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Abstract
When comparing different ways of modeling discrete three-dimensional realizations
such as facies, it is useful to have ameasure of difference (or similarity) in the geometry
of these realizations.Wepropose amethod for evaluating such difference by comparing
pattern counts for a small template. Tests on synthetic datasets demonstrate that the
proposed difference effectively differentiates between realizations of a Booleanmodel
and those generated using multiple-point statistics with the Boolean realizations as
training images. We also observed that multiple-point statistics realizations based on
similar training images yield smaller differences to one another compared to those
based on training images from dissimilar concepts. This suggests that the proposed
difference is a useful tool for comparing discrete three-dimensional realizations.
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1 Introduction

We propose a method to calculate a scalar difference between two three-dimensional
gridded representations of categorical variables. The aim is to quantify the complex
difference between the two representations into a single value. The challenge lies
in capturing the essence of the difference within a single number that can evaluate
significant geometric distinctions.

To demonstrate practical relevance, we use the proposed difference to evaluate the
quality of simulation algorithms by comparing simulated realizations and quantifying
their spread. Ideally, the difference between simulated realizations should be of the
same order as the difference from a simulated realization to the corresponding training
image representing the geological concept. We also use the difference to compare
realizations generated from different geological concepts, including those derived
from distinctly different training images.
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The calculation of the difference between facies realizations was introduced in
Park and Caers (2007), wherein a connectivity-based difference was used to effi-
ciently explore various realizations in search of a good history match. Their proposed
difference relied on time-of-flight between injectors and producers, with realizations
with similar time-of-flight values essentially being assigned a low difference. Corre-
spondingly, realizations with low difference are expected to exhibit similar production
profiles. A notable aspect of Park’s approach is its robustness to details in the realiza-
tion that do not affect time-of-flight. Such details are likely of minimal significance in
flow simulation modeling. However, this difference necessitates the presence of wells
and depends on their locations.

Suzuki andCaers (2008) consider aHausdorff distance. Like Park andCaers (2007),
the objective was to use the calculated distance between realizations as a proxy for
difference between production profiles. Unlike the time-of-flight-based difference, the
Hausdorff distance in Suzuki and Caers (2008) can be computed without the need for
wells. However, it is more sensitive to facies locations rather than their shapes. Conse-
quently, it is suitable for determining similarity between a geological concept (training
image) and one or more realizations. Various versions of the Hausdorff distance are
discussed in Dubuisson and Jain (1994). Typically, these versions consider the largest
difference between a point in one realization and a corresponding point in another,
both representing the same facies. Accordingly, these types of difference emphasize
the similarity in facies locations.

Implicitly, generative adversarial network (GAN) approaches (Zhang et al. 2019)
also define a difference, as the GAN discriminator attempts to differentiate between
generated realizations and the reference training image. However, this discriminator
lacks transparency and focuses primarily on binary classification, specifically deter-
mining whether two realizations follow the same distribution, rather than quantifying
the difference between them.

Our difference proposal is inspired by themultiple-point statistics (MPS) simulation
algorithm (SNESIM) (Strebelle 2002). SNESIM aims to simulate facies realizations
that replicate the pattern counts found in a template that scans a reference training
image. Boisvert et al. (2010) proposed using the absolute difference between pattern
densities in two images as the difference measure. In contrast, we propose a difference
which assigns a small difference if the pattern counts are within random variation of
each other, and a larger difference as the difference in pattern count increases. Both the
difference proposed by Boisvert and the one proposed in this paper ensure that the cal-
culated difference is robust to facies locations, but sensitive to facies shapes. Unlike
Boisvert’s proposed difference, ours incorporates a mechanism to discern between
actual differences in distributions and random variation between realizations from the
same distribution. Therefore, our difference proposal is well suited for determining
whether two realizations are representative of the same pattern distribution. Modeling
approaches like MPS and GAN are based on one or more reference training images.
Ideally, these algorithms should produce simulated realizations that are indistinguish-
able from the training images.

In the following section, we describe the calculation of the scalar difference. In
Sect. 3, we demonstrate an application of our proposed difference on realizations from
a standard MPS model, testing its ability to distinguish between training images and
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realizations for two different geological concepts. Finally, Sect. 4 provides a discussion
and concluding remarks.

2 Evaluating the Difference

In this study, we consider patterns of a specific shape and size. Inspired by the MPS
methodology, we examine all patterns within a finite three-dimensional template.
Figure1 illustrates a suitable template choice for many applications. By sliding the
template across a realization, we identify the various patterns present, and count how
many times each pattern appears.

Consider a given pattern present n1 times in one realization and n2 times in another.
Assume that the pattern is present at least 5 times in both realizations, that is, n1, n2 ≥
5. One aspect of the difference between the realizations is the degree to which the
counts n1 and n2 differ.

Let us assume that the pattern counts follow a binomial distribution Bin(N , p).
Here, N represents the theoretical maximum count of a pattern determined by the
template size and grid size of the realizations, while p is the success probability that
may vary between patterns. The binomial distribution describes the number of suc-
cesses (counts) in N independent trials. However, the assumption of independence
is violated in this context for two reasons: Firstly, we count patterns in overlapping
template locations, and secondly, there is spatial continuity in the rock facies in real-
izations and training images. Therefore, the assumption that pattern counts follow a
binomial distribution is not valid in this context. Nevertheless, it remains useful for
comparing pattern counts.

Consider the statistical hypothesis test with the null hypothesis that the pattern
counts n1 and n2 arose from two binomial distributions Bin(N , p1) and Bin(N , p2)
with equal success probabilities H0 : p1 = p2. Let the alternative hypothesis be that
the success probabilities differ, H1 : p1 �= p2. The two-sided p-value evaluates the
extent to which the counts n1 and n2 differ for one pattern. Consider the test statistic

Z =
∣
∣ p̂1 − p̂2

∣
∣

√
2 · p̄ · (1 − p̄)/N

,

Fig. 1 The template used in this
study had 31 cells over three
layers (z-levels)
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where p̂1 = n1/N , p̂2 = n2/N and p̄ = ( p̂1 + p̂2)/2. The test statistic Z has an
approximate standard normal distribution under the null hypothesis H0 whenever the
proportion p̂i ∈ [0, 1] is close to ½. It has been determined that both counts n1, n2
should be at least 5 and at most N − 5 for the normal approximation to be valid
(Campbell 2007).

A three-dimensional realization typically consists of various patterns, and an evalu-
ation of the difference between two realizations should provide an overall assessment
ofwhether the pattern counts differ between them.Wepropose the following three-step
algorithm to achieve this:

1. Identify all patterns present at least 5 times in both realizations, and list them.
2. For each pattern in the list, calculate the two-sided p-value for its pattern counts

n1 and n2.
3. Report the proportion of p-values less than 0.05.

In summary, the proportion of p-values less than 0.05 serves as a summary statistic,
representing the quantification of the difference between the two realizations. By using
the p-value as an indicator of difference and removing patterns with very low occur-
rences, we obtain a robust difference across different scales of pattern frequencies.

3 Applications

We will demonstrate the ability of our method to distinguish between similar real-
izations and those generated from different statistical models. This study analyzes
three-dimensional Boolean realizations of 400 × 400 × 50 cells using a template of
size 31. As template, we used cells within a Manhattan distance ≤ 2 from a center
cell within the three layers directly above, at the same height, and directly below the
center cell, respectively (Fig. 1). Then, the number of different template locations that
fit within each realization is

N = (400 − 2 · 2) · (400 − 2 · 2) · (50 − 2 · 1) = 7,527,168.

We expect this template to be suitable for many applications, as it covers a volume
around the center cell without being unreasonably large.

3.1 Discrimination BetweenModels

We counted the frequency of each pattern in 20 three-dimensional realizations from
a Boolean facies modeling algorithm (Holden et al. 1998). These were generated as
10 wide channels realizations and 10 narrow channels realizations (see Appendix 1).
Two representative realizations are depicted in Fig. 2.

The six most prevalent patterns are visualized in Table1. The prevalence of each
pattern was similar within and across models, albeit with higher consistency within
models. This is illustrated in Fig. 3, which presents two scatter plots of pattern counts
from a pair of realizations generated by the same model (with wide and narrow chan-
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Fig. 2 Examples of one realization with wide and one realization with narrow channels generated using a
Boolean object model (with the same volume fraction)

Table 1 Mean value (standard deviation) of pattern counts for the six most prevalent patterns in realizations
with narrow channels and wide channels, respectively

Pattern in template

Narrow channels

Mean pattern count 3,201,891 591,511 342,482 331,407 222,738 221,837

Standard deviation 82,970 17,540 9,435 6,276 8,310 7,736

Wide channels

Mean pattern count 4,210,546 1,353,288 247,088 240,743 153,309 148,741

Standard deviation 52,584 33,170 8,877 10,754 3,585 4,875

Note that each of the most prevalent patterns had unique facies (gray: channel, white: background) across
every layer of the template

Fig. 3 Scatterplots of pattern counts within models (left panel: two realizations with wide channels, middle
panel: two realizationswith narrowchannels) and acrossmodels (right panel: realizationwithwide compared
to realization with narrow channels). Zero counts are represented at value 0.4 to appear on the log scale,
with a slight gap to the nonzero counts

nels, respectively) and one scatter plot of pattern counts from two realizations from
different models.
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Fig. 4 Quantification of differences among all realizations from each of the wide (left panel) and narrow
(right panel) channels realizations

Table 2 Mean (standard deviation) difference quantification between two realizations from the same
(within) versus from different (across) models, and corresponding ANOVA hypothesis test results and
critical value for the test statistic at α = 0.05 level

Within model pair Across model pair ANOVA test statistic

Difference # of pairs Difference # of pairs Critical F Observed F p-value

0.094 (0.020) 90 0.564 (0.018) 100 3.891 2.8 × 104 1.7 × 10−207

Our difference evaluates realizations from the same model as being more similar
than realizations from different models. This is visualized in Fig. 4, which displays all
pairwise differences. With 10 realizations from each model, we calculated 100 cross-
model differences and 90 within-model differences. One-way analysis of variance
(ANOVA) confirmed a statistically significant discrepancy in the difference measure
within versus across models (see Table2).

Hence, our difference successfully distinguished between realizations from differ-
ent models.

3.2 Classification of Realizations

The 20 channel realizations discussed in the previous section serve as training images
for the RMS multiple-point (AspenTech 2022) based on SNESIM. We generate 10
realizations for each of the 20 training images, resulting in 220 realizations. In the
following, we examine all realizations, including 2 × 10 training images (wide and
narrow channels) and 2×10×10MPS realizations. Two realizations, generated using
training images with wide and narrow channels, respectively, are shown in Fig. 5.

In line with the results of the previous section, we observed lower differences
between a pair of realizations using training images from the same model (either wide
or narrow channels) than those using different models. This is illustrated using density
plots in Fig. 6.

At finer granularity, we observed a tendency for lower differences among MPS
realizations of training images from the samemodel, particularly between realizations
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Fig. 5 Examples of one realization with wide and one realization with narrow channels generated using an
MPS modeling algorithm. Compare to Fig. 2

Fig. 6 Density of difference quantification from wide (left panel) and narrow (right panel) channel MPS
realizations to all other realizations

Fig. 7 Density of difference quantification for MPS realizations produced with training images from the
same model, within wide (left panel) and within narrow (right panel) channel MPS realizations

from identical training images compared to those from identically distributed training
images (see Fig. 7).

One-way ANOVA verified the visual observations (Table3).
Finally, a two-dimensional multidimensional scaling plot provides a visualization

of how the difference can be used to categorize the realizations into the four groups
of training images and realizations with narrow and wide channels, respectively (see
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Table 3 Mean (standard deviation) difference quantification between two realizations of the same type
versus different types, along with corresponding ANOVA hypothesis test results and critical value for the
test statistic at α = 0.01 level

2 wide or 2 narrow 1 wide and 1 narrow ANOVA test statistic

Difference # of pairs Difference # of pairs Critical F Observed F p-value

Among all MPS realizations

0.083 (0.024) 9,900 0.491 (0.029) 10,000 6.636 1.2 × 106 0.0

2 MPS same TI 2 MPS different TI ANOVA test statistic

Difference # of pairs Difference # of pairs Critical F Observed F p-value

Among MPS realizations with narrow channels

0.051 (0.002) 450 0.065 (0.004) 4,500 6.640 6.0 × 103 0.0

Among MPS realizations with wide channels

0.067 (0.007) 450 0.106 (0.016) 4,500 6.640 2.6 × 103 0.0

2 MPS or 2 TI 1 MPS and 1 TI ANOVA test statistic

Difference # of pairs Difference # of pairs Critical F Observed F p-value

Among all realizations with narrow channels

0.064 (0.006) 4,995 0.436 (0.010) 1,000 6.639 2.7 × 104 0.0

Among all realizations with wide channels

0.103 (0.019) 4,995 0.469 (0.022) 1,000 6.639 2.8 × 104 0.0

Fig. 8). All pairwise distances were set to the difference value between the realizations
minus the expected false-positive rate (0.05), with a minimum distance of zero.

4 Discussion and Conclusions

In this study, our difference quantification based on pattern counts consistently dis-
tinguished between groups of realizations, particularly when the groups represented
different models. The difference also demonstrated its ability to discriminate between
various groups which were constructed to represent the same model, such as realiza-
tions generated from different training images of the same model, and training images
compared to their realizations. However, realizations from the same model remained
more similar than those from different models, even when generated from different
training images of the same model.

The difference between MPS realizations and their corresponding training images
was notably much larger than the difference between two MPS realizations from the
same training image. Surprisingly, we also observed that realizations from different
training images of the same model exhibit greater similarity to each other than their
respective training images. This suggests that our difference can detect a common
perturbation in the MPS realizations stemming from the same channel regime (wide
or narrow), regardless of the training image used. One possible explanation for this
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Fig. 8 Visualization of within-collection and across-collection difference plot for realizations with wide
and narrow channels and training images. The two-dimensional multidimensional scaling plot was con-
structed using sklearn.manifold.MDS (Scikit 2023) with a maximum of 50,000 iterations and 100 different
initializations

could be linked to the handling of scenarios where no legal patterns are identified
during the simulation.

We do not believe these observations to be sensitive to the geometry of the template,
unless compared to a template with a much larger or smaller number of cells: A
minimal template comprising just a couple of cells would lack discriminatory power to
distinguish between three-dimensional patterns, while a substantially larger template
would produce an enormous variety of patterns with drastically lower pattern counts
and unstable frequency estimates as a result. Given our observation that the template
can discern between MPS simulations and their training images, we contend that its
geometry is well suited for our intended purpose. We have not tested other templates
for this paper. Our method could also be applied to multiple-facies cases. In such
scenarios, it is reasonable to anticipate that more computing resources and larger
training data would be needed.

We conclude that our difference enabled analyses capable of distinguishing between
classes of images, including realizations derived from diverse training images. Fur-
thermore, we observed that the difference assigned relatively small values between
pairs of realizations generated from varied training images within the same model,
compared to pairs of realizations where the training images originated from different
models.
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Appendix A: Input Parameters to the Boolean RMS Facies Algorithm

Realizations were simulated on a grid with 400 columns (Min X: 0.0–Max X:
19,199.3), 400 rows (Min Y : 0.0–Max Y : 13,326.5) and 50 layers (Min Z: 0.0–Max
Z: 170.0) in a single zone with no faults. The rotation angle was 0.00 degrees clock-
wise, with rotation origin X of 24.0, rotation origin Y of 16.5. We used two distinct
models of channels defined in the RMS facies modeling algorithm ’Channels NGOM’
(AspenTech 2022). Both models used a volume fraction of 0.30 ± 0.02, a channel
orientation defined by azimuth (10, 2.5) and dip (0, 0.01) and channel wavelength
3,830 and amplitude (630, 63). The correlation between channel thickness and chan-
nel width was set to 0.5. Ten training images of narrow channels were generated with
input parameters width (520, 25) and thickness (10, 1.5), and 10 training images of
wide channels were generated with input parameters width (1,300, 65) and thickness
(20, 4).
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