
Computational Geosciences manuscript No.
(will be inserted by the editor)

A Volume-conserving Representation of Cell Faces in Corner
Point Grids

Per Røe · Ragnar Hauge

Received: date / Accepted: date

Abstract Corner point grids is currently the standard

grid representation for use in reservoir simulation. The

cell faces in corner point grids are traditionally rep-

resented as bilinear surfaces where the edges between

the corner points all are straight lines. This representa-

tion has the disadvantage that along faults with vary-

ing dip the cell faces on either side will not precisely

match, giving overlapping cells or gaps between cells.

We propose an alternative representation for the cell

faces. The four vertical cell faces are still represented

as bilinear surfaces, but instead of having linear edges

between the cell corners along the top and bottom faces

we propose a representation of the vertical cell faces

where any horizontal intersection will give a straight

line, giving column faces whose shape is independent of

the corner point locations of the individual grid cells.
This ensures that the grid columns match up and that

there are no gaps or overlapping volumes between grid

cells. This representation gives a local parameterization

for the whole grid column, and the top and bottom grid

cell surfaces are modelled as bilinear using this param-

eterization. A set of local coordinates for the grid cell

permits all the common grid operations like volume cal-

culation, area calculation for cell faces and blocking of

well traces.

Keywords Corner point grid · Volume calculations ·
Well blocking · Reservoir Simulation Grid

P. Røe
Norwegian Computing Center
P.O.Box 114, Blindern, N-0314 Oslo, Norway
Tel.: +47 22 85 25 00
Fax: +47 22 69 76 60
E-mail: per.roe@nr.no

R. Hauge
Norwegian Computing Center

Mathematics Subject Classification (2000) MSC

86A60

1 Introduction

Corner point grids [2] have become the standard way

of setting up grid models for reservoir simulation, and

is supported by all major reservoir modelling software

suites and reservoir simulators. These grids are a good

compromise between the simplicity of regular grids and

the flexibility of unstructured grids. As structural mod-

elling allows a higher number of faults with more com-

plex linkage patterns, more and more complex grids are

requested. This requires simple but reliable algorithms

for tasks like volume calculations, transmissibility cal-

culations and well blocking.

Fig. 1 Simulation grid for a reservoir with three reservoir
zones, shown in yellow, green and blue, and with multiple
faults.

2 Per Røe, Ragnar Hauge

Fig. 2 The eight cell corners for a single grid cell. The points
p1 and p5 are on the same pillar. The same goes for points
p2 and p6, p3 and p7, and p4 and p8.

The grid is usually generated so that the layering of

the grid follows the reservoir zonation. This is done to

simplify the property modelling. It is also important for

the correctness of the fluid simulations that the geome-

try of the grid cells follow the principal flow directions

[1]. Traditionally, faults are gridded so that the grid

pillars follow the faults (Fig. 1), but stair-stepped grids

are getting more common due to the ability to model

more complex fault geometries.

A corner point grid is defined by a set of linear pil-

lars together with the z-values along these pillars for

each of the corner points of the individual grid cells.

In this paper we will label the individual corner points

pi = (xi, yi, zi) as shown in Fig. 2. Traditionally a bi-

linear representation where also the edges between the

pillars (eg. p1−p2 in Fig. 2) are assumed to be linear is

used. As shown in [2], this gives the simple trilinear for-

mula for going from local coordinates (u, v, w) ∈ [0, 1]3

to global coordinates p = (x, y, z),

p =(1− w)
(
(1− v)((1− u)p1 + up2)+

v((1− u)p3 + up4)
)
+ (1)

w
(
(1− v)((1− u)p5 + up6)+

v((1− u)p7 + up8)
)
.

This has proven to be a flexible representation, but

there are some problems. As noted by [2], “at a fault

which is sloping by a changing amount, and along which

the fault throw increases, the two bilinear surfaces of

connecting grid blocks will not precisely match”. This

will usually be the case to some extent along fault traces,

especially when pillar gridding of the faults is employed.

An extreme case of a gap between neighbour grid cells

is shown in Fig. 3 (a)-(b). If the layers on either side

of the fault tilt the opposite way, the cells would over-

lap instead as shown in Fig. 3 (c)-(d). These gaps and

overlaps give imprecisions in the volume calculations.

Also, as discussed later in this paper, finding the cell

(a) (b)

(c) (d)

Fig. 3 Two neighbour cells with non-matching layering and
a large difference in the direction of the two common grid
pillars, seen from (a) the side, above and (b) through a hor-
izontal intersection. Notice the gap between the cells. In (c)
and (d) two cells are shown with the same common grid pil-
lars but with opposite tilt of the layers, giving overlapping
cells.

containing a given point within the grid and finding the

corresponding local parameters is non-trivial.

In this paper we will present an alternative way of

representing the grid cell faces in a corner-point grid.

The representation is based on the classical parameter-

ization using grid pillars and depths values for grid cell

corner points, but with an alternative of way of defin-

ing the grid cell faces. No pre-processing of the input

data for the grid is needed. The main idea is that in-

stead of using bilinear cell faces where the lateral edges

between the cell corners are linear, we ensure that any

horizontal intersection through the grid will give linear

cell sides. This representation ensures that there are no

gaps between neighbour cells and no overlapping cells,

and gives well-defined top and bottom surfaces as long

as the grid cells are convex. However, due to the more

complex representation of the cell faces, the calculations

of cell face area and cell volume become more tedious.

On the other hand, finding the cell containing a point

and the calculations of partial cell volumes or partial

cell face areas become much easier. Based on the pro-

posed representation, we will present and discuss key

algorithms in reservoir simulation grids: volume calcu-

lation, finding the cell containing a given point, well

blocking and transmissibility calculations.

A Volume-conserving Representation of Cell Faces in Corner Point Grids 3

Fig. 4 A single vertical cell face shown using the proposed
representation, with p1 − p2 and p5 − p6 represented as
parabolas and with the projection points p′

1, and p′
6 used

in the definition of the cell face representation.

2 Proposed representation

2.1 Column sides

The main idea behind the proposed new grid cell face

representation is that all horizontal intersections through

the four vertical cell faces should be linear. Tradition-

ally, the arcs p1 − p2 and p5 − p6 in Fig. 4 have been

represented as straight lines. We now allow these arcs

to be non-linear, and instead we require that the hori-

zontal arcs p1 − p′
1 and p′

6 − p6 are linear, where the

point p′
1 on pillar 2 is at the same depth z1 as p1, and

p′
6 on pillar 1 is at the same depth z6 as p6

A point p(u, w̃) on the bilinear surface defined by

the points p1,p
′
1, p′

6 and p6, with (u, w̃) ∈ [0, 1]2 as the

bilinear weighting of these points, is then given as

p(u, w̃) = (1− u)(p1 + w̃(p′
6 − p1))+

u(p′
1 + w̃(p6 − p′

1)),
(2)

where the z-component of p(u, w̃) is

z(u, w̃) = z1 + w̃(z6 − z1). (3)

Notice that this means that z is independent of u, mean-

ing that the straight line obtained when keeping w̃ con-

stant will be horizontal for any w̃. Furthermore, notice

that the surface defined by the four points in Eq. 2 will,

where overlapping, be equal to any surface defined by

a set of four points, pair-wise on the same depth on

the two pillars. The shape of the cell sides is only de-

pendent on the pillars, not on the corner points of the

actual cells. This ensures that the sides of two neigh-

bour grid columns will always match, independently of

the gridding within the individual columns.

Fig. 5 Definition of local lateral relative coordinates u and
v within a grid column.

For a given horizontal intersection through a grid

cell at depth z0 with corresponding points on the grid

pillars p0,i = (x0,i, y0,i, z0) (Fig. 5), a point p(u, v) =

(x(u, v), y(u, v), z0) within the cell can be given as a

bilinear weighting of the pillar points by (u, v) ∈ [0, 1]2

as

x(u, v) = (1− v)((1− u)x0,1 + ux0,2)+

v((1− u)x0,3 + ux0,4) and

y(u, v) = (1− v)((1− u)y0,1 + uy0,2)+

v((1− u)y0,3 + uy0,4).

(4)

This defines a local coordinate system where any point

at depth z0 can be represented by the local coordinates

(u, v). This (u, v) parameterization is only dependent

on the grid pillars, not the individual grid cells, and

hence common for all the grid cells within the grid col-

umn defined by these four grid pillars. This parameter-

ization is well-defined as long as the pillar intersection

points p0,i span a convex quadrilateral for all depths

z0. Concave quadrilaterals are discussed in Sec. 4.1

Let di be the z-normalized direction of the pillars

so that a general point at depth z on pillar i is given as

p0,i + (z − z0)di. A point within the column at depth

z and local lateral coordinates (u, v) will then be given

4 Per Røe, Ragnar Hauge

as

p(u, v, z) = (1− v)((1− u)p0,1 + up0,2)+

v((1− u)p0,3 + up0,4)+ (5)(
(1− v)((1− u)d1 + ud2)+

v((1− u)d3 + ud4)
)
(z − z0),

which is a straight line going through

p0(u, v) = (1− v)((1− u)p0,1 + up0,2)+

v((1− u)p0,3 + up0,4)
(6)

with z-normalized direction

d(u, v) = (1− v)((1− u)d1 + ud2)+

v((1− u)d3 + ud4).
(7)

2.2 Top and bottom surfaces

In general any top and bottom surface can be used, as

long as there for each surface is a single intersection

point between the surface and the pillar given by a pair

of local coordinates (u, v) for any (u, v) ∈ [0, 1]2. The

local parameterization ztop(u, v) and zbot(u, v) is then

defined from these intersection points. A local depth co-

ordinate w can then be defined as the relative position

between the top and bottom surfaces

w(z, u, v) =
z − ztop(u, v)

zbot(u, v)− ztop(u, v)
. (8)

We propose to use a representation of the top and

bottom surfaces where the surfaces are bilinear in the

(u, v)-domain. For a grid cell where the z coordinates
of the corner points are z1-z8 (see Fig. 2), the grid cell

top and bottom surfaces ztop and zbot are given by

ztop(u, v) = (1− v)((1− u)z1 + uz2)+

v((1− u)z3 + uz4)

zbot(u, v) = (1− v)((1− u)z5 + uz6)+

v((1− u)z7 + uz8).

(9)

This gives a simple representation in the (u, v) domain,

ensuring the simplicity of the ensuing algorithms. We

also see that for a well-defined grid cell where z5 ≥ z1,

z6 ≥ z2, z7 ≥ z3 and z8 ≥ z4, the top and bottom sur-

faces will be well-ordered, zbot(u, v) ≥ ztop(u, v). This

representation is also equivalent with the traditional

representation in the common case when all the grid

pillars are vertical.

Instead of using the simple local bilinear representa-

tion given in Eq. 9 which in general is not smooth across

grid columns, one could for example use globally inter-

polated surfaces generated using B-splines as top and

(a) (b)

Fig. 6 The same two cells as in Fig. 3 (a)-(b), visualized
using the proposed new cell face representation.

bottom surfaces. The disadvantage with this is that now

ztop (u, v) and zbot(u, v) in general only can be found

by solving the corresponding equation systems, mean-

ing that the volume and area of the cell faces would

have to be calculated numerically.

Figure 6 shows the two neighbour cells from Fig.

3 (a)-(b) visualized using the proposed cell face rep-

resentation. As we see, the sides of the two neighbour

cells match, even though the two shared grid pillars

have opposite dips. This will always be true with the

new representation; the lateral grid column faces for two

neighbour columns, and hence also the cell faces for the

individual grid cells, will always match. Similarly, the

top surface of a cell will always match the bottom sur-

face of the cell above as long as the cell corner points

match.

3 Algorithms

3.1 Grid cell volume

The volume of a single grid cell can be calculated as

V =

∫ 1

0

∫ 1

0

∫ 1

0

J du dv dw (10)

where J is the Jacobian

J =

∣∣∣∣∣∣
fu(u, v, w) fv(u, v, w) fw(u, v, w)

gu(u, v, w) gv(u, v, w) gw(u, v, w)

hu(u, v, w) hv(u, v, w) hw(u, v, w)

∣∣∣∣∣∣ . (11)

The functions f(u, v, w), g(u, v, w) and h(u, v, w) for

going from local coordinates (u, v, w) to global coordi-

nates (x, y, z) are given by Eqs. 20-22 in the appendix.

The calculations are a bit more tedious than the simi-

lar volume calculations done using the traditional grid

cell parameterization [2,4] due to more complex terms,

but they are still straightforward. With the new repre-

sentation it is also possible to calculate the volume for

a whole grid column at the time in the same manner.

A Volume-conserving Representation of Cell Faces in Corner Point Grids 5

The results from this calculation is exactly the same as

the sum of the volume of the individual grid cells in the

column as long as the top surfaces of all cells match

the bottom surfaces of the cells above. Also note that

in contrast with the traditional representation, the vol-

ume is dense; the sum of the volume of individual grid

cells is equal to the volume between the top and bottom

surfaces for the whole grid.

The cell volume above a given surface, for exam-

ple a fluid contact, can be found in similar manner. If

zsurf(u, v) is the representation of the surface in local

coordinates, with the special case zsurf(u, v) = z for a

horizontal surface, then the integral

V =

∫ 1

0

∫ 1

0

∫ 1

wsurf

J dw dv du, (12)

where

wsurf(u, v) =
zsurf(u, v)− ztop(u, v)

zbot(u, v)− ztop(u, v)
(13)

can be used to calculate the volume, either for the vol-

ume above the surface within a single cell, or for the

volume above the surface for a part of or the whole

grid column. Note that finding the volume above a sur-

face is much simpler using the proposed representation

than using the traditional representation due the need

of representing the surface in local coordinates.

3.2 Algorithm for finding grid cell containing a given

point

Using the traditional algorithm, it is non-trivial to find

the grid cell containing a given point. Candidate cells

can be found using a fast rejection algorithm by exam-

ining boxes enclosing the individual cells or group of

cells. However, the only way to find the actual cell is

by checking whether the point is on the inside of all

the cell faces. This is non-trivial since all the cell faces

are bilinear surfaces. Also, due to the fact that the cells

might intersect or there might be a gap between cells

no unique solution is guaranteed; the point might be

within two cells, or between cells.

Using the proposed representation, it is simple to

find the grid cell containing a given point using the

following algorithm:

The first step is to find the grid column containing

this point given by its global coordinates (x, y, z). This

is done by taking the horizontal intersection through

the grid at depth z. As previously noted, this will give a

set of quadrilaterals, and finding the quadrilateral con-

taining the point in two dimensions is straightforward.

The second step is to find the local coordinates (u, v)

for the point. This is done by solving the bilinear system

of equations

x = (1− v)
(
(1− u)xz,1 + uxz,2

)
+

v
(
(1− u)xz,3 + uxz,4

)
+

y = (1− v)
(
(1− u)yz,1 + uyz,2

)
+

v
(
(1− u)yz,3 + uyz,4

)
,

(14)

where (xz,i, yz,i, z) is the point on pillar i at depth z.

The cell containing the point within the column is then

found by comparing the z-coordinate of the point with

the z-coordinate for the top surfaces for the cells in

the column at (u, v). If the local depth coordinate w is

needed, it can be calculated using Eq. 8.

3.3 Cell face area calculations

The area of a cell face is found by setting the appro-

priate local coordinate to 0 or 1 in Eqs. 20-22 and inte-

grating the remainder of the coordinates. For example,

for the vertical cell face given by u = 0, the mapping

from local to global coordinates is

x = f(v, w) = (1− v)
(
x1 +

h(v, w)− z1
z5 − z1

(x5 − x1)
)
+

v
(
x3 +

h(v, w)− z3
z7 − z3

(x7 − x3)
)

y = g(v, w) = (1− v)
(
y1 +

h(v, w)− z1
z5 − z1

(y5 − y1)
)
+

v
(
y3 +

h(v, w)− z3
z7 − z3

(y7 − y3)
)

z = h(v, w) = (1− w)((1− v)z1 + vz3))+

w((1− v)z5 + vz7)),

(15)

and the integral for calculating the area becomes

A =

∫ 1

0

∫ 1

0

∥∥∥∥∂x

∂v
× ∂x

∂w

∥∥∥∥ dv dw, (16)

where x(v, w) = (x, y, z) = (f(v, w), g(v, w), h(v, w)).

Similar to the volume calculations, the area of parts

of the cell face can be found in the same manner as the

area of the whole cell face, and the calculated area of the

different parts of the cell face will sum up to the total

area. This is also true for the area of the intersection

between two faulted cells, which is not even properly

defined using the traditional representation.

6 Per Røe, Ragnar Hauge

3.4 Transmissibility calculations

The calculation both of cell face area projections and

the projected area of cell face intersections are impor-

tant parts of the calculation of the transmissibilities

used in fluid simulation. The contribution from a single

cell to the transmissibilities for an interface is given by

T = K|A · d|/d2 (17)

where K is the permeability, A = (Ax, Ay, Az) is the

vector of cell face area projections, and d is the length

of d, the vector going from the centre of the cell to the

centre of the cell face contributing to A, see [2].

When using the traditional representation, the pro-

jections of the intersection become quadrilaterals, mak-

ing it trivial to calculate the projected area. With the

proposed representation the edges of the top and bot-

tom surfaces are no longer linear. In this case the area

is calculated by integrating in the local projected coor-

dinate system. For example, the x-projection Ax of the

cell face corresponding to u = 0 is calculated as

Ax =

∫ 1

0

∫ 1

0

Jdv dw, (18)

where J is the Jacobian

J =

∣∣∣∣ gv(v, w) gw(v, w)

hv(v, w) hw(v, w)

∣∣∣∣ . (19)

For a faulted interface (Fig. 7), the projected area

of the intersection between two neighbour cell faces can

be calculated as in [2] by finding the intersection points

between the top and bottom surfaces for the cells on

either side of the interface, and then summing up the

area between the individual intersection points. Finding

the intersection points in the (u, v) domain is straight-

forward since the top and bottom surfaces are bilinear

in this domain and the intersection lines with the verti-

cal cell faces are hence linear. A common w is needed,

and in Fig. 7 we have suggested using the horizontal

lines corresponding to the highest and lowest z value

for the individual patches (z0 and z1 in the figure), giv-

ing w = (z − z0)/(z1 − z0).

3.5 Well blocking

Another common task related to gridding is well block-

ing, i.e. the process of upscaling well data to the grid

scale. The upscaled well path is the sequence of grid

cells that the well path passes through. To find this up-

scaled well path, the cells containing the points along

the well path has to be identified, and as seen in Sec.

Fig. 7 The projected interface between two neighbour cells
on either side of a fault. The solid lines are the intersection
lines for the top and bottom faces of the cell on the hanging
wall side, while the dotted lines are the corresponding lines
for the cell on the footwall side. The intersection of the two
cell faces is shown as shaded.

3.2 this is becomes much easier using the new represen-

tation. The blocked well is for each cell populated with

an upscaled measure of the log values within the cell.

To be able to do the upscaling, all log values have to

be assigned to the cell containing the point associated

with the log value. The length of the well segment can

also be used for weighting the log values.

To be able to find the length of the well path seg-

ment going through a cell, the intersection point be-

tween the cell face and the well path needs to be found.

When finding the intersection point, we must differen-

tiate between the vertical and horizontal cell faces due

to the differences in representation. The vertical cell

faces are bilinear surfaces, and the intersection point

can be found analytically as described in [3]. Note that

the calculations can be numerically unstable, especially

if the well path is close to parallel with the cell face,

but that this to some extent can be alleviated since we

can do the calculations for the whole grid column face,

instead of the individual cell faces. To calculate the in-

tersection point between the well path and the top or

bottom cell face analytically, we would need to repre-

sent the well path in local coordinates. This is possible,

but in general a numerical algorithm based on a linear

approximation of the cell face and binary search might

be just as convenient.

A Volume-conserving Representation of Cell Faces in Corner Point Grids 7

Fig. 8 A single concave grid cell shown with the proposed
cell representation seen from the side and above. The top and
bottom faces are coloured red, while the lateral cell faces are
coloured blue.

4 Discussions

4.1 Nondegeneracy of the grid cells

The conditions for nondegeneracy for a grid cell is dis-

cussed in [4]. With the proposed representation it is

sufficient that all the horizontal intersections yield con-

vex quadrilaterals, and that the corner points of the

cell are well-ordered, as discussed in Sec. 2.2. This is

also in general true for the traditional representation,

and all cell geometries that are degenerated using the

proposed representation will also be degenerated using

the traditional representation.

The intersections need to be convex since due to the

bilinear representation used for the local u and v some

u’s and v’s will give points that are outside the cell

for a concave grid cell. The resulting top and bottom

surfaces of the cell will then go outside the column de-

fined by the grid pillars as seen in Fig. 8. For very thin

concave grid cells the calculated volume might become

negative, both when using the classical representation

and the proposed new representation. The best way to

prevent these problems is to make sure that only con-

vex grid columns are generated when building the sim-

ulation grid, for example by creating regularized near-

orthogonal grids. However, often grids where the cell

faces closely follow the fault traces are preferred, some-

thing that can result in grids with numerous concave

cells.

5 Conclusions

We have presented a novel way of representing the cell

faces in a corner point grid. Although the representa-

tion is slightly more complex than the purely bilinear

representation traditionally used, it has significant ben-

efits. The main property of the presented cell face rep-

resentation is that any horizontal intersection through

the grid will give a lattice of quadrilaterals. This en-

sures that there are no gaps between cells or overlap-

ping cells and hence that the volume of the entire grid

is equal to the sum of the volumes of the individual

grid cells. The quadrilateral lattices also make it much

easier and faster to find the grid cell containing a given

point, a common operation used in well blocking. Cell

volumes and transmissibilities are found using the same

approach as with the traditional representation, using

a set of local coordinates. The use of a single parame-

terization for a whole grid column also makes it possi-

ble to do the volume calculations for a whole grid col-

umn at a time. The proposed parameterization could,

if implemented in a reservoir simulator, give a slight

improvement in the consistency of the results of the

simulations, especially considering that the simulation

grid would become dense with regard to the volumes.

The downside is that the calculation of grid cell vol-

umes and transmissibilities would take more time, but

these calculations are done only once for each simula-

tion run. For consistency, we recommend that the same

grid cell representation is used throughout the whole

workflow, both while populating the grid and in the

flow simulation.

6 Acknowledgements

The writing of this paper was funded by the Research

Council of Norway. The authors want to thank Tor

Barkve at Roxar for valuable input to the paper. The

authors also want to thank Erik Makino Bakken for

help with calculations and testing of alternative repre-

sentations for the top and bottom cell surfaces.

8 Per Røe, Ragnar Hauge

A Appendix

The mapping from local coordinates (u, v, w) ∈ [0, 1]3 to
global coordinates is given by

x = f(u, v, w) = (1− v)
(
(1− u)(x1 +

h(u, v, w)− z1

z5 − z1
(x5 − x1)) + u(x2 +

h(u, v, w)− z2

z6 − z2
(x6 − x2))

)
+

v
(
(1− u)(x3 +

h(u, v, w)− z3

z7 − z3
(x7 − x3)) + u(x4 +

h(u, v, w)− z4

z8 − z4
(x8 − x4))

)
(20)

y = g(u, v, w) = (1− v)
(
(1− u)(y1 +

h(u, v, w)− z1

z5 − z1
(y5 − y1)) + u(y2 +

h(u, v, w)− z2

z6 − z2
(y6 − y2))

)
+

v
(
(1− u)(y3 +

h(u, v, w)− z3

z7 − z3
(y7 − y3)) + u(y4 +

h(u, v, w)− z4

z8 − z4
(y8 − y4))

)
(21)

z = h(u, v, w) = (1− w)
(
(1− v)((1− u)z1 + u z2) + v((1− u)z3 + u z4)

)
+

w
(
(1− v)((1− u)z5 + u z6) + v((1− u)z7 + u z8)

)
. (22)

References

1. Aavatsmark, I.: An introduction to multipoint flux
approximations for quadrilateral grids. Computa-
tional Geosciences 6(3-4), 405–432 (2002). DOI
10.1023/A:1021291114475

2. Ponting, D.K.: Corner point geometry in reservoir simula-
tion. In: P.R. King (ed.) The Mathematics of Oil Recovery,
pp. 45–65. Oxford University Press, USA (1992)

3. Ramsey, S.D., Potter, K., Hansen, C.: Ray bilinear patch
intersections. Journal of Graphics Tools 9(3), 41–47
(2004). DOI 10.1080/10867651.2004.10504896

4. Ushakova, O.: Conditions of nondegeneracy of three-
dimensional cells. a formula of a volume of cells. SIAM
J. Sci. Comput. 23(4), 1274–1290 (2001). DOI
10.1137/S1064827500380702

