already
biased winds.

The scope of this study was limited to the ana-
lysis of meteorological variables associated with poor
conditions for onshorewindpower generation during
periods of high demand. It is well known that the rela-
tionship between wind speed and wind power is non-
linear. Still, wind power is largely determined by wind
speed, and our results are, therefore, useful for under-
standing problems of undersupply. Furthermore, we
believe our work will contribute to designing more
robust energy systems for periods of co-occurrence of
low wind energy generation and high demand.

The skill could be improved bymodeling themar-
ginal probabilities withmore complex algorithms and
considering more variables. Future studies should
also explore how solar and hydro can complement
wind power generation in situations with high prob-
abilities of co-occurrence of cold and weak-wind
events.We also recommend examining the applicabil-
ity of this methodology to energy demand and energy
shortfall variables commonly used in the literature
[e.g. 12, 16, 21]. These variables have been stud-
ied in a copula-based framework [16], but with a
focus on seasonal values aggregated at a country level.
The pronounced subseasonal and spatial variability
observed in the present study suggests that decision-
makers would further benefit from monthly results
on a grid when analyzing energy demand and short-
fall variables.

In summary, the results confirm that the depend-
ence between the wind speed and temperature event
variables plays an essential role in modeling com-
pound meteorological events and that low-frequency
circulation patterns control parts of the distribution
of extreme events. We also provide evidence of strong
intraseasonal and spatial variability of compound
events.
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