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Statistical embedding: Beyond principal 
components
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Abstract. There has been an intense recent activity in embedding of very high
dimensional and nonlinear data structures, much of it in the data science and
machine learning literature. We survey this activity in four parts. In the first
part we cover nonlinear methods such as principal curves, multidimensional
scaling, local linear methods, ISOMAP, graph based methods and diffusion
mapping, kernel based methods and random projections. The second part is
concerned with topological embedding methods, in particular mapping topo-
logical properties into persistence diagrams and the Mapper algorithm. An-
other type of data sets with a tremendous growth is very high-dimensional
network data. The task considered in part three is how to embed such data
in a vector space of moderate dimension to make the data amenable to tradi-
tional techniques such as cluster and classification techniques. Arguably this
is the part where the contrast between algorithmic machine learning methods
and statistical modeling, represented by the so-called stochastic block model,
is at its greatest. In the paper, we discuss the pros and cons for the two ap-
proaches. The final part of the survey deals with embedding in R2, i.e. visu-
alization. Three methods are presented: t-SNE, UMAP and LargeVis based
on methods in parts one, two and three, respectively. The methods are illus-
trated and compared on two simulated data sets; one consisting of a triplet
of noisy Ranunculoid curves, and one consisting of networks of increasing
complexity generated with stochastic block models and with two types of
nodes.
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1. INTRODUCTION

With the advent of the big data revolution, the availabil-
ity of data has exploded. The dimension of the data can be
in the thousands, if not in the millions, and the relation-
ships between data vectors can be exceedingly complex.
Also, data are arriving in new forms. One recent addition
to data types is network data, sometimes with millions
of nodes, and literally billions of edges (relationships be-
tween nodes). An example is the analysis of porous me-
dia, in oil exploration say, or of astronomical or physio-
logical data. Such data contain cavities and complicated
geometric structures. Another example is in natural lan-

1

https://imstat.org/journals-and-publications/statistical-science/
mailto:Dag.Tjostheim@uib.no
mailto:Martin.Jullum@nr.no
mailto:Anders.Loland@nr.no


2

guages with texts containing million of words. Is it pos-
sible to characterize language segments so as to discrimi-
nate one type of text from another?

These examples have to do with the characterization
and simplification of highly complex and often unorga-
nized data. From a mathematical and statistical point of
view these tasks are examples of embedding problems.

The goal of this survey could be said to be two-fold.
First, to try to give a quite comprehensive survey of em-
bedding methods and applications of these methods. The
second objective of this article has been to make the sta-
tistical community more aware of current methods in this
branch of data science bordering on machine learning.

Here is a brief overview of the contents of the pa-
per. Section 2 gives a brief summary of principal com-
ponents and points out some strengths and weaknesses.
There are now a number of novel nonlinear methods,
some of them in fact with roots going far back in time.
In Section 3, we look at methods such as principal curves
and surfaces, multidimensional scaling, local linear em-
bedding, embedding via graphs (note that in this sur-
vey the terms “graph” and “network” will be used in-
terchangeably), ISOMAP and Laplace eigenmaps, diffu-
sion maps, kernel principal components using reproduc-
ing kernel Hilbert spaces and random projections. Section
4 has to do with the emerging field of topological data
analysis and topological manifold embedding. Section 5
deals with embedding of network data, especially ultra
high dimensional networks. This is a topic of great prac-
tical interest, as can be understood for instance from the
recent advances within social network analysis. Arguably
this is the theme where the contrast between algorithmic
machine learning methods and statistical modeling is at
its most pronounced. We discuss the pros and cons for the
two approaches in Sections 5.2.4 and 5.7. Open problems
in heterogeneous, directed and dynamic networks are also
briefly covered in Section 5.

Finally, in Section 6, we go on to the extreme case of
having an embedding of dimension 2, the plane. This has
to do with visualization, of course, and we are present-
ing three visualization methods, t-SNE, LargeVis, and
UMAP, whose basis can be found in each of the preceding
sections, namely nonlinear type embedding, network em-
bedding and topological embedding. They are compared
to principal component visualization.

To our knowledge our survey paper is the first of such
broad coverage. To avoid an overlong paper, some of the
more technical and detailed aspects of the surveyed meth-
ods are relegated to the Supplement (Tjøstheim, Jullum
and Løland, 2022a). There are many unsolved statistical
problems, and we will try to point out some of these as
we proceed.

We have chosen to illustrate our methods by two types
of simulation experiments. First, a triple of noisy Ranun-
culoid (a concept originating in flower forms in botany)

curves encapsulated in one another, cf. Fig. 1a (a situa-
tion in which principal components do not work), illus-
trates a number of the nonlinear methods of Section 3
and the topological embedding of Section 4. As a second
example we have included a network based simulation,
generated by stochastic block models, with two types of
nodes and varying degrees of complexity in their interac-
tion. Among other things these are used to illustrate and
compare the three visualization methods of Section 6, for
several choices of their input parameters. In the paper we
also refer to real data experiments that have been con-
ducted especially in the network embedding literature.

2. PRINCIPAL COMPONENTS

Principal component analysis (PCA) was invented by
Pearson (1901) as an analogue of the analysis of princi-
pal axes in mechanics. It was later independently devel-
oped by Harold Hotelling in the 1930s, see e.g. Hotelling
(1933) and Hotelling (1936).

Given p-dimensional observations X1, . . . ,Xn, the
Hotelling approach was along the lines that have since
become standard: Let Xi, i = 1, . . . , n have components
Xij , j = 1, . . . , p. The first principal component V1 =
{aj1} consists of the weights which gives the linear com-
bination

∑p
j=1 aj1Xij maximum variance subject to the

constraint that the Euclidean norm ||V1|| = 1. The kth
principal component Vk = {ajk} corresponds to the lin-
ear combination

∑p
j=1 ajkXij with the maximum vari-

ance subject to ||Vk||= 1, and it being orthogonal to pre-
viously found Vj ,1≤ j ≤ k − 1. Or said in another way,
the principal components constitute a sequence of projec-
tions in Rp of the data, mutually uncorrelated and ordered
in variance.

Let Σ be the p× p population covariance matrix. Then
it is well known, see e.g. Joliffe (2002), that the princi-
pal components Vk are obtained by solving the eigenvalue
problem

(1) ΣVk = λkVk,

where the largest eigenvalue λ1 corresponds to the first
principal component V1, and where the variance ex-
plained by the kth principal component is given by
λk/

∑p
i=1 λi.

The estimated principal components are obtained by
considering an estimate of Σ. Let X be the n×p centered
data matrix X = {(Xij − X̄j)} with X̄j = n−1

∑
iXij ,

then an estimate of Σ is obtained from n−1[XTX], and
the estimated eigenvectors and eigenvalues are obtained
from

(2) XTXV̂ = λ̂V̂ .

The approach of Pearson (1901) is different, and the
essence of his method is that he looks at a set of m prin-
cipal components as spanning a hyper-plane of rank m in
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Rp such that the sum of the distances from the data points
to this hyper-plane is minimized. The first principal com-
ponent is then the line in Rp obtained by such a minimiza-
tion. As will be seen it is the Pearson approach which is
most amenable to generalizations to the nonlinear case.

Before we close this section there is cause to ask why
linear principal component analysis is so useful. It is
clearly the most used statistical embedding method. Why?
There are several reasons for this. One is its potential to
reduce the dimension of the original data. If a few prin-
cipal components explain a large percentage of the vari-
ation, this in many cases means that the ensuing analysis
can be concentrated to those components. These compo-
nents can also be used henceforth in a factor analysis. And
the number of needed components can often be decided
by a clear cut percentage of variation explained, which,
as was seen above, is straightforward to compute given
the eigenvalues of the covariance matrix.

Principal components have been used with great suc-
cess in a number of different fields, so diverse as e.g.
quantitative finance, medicine, neuroscience, genetics,
meteorology, chemistry, and recognition of handwritten
characters. Many applications and the basis of the theory
are given in the book by Joliffe (2002). It is also quite
robust and can work reasonably well for certain types of
nonlinear systems, as seen in the comparative review by
van der Maaten, Postma and van der Herik (2009).

However, there are also several shortcomings of linear
principal components, which have inspired much recent
research. The most obvious fault is the fact that it is a
linear method, and data are often nonlinearly generated
or located on or close to a submanifold of Rp. This is
sometimes aggravated by the fact that the PCA is based
on the covariance matrix, and it is well-known that a co-
variance between two stochastic variables is not always
a good measure of statistical dependence. This has been
particularly stressed in recent dependence literature, a sur-
vey of which is given in Tjøstheim, Otneim and Støve
(2022a). Especially there exist statistical models and data
where the covariance is zero although there may be a
strong statistical dependence. An example is the so-called
ARCH/GARCH time series models for financial risk.

To do statistical inference in PCA often a Gaussian as-
sumption is added as well. For Gaussian variables the co-
variance matrix describes the dependence relations com-
pletely, so that it would be impossible to improve on the
PCA embedding by a nonlinear embedding. But increas-
ingly, data sets are appearing where the Gaussian assump-
tion is not even approximately true. Moreover, the dimen-
sion of data may be extremely large, not making it eas-
ily amenable to principal component analysis which in-
volves the solution of a p-dimensional eigenvalue prob-
lem. Note, however, that for practical purposes the first
k << p eigenvectors typically suffices even for complex

high dimensional settings. Such situations are handled in
modern PCA software by utilizing extensions of the so-
called Lanczos algorithm, see e.g. Baglama and Reichel
(2005).

3. NONLINEAR EMBEDDINGS

There are a variety of possible nonlinear dependence
structures, for each of which there are particular nonlinear
algorithms adapted to the given structure.

For the so-called principal curve method (Hastie, 1984)
the data are supposed to be concentrated roughly on a
curve or more generally on a submanifold. Although in
this case the data are not well represented by a linear
model, they may still be well approximated by a lo-
cal linear model giving rise to the LLE method (Roweis
and Saul, 2000) or to ISOMAP (Tenenbaum, de Silva
and Langford, 2000). Alternatively, the data may lie on
chained non-convex structures, see for instance the exam-
ple in Fig. 1. For such and similar structures one may
try to map the dependence properties to a graph, lead-
ing to a Laplace eigenvalue problem (Belkin and Niyogi,
2002), and in its continuation to diffusion maps (Coifman
and Lafon, 2006). In still other situations it may be ad-
vantageous to use a nonlinear transformation of the data
points, and then solve a resulting eigenvalue problem,
as is done in kernel principal components (Schölkopf,
Smola and Müller, 2005). One of the classical nonlinear
methods is multidimensional scaling (MDS) (Torgerson,
1952), where an embedding is sought by preserving dis-
tances between individual data points. A combined linear
and distance preserving method is represented by random
projections, whose rationale is based on Johnson and Lin-
denstrauss (1984). All of these methods are presented in
more details in the following subsections, and most are
illustrated in Fig. 1.

3.1 Principal curves and surfaces

As mentioned in Section 2 it is the Pearson’s hyper-
plane fitting that is perhaps the best point of departure for
nonlinear PCA. Principal curves and surfaces were intro-
duced in Hastie (1984) and Hastie and Stuetzle (1989). A
brief summary is given in Hastie, Tibshirani and Fried-
man (2019, pp. 541-544). Essentially, the idea is to re-
place the hyper-plane by a hyper-surface. It is simplest in
the case of principal curves, generalizing the first princi-
pal component. Let f(s) be a parameterized smooth curve
in Rp. The parameter s in this case is a scalar and can
for instance be arc-length along the curve. For each p-
dimensional data value X , one lets sf (X) be the point
on the curve closest to X . Then f(s) is called a principal
curve for the distribution of the random vector X if

f(s) =E(X|sf (X) = s).
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This means that f(s) is the average of all data points that
project onto it. This is known as the self-consistency prop-
erty. In practice it turns out (Duchamp and Stuetzle, 1996)
that there are infinitely many principal curves for a given
multivariate distribution, but one is interested mainly in
the smooth ones.

3.1.1 Algorithm for finding one principal curve f(s)

1. Definitions of coordinate functions and X . Consider
the coordinate functions f(s) = [f1(s), . . . , fp(s)]
and let X be the p-dimensional observational vector
given by XT = (X1, . . . ,Xp).

2. The two alternating steps.

(3) E(Xj |ŝf (X) = s)→ f̂j(s); j = 1, . . . , p

and

(4) argmins′ ||X − f̂(s′)||2→ ŝf (X).

Here the first step (3) fixes s and enforces the self-
consistency requirement. The second step (4) fixes the
curve and finds the closest point on the curve to each data
point. The principal curve algorithm starts with the first
linear principal component, and iterates the two steps in
(3) and (4) until convergence is obtained using a given
tolerated error.

Principal surfaces generalizes principal curves to higher
dimensional representations. The most commonly used
is the two-dimensional principal surface with coordinate
functions

f(y1, y2) = [f1(y1, y2), . . . , fp(y1, y2)].

The estimates in step (3) and (4) above are obtained from
two-dimensional surface smoothers. The scheme with a
quantification of percentage reduction of variance seems
to be lost in a principal curve and principal surface set-up.
A different but related approach is taken by Ozertem and
Erdogmus (2011), where principal curves and surfaces are
studied in terms of density ridges. See also Section 4.1
for generalizations to non-Euclidean spaces and so-called
manifold learning.

In Fig. 1 we present a data set that will be used for
illustration purposes throughout this section and also in
Section 4 on topological data analysis. The raw data are
presented in Fig. 1a. It consists of parts of three paramet-
ric curves, each being obtained from the so-called Ranun-
culoid, but with three different parameter sets. In addi-
tion the curves have been perturbed by Gaussian noise.
In Fig. 1b we have illustrated the construction of a prin-
cipal curve on the innermost curve of Fig. 1a. The main
one-dimensional structure of the curve is well picked up,
but it does not quite get all the indentions of the original
curve. Compared to a linear principal regression curve it
is a big improvement.

3.2 Multidimensional scaling

The idea of multidimensional scaling (MDS) goes far
back, but similar ideas have recently got a revival in
statistical embedding through algorithms such as LLE,
ISOMAP (see the next subsections), and t-SNE (see Sec-
tion 6). It can be roughly formulated as finding suitable
coordinates for a set of points given their mutual dis-
tances. This problem was first considered by Young and
Householder (1938). These methods were further devel-
oped and applied to scaling of psychometric distances
between pairs of stimuli by Torgerson (1952). A fine re-
view of the essentials of multidimensional scaling is given
in Hastie, Tibshirani and Friedman (2019, pp. 570-572).
Their emphasis is on viewing multidimensional scaling
as a general method for dimensionality reduction of data
in Rp. They therefore start with a set of observations
X1, . . . ,Xn ∈Rp where dij is some form of distance mea-
sure (not necessarily Euclidean) between observation Xi

and Xj . In fact, in the general theory of multidimensional
scaling the dij may be considered as a dissimilarity mea-
sure between objects (e.g psychological stimuli) i and j.

From a dimension reduction point of view, multidi-
mensional scaling seeks values Y1, . . . , Yn ∈ Rm, often
m = 2 for visualization purposes, by minimizing the so-
called stress function

S(Y1, . . . , Yn) =
∑
i 6=j

(dij − ||Yi − Yj ||)2,

which means choosing {Yj , j = 1, . . . , n} such that one
strives to preserve distances when going from Rp to Rm.
This is known as the least squares or Kruskal-Shephard
scaling. A gradient descent algorithm can be used to min-
imize S. A variation on this is the so-called Sammon map-
ping, Sammon (1969), which minimizes

SSm(Y1, . . . , Yn) =
∑
i 6=j

(dij − ||Yi − Yj ||)2

dij
.

Note that multidimensional scaling creates an embed-
ding between two Euclidean spaces, Rp and Rm. This is
different from principal surfaces (Section 3.1) and many
of the other methods in this survey, which creates embed-
dings from Rp to a lower dimensional manifold.

3.3 LLE – Local linear embedding

Principal curves and surfaces represent an early exam-
ple of local modeling and manifold embedding. Manifold
embedding will be taken up from a more general point of
view in Section 4 with its connections to recent advances
in TDA (Topological Data Analysis). However, it is con-
venient at this point to briefly mention the early work of
Roweis and Saul (2000) that resembles the principal sur-
face methodology in that it is a local method. In fact, it is
a local linear model, and locally linear methods are well
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Figure 1: Four different embedding methods applied to three parametric curves from the so-called Ranunculoid and
perturbed by Gaussian noise with a standard deviation of 1⁄2.

known and much used in nonparametric regression. But
here the viewpoint is different since there is no clearly
defined dependent variable. Actually in that respect, it is
like the recent local Gaussian modeling of Tjøstheim, Ot-
neim and Støve (2022b).

Suppose that the data X1, . . . ,Xn are p-dimensional
vectors sampled from an inherent m-dimensional mani-
fold. One assumes that each data point lies on or close to
a locally linear patch of the manifold. The local geometry
of these patches is characterized by linear coefficients that
reconstruct each data point from its neighbors.

The LLE algorithm consists of three main steps:

1. Find the nearest neighbors N(i) of Xi, for example
by a nearest neighborhood algorithm, such as kNN
(k-nearest neighbors).

2. Construct weights wij by minimizing the cost func-
tion (5) subject to the constraint that wij = 0 if xj
does not belong to the set of neighbors of Xi, and
such that

∑
j wij = 1.Weights for non-neighbors are

0.

(5) M1(w) =
∑
i

||Xi −
∑

Xj∈N(i)

wijXj ||2,

3. Map each high dimensional observationXi to a low-
dimensional vector Yi representing global internal
coordinates on the manifold. This is done by choos-
ing m-dimensional coordinates to minimize the em-
bedding cost function over Y

(6) M2(Y ) =
∑
i

||Yi −
∑
j

wijYj ||2,
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where the weights wij are fixed to the values ob-
tained in step 2. The optimization in (6) can be done
by solving a sparse m×m eigenvalue problem.

The assumption of Roweis and Saul (2000) is here that
one can expect the wij-characterization of local geome-
try in the original data space to be equally valid for local
patches of the manifold. In particular, the same weights
wij that reconstruct the ith data point in p dimensions
should also reconstruct its embedded manifold coordi-
nates in m dimensions.

From Fig. 1c it is seen that the three parts of the Ra-
nunculoid in Fig. 1a are clearly separated with LLE, es-
pecially in the Y2-direction.

3.4 Embedding via graphs and ISOMAP

Some of the primary purposes of statistical embedding
is to use the embedded vectors or coordinates for feature
extraction, clustering and classification. The most used
clustering method is probably the K-means algorithm.
(See e.g. Hastie, Tibshirani and Friedman (2019, chap-
ter 14.3).) This method does not work well if the clusters
form non-convex subsets of the data space. Examples of
this are the clusters consisting of 3 concentric noisy cir-
cles in R2, or of the more complicated structure of the
three curves in Fig. 1a.

For a given point cloud in Rp a method of circumvent-
ing such problems is to embed the points in a similarity
graph or network. Given a set of data points X1, . . . ,Xn,
a similarity measure sij ≥ 0 between Xi and Xj can
simply be the Euclidean distance between Xi and Xj .
The intuitive goal of clustering is to divide the points
into groups such that the similarity between two groups
is weak, whereas the similarity between points within a
group is typically strong. If we do have similarity infor-
mation between the points, a convenient way to represent
this is to form a similarity graph G = (V,E). Each node
vi ∈ V in the graph represents a data point Xi. Two nodes
in the graph are connected if their similarity sij ≥ τ for
some threshold τ > 0. The similarity weights sij are used
as edge weights wij . The problem of clustering can now
be reformulated using the similarity graph: one wants to
find a partition of the graph such that the edges between
different groups have low weight, and the edges within a
group have high weights.

Given a point cloud in Rp there are several ways of
constructing a corresponding similarity graph:

i) The ε-neighborhood graph: Here one connects all
points, and give them weight wij = 1, that have pair-
wise distances less than ε.

ii) k-nearest neighbor graph: Here one can connect
node vi with node vj if vj are among the k near-
est neighbors of vi. Symmetrization leads to an undi-
rected graph and wij = sij .

iii) The fully connected graph: All points with positive
similarity are connected with each other, and we take
wij = sij . As an example of a similarity measure one
can take sij = exp(−||Xi−Xj ||/2σ2), where σ is a
parameter that controls the strength of the similarity.

An early concrete graph embedding algorithm is ISOMAP
(Tenenbaum, de Silva and Langford, 2000; de Silva and
Tenenbaum, 2002). Apart from clustering, ISOMAP has
gained considerable use as a nonlinear dimension reduc-
tion method, by combining graph representation with
multidimensional scaling seeking distance preservation,
see op. cit. references for details. The input is the dis-
tances dX(i, j) between all pairs of Xi and Xj of the n
data points. The output is m-dimensional vectors Yi in
Rm. The algorithm consists of three main steps:

1. Construct the neighborhood graph G according to i)
or ii) above. Set edge lengths equal to dX(i, j).

2. Compute shortest paths dG(i, j) between all pairs in
the graph G, for example by Dijkstra’s algorithm or
the Floyd–Warshall algorithm (Cormen et al., 2022).

3. Construct m-dimensional embeddings Yi by apply-
ing multidimensional scaling from Section 3.2 to the
matrix of graph distances DG = {dG(i, j)}.

The results of applying the ISOMAP algorithm on the
curves in Fig. 1a are given in Fig. 1d. The curves are well-
separated both in the MDS1 and MDS2 directions.

3.5 Graph representation and Laplace eigenmaps

In this subsection we will just give a brief presentation
of Laplace eigenmaps and graph spectral theory mainly
based on Belkin and Niyogi (2002, 2003). As elsewhere
in this section, we start with a point cloud in Rp. We then
aim at reducing the dimension by searching for a manifold
embedding of lower dimension.

In Section 5 we will start with a network and use graph
spectral theory to find an embedding of the network in
Euclidean space or on a manifold such that it can subse-
quently be used for purposes of clustering and classifica-
tion. A few more details of graph spectral theory will be
given then.

To introduce Laplacian eigenmaps we need some more
graph notation: The weighted adjacency matrix of the
graph is the matrix A = {aij}, i, j = 1, . . . , n, where
aij =wij is the weight on the edge between nodes vi and
vj . If aij = 0, this means that the nodes vi and vj are not
connected by an edge. We still assume that the graph is
undirected so that aij = aji. The degree of a node vi ∈ V
is defined as

(7) di =

n∑
j=1

aij =

n∑
j=1

wij ,

with aii = 0. The degree matrix D is defined as the diago-
nal matrix with the degrees d1, . . . , dn along the diagonal.
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The Laplacian eigenmap algorithm consists of three
main steps:

1. A graph is constructed using the strategy outlined in
(i), (ii) or (iii) of Section 3.4. This is used to establish
the edges of the graph.

2. The weights of the edges are determined. Belkin and
Niyogi (2003) present two choices. The first choice,
as in Section 3.4, is to choose the so-called heat ker-
nel

(8) wij = exp−||Xi−Xj ||/σ

if the nodes are connected using the ε-strategy of
Section 3.4, and putting wij = 0 if they are not con-
nected. A second alternative is just to let wij = 1 if
vi and vj are connected, and wij = 0 if not.

3. Find the Laplacian eigenmaps. Assume that the
graph G as constructed above is connected. If not,
use the algorithm given below for each connected
component. Define the Laplacian matrix by L =
D−A, where D and A are, respectively, the degree
and adjacency matrix defined above. The Laplacian
eigenmaps are then obtained by solving the eigen-
value problem

(9) Lfi = λiDfi, i= 0,1, . . . , p− 1,

with

0 = λ0 ≤ λ1 ≤ λp−1,

where it is easily verified that 0 is a trivial eigenvalue
corresponding to the eigenvector f0 = [1,1, . . . ,1].
This eigenvector is left out, and the next m eigen-
vectors are used for an embedding in m-dimensional
Euclidean space

Xi→
m∑
j=1

〈Xi, fj〉fj ,

where 〈·, ·〉 is the inner product in Rp. The Laplacian
eigenmaps preserve local information optimally in a
certain sense (Belkin and Niyogi, 2003).

3.6 Diffusion maps

The representation of the Laplace matrix and a corre-
sponding Laplace-Beltrami diffusion operator is just one
way of finding a meaningful geometric description of a
data set. As will be seen in this subsection, it is possible
to introduce an associated Markov chain that can be used
to construct coordinates called diffusion maps.

Following Coifman and Lafon (2006), it is convenient
to think of the data set X as a measure space (X,B, µ)
with an associated kernel k satisfying k(x, y) = k(y,x)
and k(x, y)≥ 0. In terms of Section 3.5, k may be associ-
ated with the adjacency matrix A, and µ(x) with the dis-
crete measure with µ(xi) = 1/n, where n is the number of

observations. Generally we let d(x) =
∫
X k(x, y)dµ(y),

which corresponds to the definition of degree in (7).
The next step is to introduce the probability tran-

sition distribution p(x, y) = k(x, y)/d(x). Then clearly∫
X p(x, y)dµ(y) = 1, and p can be viewed as a transition

kernel of a Markov chain on X. The operator Pf(x) =∫
X p(x, y)f(y)dµ(y) is the corresponding diffusion oper-

ator.
A main idea of the diffusion framework is that running

the Markov chain forward in time, or equivalently, taking
larger powers of P , will allow one to reveal relevant geo-
metric structures of different scales. We denote by pL the
L-step transition kernel.

The Markov chain has a stationary distribution, it is re-
versible, and if X is finite and the graph of the data is con-
nected, then it is ergodic (cf. Coifman and Lafon, 2006).
Further, P has a discrete sequence of eigenvalues {λi}
and eigenfunctions ψi such that 1 = λ0 ≥ λ1 ≥ · · · , and
Pψi = λiψi. This corresponds to the eigenvalue problem
in (9).

Let π(x) be the stationary distribution of the Markov
chain. Coifman and Lafon (2006) show that the family of
so-called diffusion distances {DL} can be written as

(10) DL(x, y)2 =

∫
X

(pL(x,u)− pL(y,u))2dµ(u)

π(u)

=
∑
i≥1

λ2L
i (ψi(x)−ψi(y))2.

Since the eigenvalues in (10) are less than one, the ex-
pansion can be broken off after a finite number of terms
m(δ,L), wherem(δ,L) = max{i ∈N}, such that |λi|L >
δ|λ1|L, where δ is a measure of the precision desired
in this approximation. Each component λLi ψi(x), i =
1, . . . ,m(δ,L) is termed a diffusion coordinate, and the
data are mapped into an Euclidean space of dimension
m(δ,L).

By choosing the kernel k appropriately, various diffu-
sion operators can be obtained. We refer to Coifman and
Lafon (2006) for more details.

There are a number of applications of diffusion maps.
For an application to gene expression data, see Haghverdi,
Buettner and Theis (2015).

3.7 Kernel principal components

The standard linear Fisher discriminant seeks to dis-
criminate between two or more populations by using the
global Gaussian likelihood ratio method in an attempt
to separate the populations linearly by separating hyper-
planes. This is of course not possible for the data in
Fig. 1a. An alternative is to use a local Gaussian Fisher
discriminant which leads to nonlinear hyper-surfaces (Ot-
neim, Jullum and Tjøstheim, 2020). Still another possibil-
ity is to use transformations of the original data into non-
linear features and then try to find linear hyper-planes in
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this feature space. To find the linear hyper-planes, scalar
products between vectors are used; this being the case
both in the linear Fisher discriminant and in case there
is a nonlinear feature space. As a function of the original
coordinates of observations, the inner product in the fea-
ture space is termed a kernel. The support vector machine
(SVM) discrimination analysis is based on such an idea.

An analog procedure can be used in so-called kernel
PCA (Schölkopf, Smola and Müller, 2005). Consider a set
of data vectors X1, . . . ,Xn with Xi ∈Rp that sums to the
zero-vector. Recall that in ordinary principal components
analysis the estimated principal components are found by
solving the eigenvalue problem Cf = λf , where, C is the
empirical p× p covariance matrix given by

C =
1

n

n∑
i=1

XiX
T
i ,

and corresponding to the matrix XTX in Section 2. In
kernel PCA the starting point is to map the data vector Xi

into a nonlinear feature vector Φ(Xi), Φ : Rp→ F , where
F is an inner product space in general different from Rp,
such that

∑n
i=1 Φ(Xi) = 0.

Consider the n × n matrix KΦ = {〈Φ(Xi),Φ(Xj)〉}
and the eigenvalue problem

(11) KΦα= nλα,

where α is the column vector with entries α1, . . . , αn.
Let f l be the lth eigenvector corresponding to non-zero
eigenvalues. It can be shown that (Schölkopf, Smola and
Müller, 2005) for principal components extraction, one
can compute the projections of the image of a data point
X onto the eigenvectors f l according to

(12) 〈f l,Φ(X)〉=
n∑
i=1

αli〈Φ(Xi),Φ(X)〉.

Please observe that neither (11) nor (12) requires the
Φ(Xi) in explicit form. All that is required is their inner
product, termed the kernel. Replacing Φ(X),Φ(Y ) by the
kernel is known as the kernel trick (Aizerman, Braverman
and Rozonoer, 1956; Boser, Guyon and Vapnik, 1992).
The point is that one can start with a suitable kernel in-
stead of having to do the mapping Φ(X). It can be shown
by methods of functional analysis that there exists for any
positive definite kernel k, a map Φ into some inner prod-
uct space F , such that k constitutes the inner product of
this space. This space would in general be of infinite di-
mension (function space), so there it is the opposite of
dimensionality reduction. To show that this works and to
put this into a rigorous mathematical context, one uses
the framework and the properties of a reproducing kernel
Hilbert space (RKHS). A recent tutorial is given in Gret-
ton (2019).

Substituting kernel functions for 〈Φ(X),Φ(Y )〉 one
obtains the following algorithm for kernel PCA: One
computes the dot product matrix

KΦ = 〈Φ(Xi),Φ(Xj)〉= k(Xi,Xj),

solve the eigenvalue problem for KΦ, normalize the
eigenvector expansion coefficient αk, and extract princi-
pal components (corresponding to the kernel k, of which
there are several choices) of an observational point X by
computing projections on the eigenvectors as in Equation
(12). The general question of choosing an optimal kernel
for a given problem is unsolved both for kernel PCA and
SVM.

The results of using the kernel principal component
method on the data in Fig. 1a can be seen in Fig. 1e.
The curves are clearly separated along the second kernel
principal component. The two dents in the two innermost
curves of Fig. 1a are also reproduced.

It is of interest to look at the curves in Fig. 1a and their
nonlinear representations when the noise is increased.
This is done in Fig. 2. In Fig. 2a it is seen that with the in-
creased noise the two innermost curves are not separated
any more, but rather forms a quite complicated closed
curve. The principal curve for the innermost curve (with
the other two removed) is seen in Fig. 2b. The overlap
of the two innermost curves is clearly seen for the local
linear embedding, the ISOMAP and the kernel principal
component in Figs. 2c-2e. It seems that only kernel prin-
cipal component is close to separating the original three
curves. For the two others the two innermost curves co-
alesce. In fact, for local linear embedding, the innermost
curve more or less degenerates to two points.

The ISOMAP picture is also interesting. The innermost
curve is split into two opposite curves. This is consistent
with the gap in the innermost curve in the middle of it.
It is also worth noting that the loop formed on the left
hand side of the two innermost curves is reproduced at
the bottom of the ISOMAP plot.

3.8 Random projection

A number of embedding methods depends on a lin-
ear or nonlinear transformation of the data. This is for
instance the case for principal components, where the
transformation is found by solving an eigenvalue prob-
lem involving the data. To be more specific, let us return
to the principal component method of Section 2. Here
there is a n× p data matrix X. Estimated principal com-
ponents V̂1, . . . , V̂m are then found by solving the eigen-
value problem (2). Let us denote by V̂ the p × m ma-
trix V̂ = [V1, . . . , Vm] of the firstm principal components.
Then an embedding to the m-dimensional space is essen-
tially done by the transformation X̃ = XV̂. For a large
p this is burdensome computationally. Similarly, the di-
mension of the eigenvalue problem may be in the millions



STATISTICAL EMBEDDING 9

-60 -40 -20 0 20 40

-20

0

20

40

x

y

class 1
class 2
class 3

(a) The raw data.

-15 -10 -5 0 5 10 15
-10

-5

0

5

10

15

20

x
y

(b) Principal curve on the innermost curve
of Fig. 2a.

-2 -1 0 1

-2

-1

0

1

Y1

Y 2

(c) Local linear embedding.

-50 0 50

-50

0

50

MDS1

M
D

S 2

(d) ISOMAP.

-15 -10 -5 0 5 10 15
-10

-5

0

5

10

1st principal component

2n
d 

pr
in

ci
pa

l c
om

po
ne

nt

(e) Kernel principal components (with a
Bessel kernel).

Figure 2: Four different embedding methods applied to three parametric curves from the so-called Ranunculoid and
perturbed by more Gaussian noise than in Fig. 1a (we have used a standard deviation of 2 instead of 1⁄2 for the noise here).

for the eigenvalue problem (9) for graph representation.
When cross-validation routines are added for training in
a possible classification problem the amount of computa-
tions is prohibitive (Josse and Husson, 2012).

There is, however, another and very different way
to avoid the high computational cost. This is via the
so-called random projection method, whose rationale is
based on the Johnson-Lindenstrauss lemma, Johnson and
Lindenstrauss (1984) . In a random projection algorithm
the transformation matrix V̂ based on the data is sim-
ply replaced by a matrix U such that X̃ = XU, where
each element of the matrix U is obtained by drawings
from a random variable. In a normal random projection,
cf. Li, Hastie and Church (2007, Section 2.1), the ele-
ments Uij are all sampled iid from a standard normal
Uij ∼N(0,1).This certainly implies an enormous saving

of computational cost, but one may ask whether it makes
sense. After all, the matrix U is drawn independently of
the data X.

The Johnson-Lindenstrauss lemma is helpful here.
This says that under relatively mild conditions distance
relationships are kept approximately invariant under the
random projection. There are many formulations of this
lemma. We state the one used in Li, Hastie and Church
(2007, Lemma 2): If m > G(2 logn − log δ)/ε2, where
G = 4/(1 − 2ε/3), then with probability at least 1 − δ,
and remarkably, independent of X and p, the squared l2
distance between any pair of projected data points can be
approximated within a factor of (1± ε), (0 < ε < 1), of
the squared l2 distance of the original data after normal
random projections. Alternative formulations and proofs
can be found in e.g. Ghojogh et al. (2021).
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Several attempts have been made to apply the ran-
dom projections to clustering, classification and regres-
sion. Perhaps not unexpectedly, it has been found that ran-
dom projections may fail exactly because the transforma-
tion U is constructed without taking the intrinsic struc-
ture of the original data into account. This issue has been
sought avoided in various ways (Cannings and Samworth,
2017; Xie, Li and Xue, 2018).

3.9 A few other techniques

There are several other alternative methods in nonlin-
ear dimension reduction. Perhaps the most used one is In-
dependent Components Analysis (ICA). The main con-
cepts of the method are described in a much cited paper
by Hyvärinen and Oja (2000).

In ICA the aim is again to obtain latent factors, and in
format the decomposition is the same as the PCA decom-
position except that the components are now required to
be independent. One might remark that ICA essentially
starts from a factor analysis solution to dimension reduc-
tion and looks for rotations that lead to independent com-
ponents. From this point of view ICA is just another factor
rotation along with the traditional varimax and quartimax.

Two other methods will be very briefly mentioned.
These are both neural network based methods. One of
them consists in so-called autoencoding in deep neural
networks, and can be represented by Hinton and Salakhut-
dinov (2006). The other is the method of Self Organiz-
ing Maps which can be said to have originated by another
much cited paper, Kohonen (1982).

4. TOPOLOGICAL EMBEDDINGS AND
TOPOLOGICAL DATA ANALYSIS (TDA)

The present section concerns topological embeddings
and data analysis. We will divide our exposition in three
parts, manifold learning, persistent homology, and finally
the Mapper algorithm. It is the persistent homology part
that is usually identified with TDA. Our point of departure
is in all cases a point cloud in Rp. In part one the objective
is to examine whether there is a possibility of embedding
the point cloud in a lower dimensional manifold. In the
two other parts, the aim is to try to find additional topo-
logical features that may characterize the point cloud and
its embedding. In order to avoid an overlong paper, parts
of the TDA survey have been moved to the Supplement
(Tjøstheim, Jullum and Løland, 2022a). A main introduc-
tory reference to manifold learning and TDA is Chazal
and Michel (2021).

4.1 Manifold learning

Already in the Pearson (1901) treatment of principal
components, the point cloud of data is embedded on a
hyper-plane in Rp. The approach of ISOMAP and local

linear embedding are early examples of representing the
data in a lower dimensional manifold.

A main aspect of manifold learning is that one looks
for a non-Euclidean subspace to make an embedding that
may not easily be achieved in an Euclidean space Rm,
but more efficiently on a manifold. One trivial example
is the case where the point cloud in the plane is con-
centrated on a circle with only small additional pertur-
bations. The data can then essentially be reduced from
two-dimensional space (the plane), not to the line (R ),
but to the circle which is a one-dimensional manifold. For
a more complex example we refer to the Ranunculoid of
Fig. 1a.

In the more general case, manifold learning consists in
finding a smooth compact submanifold S of Rp on which
the point cloud data may be reasonably located.

One may estimate S by trying to cover the data cloud
by a collection of balls of radius ε, such that

(13) Ŝ = ∪ni=1B(Xi, ε),

where n is the number of observations and B(Xi, ε) =
{x : ||x −Xi|| ≤ ε}, and where Xi is observation num-
ber i of the point cloud. This was suggested by Devroye
and Wise (1980) in another context. If the observations
Xi are all exactly on S and with ε depending on n, it
is possible to prove convergence of Ŝ to S at the rate of
OP (logn/n)1/r , where r is the dimension of S, and the
distance between S and Ŝ is the Hausdorff distance be-
tween sets.

It is not likely that a sample will fall precisely on S.
A more realistic model is that one observes Yi =Xi + δi,
where Xi comes from a distribution with support on S,
and δi are samples from a noise distribution. In this case
the convergence rate of the estimation of S is very slow
(Genovese et al., 2012). An interesting example of two-
dimensional data, but where there is a set S of dimen-
sion 1 with a high concentration of data, is the data set of
galaxies treated in Chen et al. (2015a,b).

In a theoretical analysis, often the dimension r of the
embedding manifold is assumed known. In practice one
may need to estimate r; see Levina and Bickel (2004),
Little, Maggioni and Rosasco (2011), and Kim, Rinaldo
and Wasserman (2019). It may be possible to estimate an
r-dimensional and high density region R that is close to
S. One way to make this more precise is through the idea
of density ridges.

The ridge set can then be estimated by the ridge of the
kernel density estimator. The properties of this estimator
is studied in Genovese et al. (2014) and Chen, Genovese
and Wasserman (2015). A popular algorithm for finding
the ridge set estimator was given by Ozertem and Er-
dogmus (2011), the so-called SCMS algorithm. Recently,
Qiao and Polonik (2021) proposed two novel algorithms
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for estimating ridge lines in ridge regression. They pro-
vide theoretical guaranties for their convergence in proba-
bility using the Hausdorff distance between the estimated
and theoretical ridge. There are no analog results for the
SCMS algorithm.

4.2 Persistent homology and persistence diagrams

In our context, the concept of homology can be seen as
coming from a desire to answer the question of whether
two sets are topologically similar. For instance, is an es-
timate Ŝ of S topologically similar to S, or is it at all
possible to find an estimate of S that is topologically sim-
ilar to S? The answer to this question depends on what is
meant by “similar”.

Two sets S and T equipped with topologies are home-
omorphic if there exists a bi-continuous map from S to
T . Markov (1958) proved that, in general, the question of
whether two spaces are homeomorphic is undecidable for
dimension greater than 4.

However, it is possible to use the weaker notion of
homology, and it is much easier to determine whether
two spaces are homologically equivalent. Strictly speak-
ing homology is a way of defining topological features al-
gebraically using group theory. See e.g. Carlsson (2009)
for a precise definition. Intuitively it means that one can
compare connected components, holes and voids for two
spaces. The zeroth order homology of a set corresponds to
its connected components. The first order homology cor-
responds to one-dimensional holes (like a donut), whereas
the second order homology corresponds to two dimen-
sional holes (like a soccer ball) and so on for higher di-
mensions. If two sets are homeomorphic, then they are
homologically equivalent, but not vice versa.

Homology is a main topic of TDA. To establish a
link with the previous subsection, consider the estimate
Ŝ = ∪ni=1B(Xi, ε) of Equation (13). One of the first re-
sults about topology and statistics is due to Niyogi, Smale
and Weinberger (2008). They showed that under certain
technical conditions the set Ŝ has the same homology as
S with high probability.

In many ways topological data analysis has been iden-
tified with the subject of persistent homology. This is con-
cerned with the homological structure of data clouds at
various scales of the data, and to see how the homology
changes (how persistent it is) over these various scales,
cf. also Section 3.6. A main introductory source is Chazal
and Michel (2021).

The field of TDA is new. It has emerged from research
in applied topology and computational geometry initi-
ated in the first decade of this century. Pioneering works
are Edelsbrunner, Letcher and Zomorodian (2002) and
Zomordian and Carlsson (2005). An early survey paper at
a relatively advanced mathematical level but with a num-
ber of interesting and illustrative examples is Carlsson

(2009). Wasserman (2018) and Chazal and Michel (2017)
are somewhat less technical and more oriented towards
statistics. See also Ghrist (2017).

For our purposes of statistical embedding, TDA brings
in some new aspects in that topological properties are em-
phasized in the embedding. This is done to start with in
so-called persistence diagrams which depict the persis-
tence, or lack thereof, of certain topological features as
the scale in describing a data cloud changes. In compli-
cated situations persistence diagrams can be computed
from simplical complexes. This is a particularly interest-
ing concept since it generalizes the embedding of a point
cloud in a graph. A one dimensional simplical complex
can be identified with a graph, whereas generalizations
allow for describing cycles and voids of the data.

To introduce the persistence diagram, recall the esti-
mator Ŝ in (13) as a union of balls B(Xi, ε) of radius ε.
One may question what happens to this set as the radius
of the balls increases. Consider for example a data cloud
that contains a number n of isolated points that resem-
bles a circular structure. Let each point be surrounded by
a neighborhood consisting of a ball centered at each data
point and having radius ε. Then initially and for a small
enough radius ε, the set ∪ni=1B(Xi, ε) will consists of n
distinct connected sets (homology zero). But as the radius
of the points increases, some of the balls will have non-
zero intersection, and the number of connected sets will
decrease. For ε big enough one can easily imagine that the
set ∪ni=1B(Xi, ε) is large enough so that it covers the en-
tire circular structure obtaining an annulus-like structure
of homology 1, but such that there still may exist isolated
connected sets (of homology 0) apart from the annulus.
Continuing to increase the radius, one will eventually end
up with one connected set of zero homology.

This process, then, involves a series of births (at ε-
radius zero n sets are born) and deaths of sets as the iso-
lated sets coalesce. A useful plot is the persistence dia-
gram, which has the time (radius) of birth on the horizon-
tal axis and the time (radius) of death on the vertical axis.
The birth and death of each feature is represented by a
point in the diagram. All points will be above or on the
diagonal then.

We will go through the steps of this procedure in the
case of the noisy Ranunculoid structure of Fig. 1a. We
will start by considering each of the three curves, then pair
of curves and finally all three curves. The corresponding
persistence diagrams are displayed in Fig. 3, and these
diagrams furnish the topological embedding signature of
the data, which is rather different from, and presents addi-
tional information compared to, the embeddings in Figs. 1
and 2.

Consider first the individual curves in Figs. 3b-3d
(Fig. 3a is identical to Fig. 1a). Here, class 1, 2 and 3
in Figs. 3b-3d represent the persistence diagram of the in-
nermost to the outermost curves, respectively. The gray
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Figure 3: Persistence diagrams for combinations of classes 1, 2 and 3.

points represent sets of homology zero (isolated sets) and
black points represent sets of homology one, i.e., one-
dimensional holes. The gray column at the left is just the
time of death for all the sets around the individual points

as the radius for the individual neighborhoods increase.
Naturally, the column is highest for the outermost curve
in Fig. 3d, where the distances between points are largest.
The black points at the right hand side of the columns
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mark small holes that temporarily arise in this process due
to indents in the point spreads. For the innermost curve
there is a black point at the far right with a short lifetime.
This is due to the opening in this curve, which is just great
enough for there to form an annulus as the radii increase.

Next, to the diagram of the pairwise curves: The pair
(1,2) consists of the two innermost curves, and the persis-
tence diagram is displayed in Fig. 3e. The points of curve
1 can again be found. In addition, at birth time, there is a
gray point above the gray column. This is just due to the
fact that there are two curves at the starting point. As time
(and radii) increase the two curves coalesce and we have a
death at the gray point above the gray column. The three
black points being born at approximate time 6 and liv-
ing for about time 6 to time 12 come from holes that are
created as curve 1 and 2 are approximating each other.
The explanation for the pair (2,3) is much the same. In
this case it takes more time before the curves 2 an 3 co-
alesce, so the gray point at time zero are farther up. Here
too 3 holes are formed as the curves 2 and 3 approach
each other. One hole has very short lifetime, it is almost
on the diagonal, where as the two others almost coincide
and have far longer lifetime. This has to do with the dif-
ferent levels of indention on the two curves. Finally, for
the pair (1,3), the gray point at zero is even farther up, re-
flecting the increased distance between the curves 1 and
3. Again the pattern of curve 1 is dominating as for the
pair (1,2). The indents of curve 1 are small in comparison
with the indents of curve 3, and this explains that it takes
longer time for holes to appear as these two curves are
approaching each other.

The diagram for the triple of curves (1,2,3) in Fig. 3h
is roughly obtained by superposition of the pattern for the
pairwise curves. There is a difference at birth time zero,
though. The uppermost point for the pair (1,3) has disap-
peared. The explanation is obvious. The curves 1 and 2
coalesce first due to least distance between them. Curve 3
is then coalescing with the set combined by curve 1 and
2, which has a distance from curve 3 equal to the distance
between 2 and 3, such that the second gray point at zero
correspond to the gray point at zero for the pair (2,3).

One can also construct persistence diagrams for the
more noisy curves of Fig. 2. This is shown in Fig. 4. The
pattern is a bit more complex as is expected, but the in-
dividual points can be interpreted as before. In particular,
due to the more irregular patterns of the noisy curves, the
gray columns to the left extend farther up, and the birth of
holes of dimension 1 has an earlier birth, there are more of
them, and they exhibit a somewhat more complex pattern.

The idea is that this description of a point cloud in
the plane, as indicated above, may be generalized to
higher dimensions and much more complicated struc-
tures with multiple holes and voids of increasing homol-
ogy. The number of sets of different homologies are de-
scribed by the so-called Betti numbers, β0, β1, . . .. In a

non-technical jargon β0 is the number of connected com-
ponents (β0 = n, n being the number of isolated points
in the start of our example), β1 is the number of one-
dimensional holes, so β1 = 1 if there is only one con-
nected ring structure, and β0 = 1, β1 = 0 when the radius
is so great that there is only one connected set altogether.
The hole is one-dimensional since it suffices with a one-
dimensional curve to enclose it, whereas the inside of a
soccer ball is two-dimensional, it can be surrounded by
a two-dimensional surface, and has β0 = 1, β1 = 0 and
β2 = 1. A torus has β0 = 1, β1 = 2, β2 = 1. In Figs. 3 and
4 it is a trivial exercise to find the Betti numbers (0 or 1)
for any chosen interval of time (radius) of these figures.

The extension of the persistence diagrams to more gen-
eral structures requires relatively advanced use of mathe-
matical tools. We only indicate some main concepts in
Section 1 of the Supplement (Tjøstheim, Jullum and Lø-
land, 2022a). Section 1 of that Supplement is concluded
by formulating some explicit and open statistical prob-
lems in TDA.

There are many applications of TDA in general and
of persistence diagrams in particular. Two recent appli-
cations to cancer research are Bukkuri, Andor and Darcy
(2021) and Crawford et al. (2020), where the latter intro-
duces a variation of a persistent homology transformation
to facilitate the difficulties in integration with traditional
statistical models. In this type of cancer studies time se-
ries are important. The use of TDA to analyze time series
data is discussed in Ravisshanker and Chen (2019).

4.3 The Mapper

In Section 3 we have outlined a number of methods
for projecting high dimensional data to lower dimensions,
thus making the projected data more amenable for charac-
terization such as e.g. clustering and classification. Some
of these methods strive to make the distance between
points invariant, others not. But in all cases there is a risk
of missing important topological information during the
projection operation. The Mapper algorithm suggested in
a seminal paper by Singh, Memoli and Carlsson (2007)
tries to handle this issue by back-projecting the charac-
terization in the lower dimensional space to the original
space by considering preimages of the clustering, say, in
the low dimensional space. More precisely, the Mapper
algorithm consists of the following steps:

Consider a point cloud of data X, and let f be the map-
ping of X to a lower dimensional space, obtained by prin-
cipal components or one of the other dimensionality re-
duction methods of Section 3. Let Y = f(X) be the set
of data points in the lower dimensional space, often as-
sumed to be Rm or even R1. Then

1. Cover the range of values Y = f(X) by a collec-
tion U = {U1, . . . ,US} of intervals, or possibly more
general sets, which overlap.
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Figure 4: Persistence diagrams for combinations of classes 1, 2 and 3.

2. Apply a clustering algorithm to each of the preim-
ages f−1(Us), s= 1, . . . , S. Even though Us may be
connected, f−1(Us) of course may not be connected
due to the potential complicated topological relation-

ships in the original space. This defines a pullback
cover C = {C1,1, . . . ,C1,k1 , . . . ,CS,1, . . . ,CS,kS} of
the point cloud X, where Cs,k denotes the kth clus-
ter of f−1(Us).
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3. Each node vs,k of the Mapper corresponds to one el-
ement Cs,k, and two nodes vs,k and vs′,k′ are con-
nected if and only if Cs,k ∩Cs′,k′ is not empty.

The algorithm results in a graph (or more generally a
simplical complex). The essential design problems con-
sist in the choice of the transformation f and the cover-
ing U1, . . . ,US in the lower dimensional space. Unfortu-
nately, according to Chazal and Michel (2021), Mapper
is quite sensitive to the choice of covering, the number of
covering sets and the overlap between them, making the
method potentially unstable. A classical strategy consists
in exploring some range of design parameters, and select-
ing the ones that turn out to provide the most informative
output from the user’s perspective.

There is a statistical analysis including parameter se-
lection in Carrière, Michel and Oudot (2018). They
demonstrate aspects of statistical convergence and en-
suing optimality problems. They also derive confidence
regions of topological features such as loops and flares.

The Mapper algorithm has found many applications,
especially for its capability of detecting loops and flares in
the mapping of the original data space. A recent example
of applications to cell description is given in Carrière and
Rabadán (2020).

5. EMBEDDING OF NETWORKS

In Sections 3.4 and 3.5 graphs (or networks) were used
as a tool in embedding a point cloud in Rp, making it pos-
sible among other things to do cluster analysis involving
non-convex clusters. In the present section, the starting
point is a network or collection of networks, and the task
is to embed the network in an Euclidean space Rm or to
map it to a manifold. This is used to obtain a vector rep-
resentation of each node of the network.

Why is it important to be able to embed a network in
such a way? The main reason is simply that for many pur-
poses it is easier to work with a set of n vectors than with a
network consisting of n nodes. One has standard methods
for dealing with vectors. For example one can do cluster-
ing of vectors, which in a social network could correspond
to finding and grouping communities in the network. And
one can also compare and classify networks by looking at
their embedded sets of n-dimensional vectors.

With the increasing use of the internet and big data, the
analysis of large networks is becoming more and more
important. There is a very wide field of applications rang-
ing over such diverse areas as e.g. finance, medicine and
sociology, including criminal networks. A broad overview
can be found in the recent book by Newman (2020). A
fine detailed survey is Cui et al. (2019).

With ultra-high dimension and very large data sets,
there is a need for fast methods. With the recent tech-
nique of Skip-Gram, described in some detail in Section

5.3 and in Section 2 in the Supplement (Tjøstheim, Jul-
lum and Løland, 2022a), one is able to handle networks
with millions of nodes and billions of edges such that
each node is represented by a vector of dimension 500-
600, say. On such vectors one can use standard discrimi-
nation and clustering. One may also do further embedding
to lower dimensional vectors, as described in Section 6, to
visualize data of very high dimension.

In our survey of network embedding methods, we will
start with spectral graph methods in Section 5.2 after a
brief introduction on characterization of graphs in Sec-
tion 5.1. The spectral method requires solving an eigen-
value problem, and this puts a limitation on the number of
nodes and edges. This restriction is to a large degree by-
passed in neural network based methods, in particular in
the Skip-Gram algorithm. This algorithm was originally
introduced in natural language analysis, which has inde-
pendent interest in that the words in a language text can
be embedded in a vector in Rm reflecting not only the
word count in a text but also the syntax of the text. A
language text is not a network, and therefore the detailed
embedding analysis of a language text is covered in Sec-
tion 2 of the Supplement. Ideas and methods developed in
such a framework have proved vitally important, however,
for fast and efficient embedding of networks as is demon-
strated in Section 5.3. That section is chiefly concerned
with symmetric undirected networks, but briefly mention-
ing directed networks, heterogeneous networks and dy-
namic networks, where there are many open statistical and
data processing problems, in the ensuing sections.

There are several issues of statistical interest related
to embedding of networks. One may therefore think that
there is a potential synergy effect that both the statistics
and machine learning community could benefit from. We
will try to make this more clear in the sequel. One is-
sue is the lack of statistical modeling and inference in the
algorithmic machine learning industry. It is important to
realize that there now exists a growing statistical litera-
ture that is in process of being integrated in algorithms
on finding communities in networks. We refer to Sections
5.2.4 and 5.7.1. See also the three keypoints formulated
in the concluding remarks in Section 7.

5.1 A few elementary concepts of graph theory and
matrix representations

We have already introduced some elementary graph
concepts in Sections 3.4 and 3.5. In this brief introduc-
tory section we supplement these to more fully explain
the spectral based clustering algorithms for networks.

We consider a graph G = (V,E), where V and E are
the sets of nodes and edges, respectively. The graph is
supposed to be undirected, which means that an edge goes
in both directions between two neighboring nodes. Let
n= |V | be the number of nodes in (V,E). Then the graph
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can be represented by a n × n matrix M, such that an
element Mij of this matrix represents some property of
the pair of nodes vi and vj . When V is large, this matrix
may be huge. Later, representation matrices of dimension
n×m will be introduced where m<< n. Diagonal ele-
ments Mii encode information of the node vi only, such
as the degree of vi (number of edges emanating from vi or
more generally as in Equation (7) for a weighted graph).
A simple example of such a matrix is the adjacency ma-
trix A, which was mentioned in Section 3.5.

An adjacency matrix A for an undirected graph is sym-
metric with real eigenvalues, both negative and positive.
In many applications it is useful to have a non-negative
definite matrix. One example of such a matrix is the
Laplace matrix, a version of which was introduced in Sec-
tion 3.5 for a general weighted undirected graph. It is
given by

(14) L = D−A,

where A is the adjacency matrix and D = diag(di) is the
diagonal matrix having the degree of the nodes along the
diagonal.

The normalized Laplacian LN is defined by

LN,ij =


1 if i= j

−1/
√
didj if i and j are adjacent

0 otherwise.

This matrix can also be written LN = D−1/2LD−1/2. It
is non-negative definite and it has all its eigenvalues 0≤
λ≤ 2.

5.2 Spectral embedding and graph clustering

A basic task in network clustering is community struc-
ture detection. It is perhaps best thought of as a data tech-
nique used to throw light on the structure of large-scale
network data sets, such as social networks, web data net-
works or biochemical networks. It is normally assumed
that the network of interest divides naturally into sub-
groups, and the task is to find those groups.

For the purpose of community grouping and division
a criterion is required that can measure both the internal
structure within each group, where the goal is to maxi-
mize the dependence between members of a group, but
also such that the dependence between each group is min-
imized. There are two main methods for doing this, either
by minimizing the so-called cut between the groups, the
mincut problem or by maximizing the modularity. Both
are discussed below using network spectral embedding.

5.2.1 Minimizing the cut functional A useful tutorial
on spectral clustering is given by Luxburg (2007). A more
recent alternative account is given in Zheng (2016).

Given a graph G= (V,E) with adjacency matrix A we
would like to find a partition of V in groups V1, . . . , Vk

such that the number of edges between each group is min-
imized. This leads to the mincut problem.

Let W (Vi, Vj)
.
= 1

2

∑
m∈Vi,l∈Vj

wml, where wml is the
weight for the edge between the nodes vm and vl. In the
unweighted situation wml is 1 if there is an edge between
vm and vl and 0 if not. Let V̄i be the complement of Vi.
The mincut approach to clustering is simply defined for a
given k by choosing the partition V1, . . . , Vk which mini-
mizes the normalized cutsize

NCut(V1, . . . , Vk)
.
=

1

2

k∑
i=1

W (Vi, V̄i)

vol(Vi)
=

k∑
i=1

cut(Vi, V̄i)
vol(Vi)

,

where vol(Vi) =
∑

vl∈Vi
dl, dl being the weighted degree

of vl. A similar criterion is the RatioCut criterion (Wei
and Cheng, 1989).

The normalized Laplace matrix can be written as
LN = D−1/2LD−1/2. Let H be the n × m matrix
whose columns are the m eigenvectors corresponding to
the m smallest (non-zero) eigenvalues of LN . The m-
dimensional row vectors of H then constitute an embed-
ding of the nodes of the graph minimizing the normalized
cut-functional of the graph. These embedding vectors are
then used as a point of departure for clustering and clas-
sification of nodes.

5.2.2 Maximizing the modularity Modularity is an al-
ternative concept in the use of spectral methods in cluster-
ing. Modularity was introduced by the highly cited papers
of Girvan and Newman (2002) and Newman and Girvan
(2004), and after that has been further developed as in
Newman (2006). See also Bickel and Chen (2009) for an
alternative using a nonparametric point of view.

It was seen in the previous subsection that the principle
underlying the cut-size algorithms is that a good division
of a network is one in which there are few edges between
communities. Newman (2006) states that this is not neces-
sarily what one should look for. He argues that a good di-
vision is one in which there are fewer than expected edges
between communities.

This idea, then, is quantified using the measure of mod-
ularity. Assume first that there are two potential classes.
Again we suppose that the network contains n = |V |
nodes, and we introduce the vector s, whose ith compo-
nent is given by si = 1 if node vi belongs to group 1 and
si =−1 if it belongs to group 2. The edge between nodes
vi and vj is characterized by the adjacency matrix A. The
element Aij then represents the “number of edges” be-
tween vi and vj . The expected number of edges between
vi and vj if edges are placed at random is didj/2d, where
di and dj are the degrees of the nodes and d = 1

2

∑
i di

(undirected network). The modularity is then defined by

(15) Q=
1

4d

∑
ij

(
Aij −

didj
2d

)
sisj =

1

4d
sTBs,
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where the matrix B is defined by

Bij =Aij −
didj
2d

.

This is easily generalized to the case of k classes, and the
modularity is maximized by computing the eigenvectors
of the B matrix. Corresponding to H, let S be the n×m
matrix whose columns are the eigenvectors corresponding
to the top m eigenvalues of B. The n m-dimensional row
vectors of S then constitute an embedding of the n nodes
of the network maximizing the modularity.

5.2.3 The Louvain method for community detection
The so-called Louvain method for community detection
based on modularity was introduced in a paper by Blon-
del et al. (2008). They start with a network with n nodes,
and where each node defines a community. Then one
goes successively through the nodes of the net and for
each node vi, with neighbors vj one investigates the gain
in modularity if vi is removed from its community and
placed in the community of vj . The node vi is then placed
in the community for which this gain is maximum (in case
of a tie, a breaking rule is used). An updating formula for
the change in the modularity Q is given in Blondel et al.
(2008). This is continued until the whole graph has been
covered. In the next round the procedure in the first round
is repeated, but this time with the communities formed in
the first step as entities. This is continued until there is no
increase in Q.

There is no eigenvalue problem that needs to be solved
in this algorithm. This makes it possible to apply the Lou-
vain algorithm for substantially larger networks. One ex-
ample that the authors refer to is a mobile phone company
with a network composed of 2.6 million users.

5.2.4 Statistical modeling, SBMs and finding commu-
nities The methods in Sections 5.2.1-5.2.3 all belong to
the algorithmic approach. An intuitively reasonable ob-
ject function is maximized or minimized to find commu-
nities in a network. This is in line with the most popular
approach to statistical embedding, where as such no sta-
tistical model is involved. There are no parameters that
should be estimated, and in terms of which the fit of the
model can be assessed.

These two different approaches, the algorithmic versus
the statistical modeling one, have recently been discussed
in several papers. The most recent one seems to be Peix-
ito (2021), who is staunchly critical to the algorithmic
approach in general and to the methods of finding com-
munities in Sections 5.2.1-5.2.3 in particular. The author
demonstrates that maximizing the modularity Q of sub-
section 5.2.2 could lead to falsely finding communities in
a completely random environment. On the other hand he
gives examples where in given situations use of Q leads
to underestimation of the number of communities. This

may be part of a general problem of some machine learn-
ing algorithms, at least it is something that deserves closer
attention, as indicated in the third keypoint of Section 7.

Peixoto argues for parametric statistical models from
which networks can be generated, and where the struc-
ture of the net depends on the type of statistical models
used and on the values of the parameters of these mod-
els. The generated model structures can be compared to
real life networks, and parameters may be estimated by
seeking to fit a generated model structure to the real life
data. The most used statistical model is probably the so-
called stochastic block model, SBM, where a block may
be thought of as a community. The history of these mod-
els goes back at least to Holland, Laskey and Leinhardt
(1983). Another early publication for a slightly more gen-
eral model is Hoff, Raftery and Handcock (2002). There
are several papers on the theoretical aspects of the SBM
that will be briefly mentioned in Section 5.7.1. A review
paper is Lee and Wilkinson (2019). Here we will base
ourselves on Karrer and Newman (2011) and Newman
and Reinert (2016), since they are directly and explicitly
related to maximizing modularity Q, Newman being the
main originator of the modularity principle.

In the simplest undirected stochastic block model each
of the n nodes is assigned to one of k blocks (communi-
ties), and undirected edges are placed independently be-
tween node pairs with probabilities that are a function
only of the block membership of the nodes. If we denote
by bi the block to which node i belongs, then one can
define a k× k matrix of probabilities such that the matrix
element pvi,vj is the probability of an edge between nodes
i and j. These probabilities are the k2 parameters of the
model, and there are several ways of estimating them for
a given real data network.

Unfortunately, however, this simple block model does
not work well for many real world networks, and tends
to give bad results in obtaining plausible communities.
There are generalizations of the simple SBM model, but
they may lead to models that are far more difficult to es-
timate. One relatively simple generalization is the degree
corrected stochastic block model (dcSBM) that seems to
work much better on real life networks. The dcSBM was
suggested by Karrer and Newman (2011). It allows for
heterogeneity in the number of degrees for the nodes,
which is a phenomenon that is often observed in practice,
whereas the simple SBM results in a model where each
node has the same expected degree, which in many cases
is clearly unrealistic. Karrer and Newman also demon-
strate that in a certain approximative sense the dcSBM
can be related to the modularity function Q from Equa-
tion (15).

5.3 Embedding a network using Skip-Gram

For large networks the cut-size spectral clustering
method and the modular method (possibly with the ex-
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ception of the Louvain method) run into problems be-
cause it is costly to solve eigenvalue problems for the
high dimensions that may occur in network embedding.
These problems are to a large degree alleviated in a neural
net based Skip-Gram procedure. This procedure was first
developed in word embedding in a language text (from
this the nomenclature “Skip-Gram”). Here the eigenvalue
problem is eliminated altogether, and the neural net train-
ing is speeded up using so-called negative sampling or
hierarchical processing. See also Section 2 in the Sup-
plement (Tjøstheim, Jullum and Løland, 2022a), which
contains a relatively detailed account of natural language
embedding, and may be of some independent interest.

A neighborhood is then what remains to extend word
processing to networks where words are replaced by
nodes and the vocabulary with the network itself. In nat-
ural language processing, defining a neighborhood of a
word in a text is not difficult: simply taking n1 and n2,
ni ≥ 0 context words in front and after the word respec-
tively. Before embarking on the neighborhood problem,
partly to define notation, let us formally write up the ana-
log of the Skip-Gram model, presented in some detail in
the language analysis in Section 2 of the Supplement, for
a network. The notation N(v) is used for the neighbor-
hood of a node v ∈ V in a network G = (E,V ). Neigh-
borhoods are more precisely defined in Section 5.3.2. The
analysis to be presented next applies mainly to the static
undirected case. Extensions to directed, heterogeneous
and dynamic networks are briefly discussed in separate
subsections.

We let f be the mapping from V to the embedding fea-
ture space Rm. The goal is to associate each node v in V
with a feature vector f(v) in Rm. When representing the
whole network in this way we obtain an n ×m dimen-
sional matrix with n= |V |.

5.3.1 The Skip-Gram We proceed to formulate the
Skip-Gram architecture for an undirected symmetric net-
work. One seeks to optimize an objective function in find-
ing a representation f(v) such that the conditional prob-
ability for obtaining individually the elements in N(v),
given an input node v, is maximized; i.e, find f such that

(16)
∑
v∈V

logP (N(v)|f(v))

is maximized.
The maximization is done by training a one-layer hid-

den neural network which has as possible inputs n vec-
tors, one for each node in the network. A fixed input vec-
tor has as desired output a probability distribution on the
nodes. It should be concentrated as well as possible to the
neighbors (suitably defined) of the input node. The idea
is to train the neural net through its hidden layer so that
this is achieved to the highest possible degree. Only linear

transformations are used from the input layer to the hid-
den layer and essentially also from the hidden layer to the
output, although a logistic type transformations is used to
transform the outputs to probabilities. A few basic facts
of neural networks are given in Section 2.1 of the Supple-
ment (Tjøstheim, Jullum and Løland, 2022a).

The training is done successively by going through this
process for each input node several times and is stopped
when the deviation from the obtained probability distri-
bution on the outputs is close enough to the ideal de-
sired one, which is completely concentrated on the sought
neighboring nodes. At each step of this procedure each
node has an input vector representation and an output vec-
tor representation. It is the output vector representation
that is of interest since it describes the relation between
a node and its neighbors. This training process strives to
maximize the function in (16).

To make this optimization problem tractable, the fol-
lowing two assumptions are made (not always made ex-
plicitly in the language processing papers).

1) Conditional independence: The conditional likeli-
hood is factorized as

(17) p(N(v)|f(v)) =
∏

ni∈N(v)

P (ni|f(v)).

2) Symmetry in feature space and softmax: A source
node and a neighborhood node have a symmetric ef-
fect on each other in the embedding feature space.
Accordingly, the conditional likelihood for every
source-neighborhood pair is modeled as a softmax
unit, parameterized by a dot product of their features

(18) P (ni|f(v)) =
exp(f(ni) · f(v))∑
u∈V exp(f(u) · f(v))

.

This is nothing but a suitable parametrization of the
multinomial logistic regression model, but in the
data science literature "softmax unit" is preferred.
Formula (18) may be compared to the development
in Section 2.4 in the Supplement (Tjøstheim, Jullum
and Løland, 2022a).

With the above assumptions and taking logarithms in
(18), the objective function in Equation (16) simplifies to

max
f

∑
v∈V

[
− log

(∑
u∈V

exp
(
f(v) · f(u)

))
+

∑
ni∈N(v)

f(ni) · f(v)
]
.

(19)

In the training of the neural net one avoids solving a
high dimensional eigenvalue problem, but there is an ob-
vious computational issue involved. As the size of the net-
work increases with n, the neural net with the associated
input and output vectors representations becomes heavy
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to update. For each step of the training, in principle, all
of these representations have to be updated. The updat-
ing of the node input vectors is cheap, but learning the
output vectors, which are the vectors of interest, is expen-
sive. For each training instance one has to iterate through
every node of the network, cf. the summation over u in
(18) and (19), compute the output and the prediction error
and finally use the prediction error in a gradient descent
algorithm to find the new output vector representation.

The idea of negative sampling, first introduced in
Mikolov et al. (2013) in text analysis, makes the training
process amenable by not sampling over the entire network
for each update of a node, but rather a small sample of
nodes. Obviously, the output nodes in the neighborhood
of a given node should be included in the update sam-
ple, i.e., the last sum of (19). They represent the ground
truth and are termed positive samples. In addition a small
number k of nodes (noise or negative samples) should be
updated. Mikolov et al. (2013) suggest that k = 5 − 20
are useful for small training sets, whereas for large train-
ing sets k = 2 − 5 may be sufficient, see Section 2.6 of
the Supplement for more details (Tjøstheim, Jullum and
Løland, 2022a). The sampling is done via a probability
mechanism where each word (node) is sampled accord-
ing to its frequency in the text. It will be seen below
how this can be done in the network case. In addition,
Mikolov et al. (2013) recommends, from empirical expe-
rience, that in the further analysis each frequency should
be raised to the power of 3/4 (cf. again Section 2.6 of the
Supplement). This seems also to have been adopted in
the network version of negative sampling. Clearly, a more
thorough statistical analysis, also including the choice of
k, would be of interest. We refer again to the first of the
three keypoints of Section 7.

We will return to the question of negative sampling in
the next subsection, where a sampling strategy S is intro-
duced for creating neighborhoods of a node v.

5.3.2 Neighborhood sampling strategies Various au-
thors have suggested different sampling strategies of the
nodes of a network. We will go through three main strate-
gies which seem to be representative of this field as of the
last five years. All of these contain parameters to be cho-
sen for which, to our knowledge, an optimality theory is
lacking.

Perozzi, Al-Rfou and Skiena (2014) device a sampling
strategy they call “DeepWalk”. Consider a node v, and
denote by wvu the weight of its (undirected) edge with
another node u. Let the degree variable be dv =

∑
uwvu.

Then start a random walk from v by letting it choose the
one-step neighbor u with probability P (u|v) = wuv/dv .
Next, repeat this for the node u, and so on until L steps,
say, have been obtained. The walk may return to v for
one or more of its steps. This procedure is now repeated γ
times obtaining γ random walks starting in v. These may

be compared to text segments in natural language process-
ing. Analog to a moving window in a language text we
now let a window of size 2K + 1, where 2K + 1 ≤ L,
glide along the random walk paths. For each window,
there is a center node numbered u′, K ≤ u′ ≤ L−K , and
we define a neighborhoodNS(u′) andK nodes prior to u′

and K nodes after u′ in the considered random walk path.
For each such configuration we apply the Skip-Gram pro-
cedure (16) - (19). In this way, for each node v we gener-
ate γ × (L− 2K) segments of nodes. Note that this cre-
ation of segments in paths of random walks can be carried
out before the optimization process takes place. When ap-
plied to all of the nodes of the network it results in a col-
lection of n× γ × (L− 2K) segments of nodes that cor-
respond to windows of words in a language text. This sets
up a frequency distribution over the nodes corresponding
to the frequency distribution of words in the vocabulary
in a text. Negative sampling of nodes can then be applied
to this frequency distribution of nodes.

The LINE (Large-scale Information Network Embed-
ding) was introduced by Tang et al. (2015). They use a
slightly different optimization criterion than (17). Some-
what similarly to Grover and Leskovec (2016) LINE in-
troduces the concepts of first and second order proximi-
ties.

Qiu et al. (2018) and Qiu et al. (2019) obtain a uni-
fying view of the DeepWalk and LINE among other al-
gorithms. Recent activity in deep learning and recursive
neural networks should also be mentioned (Young et al.,
2018). Software packages are available for all of the al-
gorithms mentioned in this section, and a number of real
data examples are given in the publications cited.

5.4 Directed network

In many applications of networks one deals with a di-
rected network, e.g. in causality networks. This is a net-
work where the weight on edges between nodes vi and
vj may be different, so that wij 6=wji, and one may even
have wij > 0 but wji = 0. Rohe, Qin and Yu (2016) have
looked at this from a spectral graph point of view. Di-
rected graphs have also been attempted incorporated in
the Skip-Gram procedure, see e.g. Zhou et al. (2017, p.
2944). The undirected sampling strategy described in Sec-
tion 5.3.2 can again essentially be used. To illustrate, let
wij be the weight of the edge in a transition from vi
to vj . In a money laundering investigation, for example,
where the nodes may be bank accounts, wij may be pro-
portional to the number of transactions from account i
to account j. Similarly, one may define wji. The proba-
bility of going from node vi to vj can then be given as
pij = wij/di, where di =

∑
j∈NS(i)wij and NS(i) is the

first order neighborhood of vi.
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5.5 Heterogeneous network representation

Heterogeneous here refers to a situation where there
are different types of nodes in a network, and there may
be different types of edges. If these are treated with homo-
geneous techniques neglecting the heterogeneity, inferior
results may result.

Two papers will be briefly mentioned, one is an ex-
tension of the LINE approach, the other is an extension
of the DeepWalk methodology. In these two papers the
Skip-Gram algorithm is applied on so-called metapaths,
paths consisting of a sequence of relations defined be-
tween different node types. The introduction of metapaths
to heterogeneous graphs came before the Skip-Gram pro-
cedure. See Sun et al. (2012).

It is natural also to mention the extension of LINE
found in the PTE (Predictive Text Embedding) of Tang,
Qu and Mei (2015). PTE deals with a text network em-
bedding, but the method is applicable to a general net-
work.

Dong, Chawla and Swami (2017) introduce a form
of random walk sampling for heterogeneous networks
which is analogous to or extends the sampling procedures
in Perozzi, Al-Rfou and Skiena (2014) and Grover and
Leskovec (2016). Skip-Gram is combined with the meta-
path sampling as discussed by Sun et al. (2012).

5.6 Embedding of dynamic networks

Most of the work on embedding of networks has been
done on static networks. There is no time dimension in-
volved to trace the dynamic evolution of the network.
In many situations this is of course not very realistic.
Consider for example a bank network. New accounts are
opened, other accounts are closed. New types of trans-
actions between accounts are appearing, others are be-
coming old and less relevant. Or in more general net-
work language: New nodes are coming into the network,
others are removed. New edges are created, others are
discarded. Weights between edges may easily change in
time. In a heterogeneous network new types of nodes may
enter the system, others may leave. An early empirical in-
vestigation of changes in social networks is contained in
Kossinets and Watts (2006). See also Greene and Cun-
ningham (2011).

An obvious brute force solution is to use a moving win-
dow and then do an embedding, and possible clustering
in each window. But clearly such a procedure is time con-
suming and non-efficient if there are many (overlapping)
windows. One would like to have an updating algorithm
that can keep information in the previous window and
combine it with new information in the new window. To
our knowledge the literature here is quite limited.

There is an attempt to generalize the entire Skip-Gram
methodology to a dynamic framework. This can be seen
in Du et al. (2018). They utilize that a network may not

change much during a short time in dynamic situations,
thus the embedding spaces should not change too much
either. A related paper venturing into heterogeneous net-
works meta paths is Bian et al. (2019). Zhu et al. (2017),
takes a more statistical modeling point of view on dy-
namic networks. The paper is briefly reviewed in the next
subsection. Clearly, the theme of dynamic networks is an
open and challenging field for data scientists and statis-
ticians. Much late work is summed up, mostly from a
machine learning point of view, in Kazemi et al. (2020).
Some recent trends in embedding of time series and dy-
namic networks are reviewed in Tjøstheim, Jullum and
Løland (2022b).

5.7 Network embedding: Data science and machine
learning versus statistical modeling

An overwhelming part of the literature on network em-
bedding can be found in the machine learning journals
and in proceedings on data and computational science.
The emphasis has been on deriving methods that “work”,
i.e. can be used in practical applications. Certain parts of
some of the methods used are quite ad hoc such as the
argument in Mikolov et al. (2013) where from empirical
evidence the word count is raised to 3/4 power in the dis-
tribution forming the basis of the negative sampling. This
has been followed up in later literature and does seem to
work well. But it is not clear why. Moreover, there are
few quantitative expressions of uncertainty or on statisti-
cal properties of the obtained results.

Many of the algorithms and methods discussed in this
paper contain input parameters or hyper parameters, in-
cluding the choice of the dimension of the embedding
space. An important issue in both theory and practice is
the setting of these parameters. The problem has to be
treated with care to avoid instability in the embedded
structure. The problem is briefly mentioned in Section
4.3, but the problem is relevant also in a more general
context.

Broadly speaking, statistical methods use theoretically
derived methods to choose hyper parameters necessary to
fully specify a method, while the typical machine learning
approach is to rely on hyper parameter optimization or so-
called tuning. The former may require assumptions that
are too strong or cannot be checked in practice. The latter
typically requires additional data or re-training of models
based on randomly dividing the data into subsets (cross
validation), which is computationally costly and comes
with an uncertainty component due to the randomness in
the data splitting. Many machine learning practitioners
may enforce a rather basic and ad-hoc trial and error opti-
mization approach. Still, methods like Bayesian optimiza-
tion (Shahriari et al., 2015) have gained significant mo-
mentum in the recent years. Bayesian optimization aims
at solving the optimization problem using as few evalua-
tions as possible. While the method uses statistical theory
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through its reliance on Gaussian processes, the hyper pa-
rameter selection problem is still based on optimization
and possesses the aforementioned drawbacks. We think
the machine learning methods could benefit from theoret-
ically derived hyper parameter choices. There have been
some attempts at choosing parameters for machine learn-
ing methods through the statistical information criterion
approach (Claeskens, Croux and Van Kerckhoven, 2008;
Lunde, Kleppe and Skaug, 2020), but it does not yet seem
to have found its place in machine learning. The theoret-
ical difficulty of deriving such criteria due to the lack of
proper likelihoods in the training of the machine learning
methods is an obvious obstacle. To avoid this, it might be
possible to go in the direction of the generalized informa-
tion criterion (GIC) (Konishi and Kitagawa, 2008) which
does not require a likelihood, but rather relies on func-
tionals of the data generating distribution and their as-
sociated influence functions. In any case, going forward,
we believe it is worth looking in the direction of theoreti-
cally derived selection procedures for the machine learn-
ing community, and have as such identified this in our list
of keypoints in Section 7.

5.7.1 Stochastic block modeling The issues men-
tioned above appear to lead to a gap between data/compu-
tational science using algorithmic approaches and more
traditional (and modern) statistical thinking. There is a
clear need for results bridging this gap, as argued in the
second keypoint in Section 7. In this subsection we focus
on stochastic block modeling, but it should be realized
that other types of statistical models have been proposed,
see Crane and Dempsey (2015).

In particular Peter Bickel and his collaborators have
taken up various problems of asymptotic theory for
stochastic block models and related models. This includes
hypothesis testing in Bickel and Sarkar (2016), asymp-
totic normality in Bickel et al. (2013), nonparametrics in
Bickel and Chen (2009). Works more specifically directed
towards asymptotics of spectral clustering can be found in
Rohe, Chatterjee and Yu (2011) and in Lei and Rinaldo
(2015). Most of these works require a delicate asymptotic
balancing between the number of nodes, the degree of the
nodes, and the number of communities. An example of a
heterogeneous model which is analyzed rigorously from
a statistical point of view is Zhang and Chen (2020). For
instance, the proposed modularity function is shown to
be consistent in a heterogeneous stochastic block model
framework. It is related to the Bickel and Chen (2009) pa-
per. See also Decelle et al. (2011) who bring in algorith-
mic applications of block models using cavity methods to
describe phase transitions in inference and learning.

A very important problem both in practice and in the-
ory is the problem of determining the number of com-
munities in community detection. In earlier literature this

number was actually taken to be known. In statistical like-
lihood based models one has attempted to find this num-
ber by letting it be an unknown parameter in the likeli-
hood and then do likelihood integration. Wang and Bickel
(2017) look at the problem from an underestimation and
overestimation point of view. Newman and Reinert (2016)
propose replacing the original Bernoulli type likelihood
by an approximated Poisson likelihood, which is easier
to handle computationally. Peixito (2021) discusses AIC
and BIC type approaches to this problem.

There has been made progress in the numerical esti-
mation of the parameters in stochastic block type models.
Typically, a Bayesian approach has been used with exten-
sive use of Markov Chain Monte Carlo. Se e.g. Peixoto
(2019). But we think it is fair to say that the dimension of
the networks attacked by stochastic block modeling has
been considerably less than the most general used algo-
rithmic Skip-Gram models of Section 5.3.1.

5.7.2 Dynamic graphs and time series modeling in net-
works The discussion of an algorithmic approach versus
stochastic modeling is also taken up in Tjøstheim, Jul-
lum and Løland (2022b), treating recent trends in embed-
ding of time series and dynamic networks. Examples of an
algorithmic, but with some statistical modeling aspects,
are given in Lim and Zohren (2021) and Salinas et al.
(2020), both involving deep learning networks and time
series. There are also several papers with rigorous asymp-
totic analysis of networks and autoregressive models (Zhu
et al., 2017; Zhu and Pan, 2020). Given such a framework,
conditions for stationarity are obtained, and least squares
estimates of parameters are derived and their asymptotic
distribution found.

There are a number of differences between the network
vector autoregression modeled in these publications and
the dynamic network embeddings mentioned in Section
5.6. First of all, Zhu et al. (2017) treat the dynamics of
the nodes themselves and not of an embedding. Even if
the autoregressive model does introduce some (station-
ary) dynamics in time, the parameters are static; i.e. no
new nodes are allowed, and the relationship between them
is also static as modeled by a matrix A = {aij}. From this
point of view, as the authors are fully aware of, the model
is not realistic for the dynamics that takes place in prac-
tice for many networks. On the other hand the introduc-
tion of a stochastic model that can be analyzed by tradi-
tional methods of inference is to be lauded. A worthwhile
next step is to try to combine more realistic models with a
stochastic structure, possibly regime type models for the
parameters, that is amenable to statistical inference. An
attempt in this direction is made in Ludkin, Eckley and
Neal (2018) in the context of stochastic block models.

For some very recent contributions to network autore-
gression, see Armillotta, Fokianos and Krikidis (2022)
and references therein.
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6. EMBEDDING IN 2 OR 3 DIMENSIONS AND
VISUALIZATION

Visualization is an important part of data analysis.
The problem can be stated as finding a good 2- or 3-
dimensional representation of high dimensional data and
often with a large number of samples. Principal compo-
nent analysis offers one possibility where the data are pro-
jected on the 2 or 3 first principal components. Although
very useful, since it is linear and projects on a hyper plane,
it generally fails to give a good characterization in cases
where the data are concentrated on a nonlinear manifold
which is a subset of Rp.

It is appropriate to conclude this survey on embedding
by the topic of visualization, where in principle any of the
treated methods in this survey can be used by choosing
the embedding dimension m to be 2. However, we have
chosen to concentrate on three methods that are powerful
and much used, and which are based on the main ideas
in Sections 3, 4 and 5, respectively. The t-SNE algorithm
was developed by van der Maaten and Hinton (2008) and
van der Maaten (2014). It is based on ideas handling the
connection between a high dimensional x-scale and a low
dimensional y-scale which are inherent already in multi-
dimensional scaling. But unlike most earlier attempts t-
SNE is based on comparisons of probability distributions
on the x and y-scale, which seems much more sensible in
a nonlinear problem than applying moments and covari-
ances.

Tang et al. (2016) introduced LargeVis which is based
on techniques reviewed in Section 5, especially the Skip-
Gram procedure treated in Section 5.3. Finally, McInnes,
Healy and Melville (2018) use methods from topological
data analysis akin to ideas in Section 4 to derive their al-
gorithm UMAP. Illustrations of the use of the three meth-
ods are given in Section 6.5.

6.1 t-SNE

SNE is an acronym for Stochastic Neighbor Embed-
ding. That embedding and visualization technique was in-
troduced by Hinton and Roweis (2002). The t in t-SNE
refers to further developments in van der Maaten and Hin-
ton (2008) using a t-distribution approximation on the y-
scale.

Starting with SNE, the similarities between the points
on the x-scale and y-scale is sought expressed in terms of
pairwise Gaussian approximations. On the x-scale high
dimensional Euclidean distances are expressed in condi-
tional probabilities. The similarity of a data point Xi to a
data pointXj is expressed as a Gaussian conditional prob-
ability pj|i such that for pairs of nearby data points, pj|i
would be relatively high, whereas for widely separated
points, pj|i could be infinitesimally small. The essen-
tial idea is to preserve the internal structure of the high-
dimensional data by keeping similar data points close and

dissimilar data points far apart, in the low-dimensional
space. Mathematically pj|i is given by
(20)

pj|i = pj|i(xj |xi) =
exp(−||xj − xi||2/2σ2

i )∑
k 6=i exp(−||xk − xi||2/2σ2

i )
,

where σ2
i is the variance of the Gaussian that is centered

on the data point xi. The parameter σi is chosen so that
the probability distribution Pi, induced by pj|i for all j-
s different from i, has a perplexity specified by the user.
Here the perplexity of Pi is given by

Perpi = 2−
∑

j pj|i log2 pj|i .

See Hinton and Roweis (2002) for more details.
The similarities on the x-scale is sought mapped into

corresponding similarities in the low dimensional y-scale
by modeling the conditional probabilities by

qj|i =
exp(−||yj − yi||2)∑
k 6=i exp(−||yk − yi||2)

.

The coordinates Yi of a data point Xi, i = 1, . . . , n are
then sought determined by minimizing the Kullback-
Leibler distance (or cross entropy) between the pj|i and
qj|i, i.e. by minimizing the cost function

C =
∑
i

KL(Pi||Qi) =
∑
i,j

pj|i log
pj|i

qj|i
.

The minimization of the cost function with respect to the
y-coordinates can be done by using a gradient descent
method, and the y-s are initialized by random, Gaussian
values.

The SNE algorithm is hampered by a cost function
which is quite difficult to optimize in practice, and there
is a so-called “crowding” problem in the sense that far
apart points on the x-scale may be mapped in such a way
that the joint probability qij may be even smaller than pij .
These problems are attacked in t-SNE by symmetrization,
modeling joint probabilities pij and qij and by using a
t-distribution as an approximation at the y-scale having
points in the tails mapped such that qij is larger than pij
to avoid the crowding effect. This trick is also present for
other local techniques for multidimensional scaling.

To avoid problems that may be caused by outliers on
the x-scale the “joint probabilities” on the x-scale are in
fact computed as pij = (pi|j + pj|i)/2n, which ensures∑

j pij > 1/2n for all data points Xi, such that each data
point makes a significant contribution to the cost function.
Further, on the y-scale a t-distribution structure of one
degree of freedom is used,

qij =
(1 + ||yi − yj ||2)−1∑
k 6=`(1 + ||yk − y`||2)−1

,
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where it should be noted that a double sum is now used in
the denominator. The cost function is given by

C =
∑
i,j

pij log
pij
qij
.

The details of the optimization can again be found in
van der Maaten and Hinton (2008). In that paper there
is also a series of experiments comparing t-SNE with the
Sammon mapping of MDS and the ISOMAP and LLE,
where the t-SNE does extremely well.

The t-SNE algorithm is speeded up in the paper by
van der Maaten (2014) by not going over all possible pairs
(xi, xj) but only essentially over nearest neighbors.

6.2 LargeVis

Tang et al. (2016) propose a new algorithm for visual-
ization, LargeVis. It starts with a speeded up approximate
nearest neighbor algorithm that has complexity O(n) as
compared to O(n logn) for the speeded up nearest neigh-
bor algorithms of van der Maaten (2014). The Tang et al.
(2016) algorithm is built upon random projection trees but
significantly improved by using neighbor exploring. The
basic idea of this, similarly to the LINE construct in Tang
et al. (2015) and referenced in Section 5.3.2, is that “the
neighbor of my neighbor is also likely to be my neigh-
bor”. Specifically, a few random projection trees are built
to construct an approximate k-nearest neighbor graph, the
accuracy of which may not be so high. Then for each node
of the graph, the neighbors of its neighbor are searched,
which are also likely to be candidates of its nearest neigh-
bor. The accuracy may then be improved by multiple it-
erations. The claim is that the accuracy of this k-nearest
neighbor graph quickly improves to almost 100% with-
out investing in many trees. For the weights of the near-
est neighbor graph essentially the same procedure as in
t-SNE is used. The graph is symmetrized by setting the
weights between xi and xj to wij =

pj|i+pi|j
2n , where pi|j

and pj|i are defined via (20). Before using the LargeVis
algorithm itself a pre-processing step can be used where
the dimension is reduced to say 100 by using the Skip-
Gram network embedding technique explained in Section
5.3. The negative sampling technique of Mikolov et al.
(2013) is used in the Skip-Gram step.

For the time complexity of the optimization, done with
asynchronous stochastic gradient descent, each stochas-
tic gradient step takes O(sM), where M is the number of
negative samples, sayM is from 5−10, and s is the num-
ber of dimensions of the low dimensional space, s= 2,3.
Therefore the overall complexity is O(sMn), which is
linear in the number of nodes.

6.3 UMAP

Sections 4.1 and 4.2 were concerned with topological
methods in manifold learning and persistence homology.

In particular, filters of simplicial complexes were used in
Section 1.2 of the Supplement (Tjøstheim, Jullum and
Løland, 2022a). In the first part of McInnes, Healy and
Melville (2018), these filters are generalized to simplicial
sets. In addition, components of fuzzy set theory, cate-
gory theory and functor theory are used to compute fuzzy
topological representations.

Letting {Y1, . . . , Yn} ⊆ Rm and {X1, . . . ,Xn} ⊆ Rp
with m� p, in visualization we have a situation where
m is 2 or 3.

To compare two fuzzy sets generated by {X1, . . . ,Xn}
and {Y1, . . . , Yn}, respectively, fuzzy set cross entropy is
used in UMAP. The use of advanced concepts of algebraic
topology makes the first part of this paper hard to read. In
the computational part of the paper, however, inspired by
motivations and ideas of the first part, the authors special-
ize to a k-neighborhood graph situation where the anal-
ogy with t-SNE and LargeVis is easier to appreciate.

As with other k-neighbor graph based algorithms,
UMAP, can be described in two phases. In the first phase
a particular weighted k-neighbor graph is constructed. In
the second phase a low dimensional layout of this graph
is made. The theoretical basis for UMAP in the first part
of McInnes, Healy and Melville (2018) provides novel
approaches to both of these phases.

Let {X1, . . . ,Xn} be the input data set with a jointly
given matrix D that can be thought of as consisting
of Euclidean distances between the data vectors. For
each Xi one can compute the set of k nearest neigh-
bors {Xi1 , . . . ,Xik}. There are many choices of a nearest
neighbor algorithm. McInnes, Healy and Melville (2018)
use the algorithm of Dong, Moses and Li (2018).

This can be used to define a weighted directed graph
G′ = (V,E,w). The nodes ofG′ are the set {X1, . . . ,Xn}
the directed edges are {(Xi,Xij )|1 ≤ j ≤ k,1 ≤ i ≤ n}
and a weight function defined in McInnes, Healy and
Melville (2018). Let A be the weighted adjacency matrix
of G′. An undirected graph G is obtained by introducing
the symmetric adjacency matrix

B = A + AT −A ◦AT ,

where ◦ denotes the Hadamard (pointwise) product.
The {X1, . . . ,Xn} data set is next connected to a low

dimensional data set {Y1, . . . , Yn}, where the dimension
is 2 or 3 if visualization is considered. The transition from
{X1, . . . ,Xn} to {Y1, . . . , Yn} is accomplished by a force
directed graph layout algorithm. The history of this kind
of graph layout goes far back, Tutte (1963). A more re-
cent account can be found in Kobourov (2012). The de-
tails of the algorithm as used in UMAP with an iterative
application of attractive and repulsive forces are given
in McInnes, Healy and Melville (2018, p. 14). It should
be noted that the terminology of attractive and repulsive
forces is used in van der Maaten and Hinton (2008) as



24

well, but unlike their paper where there is a random set-
like initialization, in UMAP a spectral layout (cf. Sections
3.5 and 5.2) is used to initialize the embedding. This is
claimed to provide faster convergence and greater stabil-
ity within the algorithm. Note that negative sampling, as
treated in Section 5.3, is also important to reduce the com-
putational burden.

6.4 A brief comparison of t-SNE, LargeVis and UMAP

A number of experiments were performed in McInnes,
Healy and Melville (2018) with a comparison to t-SNE
and LargeVis. The UMAP works on par with or better
than these algorithms for those examples.

All of the embedding algorithms have been demon-
strated to work well in a number of quite complicated sit-
uations. Nevertheless, as pointed out by McInnes, Healy
and Melville, it is important to be aware of some weak-
nesses of these algorithms that could create fruitful chal-
lenges for further research.
t-SNE, LargeVis and UMAP all lack the strong inter-

pretability of PCA and it is difficult to see that something
like a factor analysis can be performed.

One of the core assumptions is that it is assumed that
there exists a lower dimensional manifold structure in the
data. If this is not so, there is always the danger that a spu-
rious noise driven embedding can be the result. This dan-
ger is reduced as the sample size increases. Developing an
asymptotic analysis and finding more robust algorithms is
clearly a challenge.

For all three algorithms a number of approximations
are made, such as the use of approximate nearest neigh-
bor algorithms and negative sampling used in optimiza-
tion. Particularly for small sample sets the effect of these
approximations may be non-negligible.

6.5 An illustrating example

The illustrating example consists of two networks,
each having two different types of nodes (colored red and
blue, respectively) corresponding to two different com-
munities. The first one, the homogeneous graph in Fig. 5a,
is very simple and is simulated from a stochastic block
model (Karrer and Newman, 2011), mentioned in Section
5.2.4, with 2 communities, 100 nodes, average node de-
gree d= 10, and ratio of between-community edges over
within-community edges β = 0.4. In this setup the num-
ber of edges per node is Poisson distributed with expected
number of edges of 10. This simple network has very little
overlap between the two types of nodes.

The second one is somewhat more complex, the het-
erogeneous graph in Fig. 5b, and is simulated from three
subgraphs a, b and c, that has 2 communities each:

Graph a: 30 nodes, average node degree d = 7, ratio of
between-block edges over within-block edges β =
0.2

Graph b: 30 nodes, average node degree d= 15, ratio of
between-block edges over within-block edges β =
0.4

Graph c: 40 nodes, average node degree d = 7, ratio of
between-block edges over within-block edges β =
0.2, and an unbalanced community proportion; a
probability of 3/4 for community 1 and a probabil-
ity of 1/4 for community 2

To link graphs a, b and c, some random edges are added
between nodes from the same community1.

The purpose of the illustrating example is to examine
how well these network structures are managed by t-SNE,
LargeVis and UMAP, how robust they are to parameter
choices inherent in the three methods, and how they com-
pare with traditional principal component analysis (PCA)
visualization.

The visualization is done in two steps. First the net-
works are embedded in Rm with m= 64 using the Skip-
Gram routine node2vec with (cf. Section 5.3.2) L = 30
nodes in each random walk and γ = 200 walks per node,
and a word2vec window length of K = 5 where all nodes
are included. The second step is to reduce the point cloud
in R64 to R2, i.e., the visualization step using PCA and
the three visualization algorithms with a selection of dif-
ferent tuning parameters. (In t-SNE, p is the perplexity
parameter; in LargeVis n is the number of negative sam-
ples, p the total weight of positive interactions; in UMAP
n is the number of nearest-neighbors, m is a distance pa-
rameter, where low m gives clumpier embeddings.) The
results are given in Figs. 5a and 5b.

Underneath the figures are given classification scores
for the two types of nodes (communities) in the study.
These are classified on a neighborhood basis. In the first
line of each sub-table the class of a node is determined us-
ing the average of the 5 nearest neighbors; in the second
by the majority vote among these 5 nearest neighbors. The
first column “org_embedding” gives the classification re-
sults for the 64-dimensional embedding in step 1.

For the simple network, PCA does well, on par with the
three other visualization algorithms, both visually and in
the classification. The tuning parameters does not seem to
make much of a difference with the exception of t-SNE
with p = 5. For the more complicated network, PCA is
in trouble both visually and with respect to classification.
In this case the dependence on tuning parameters seems
to be greater, but most of the visualizations manage to
pick out the three subgraphs a, b, and c. For all values of
the tuning parameters t-SNE, LargeVis and UMAP all do
clearly better than PCA. Somewhat surprisingly, perhaps,

1For each pair of nodes between a pair of graphs, say Graph a and
c, a new link is randomly sampled with a probability of 0.01, and links
connecting two nodes from the same community are kept.
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(a) Homogeneous graph from the stochastic block model.
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(b) Heterogeneous graph from a combination of three stochastic block models.

Figure 5: Graphs, visualizations and classification results with a k-nearest neighbors algorithm with k = 5.
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the embedding in 64 dimensions gives result not very dif-
ferent from those of the three visualizations routines. We
also did experiments with other embedding dimensions
ranging from 2 to 256. Again the classification results
were not much different. This could be due to the fact
that the number of nodes and links in these experiments
are very modest compared to the real data experiments
in the Skip-Gram references given in Sections 5.3.1 and
5.3.2, which has number of nodes and links of an entirely
different order. A more involved illustrating example (but
still with a moderate number of nodes) is given in Sec-
tion 3 of the Supplement (Tjøstheim, Jullum and Løland,
2022a).

7. SOME CONCLUDING REMARKS

Principal components work well for linearly generated
Gaussian data. It may also work well for other types of
data and is probably still the most important statistical
embedding method. But, on the other hand, it is not diffi-
cult to find examples where it does not work. The search
for nonlinear extensions started long ago with the MDS
method. In fact, multidimensional scaling methods con-
tain ideas that have been found relevant in several recent
nonlinear algorithms.

There is no universally superior method that works bet-
ter than any of the others in all situations. For Gaussian
or approximately Gaussian data ordinary principal com-
ponents should be preferred. If the distribution can be
approximated locally by a Gaussian, the potential of lo-
cally Gaussian methods as outlined in Tjøstheim, Otneim
and Støve (2022b) could be investigated. Other nonlinear
methods depend on local linear structures in the data. For
data sets with holes or cavities, topological data analy-
sis is a natural option. Data that form a network has arti-
ficial neural network methods as an obvious candidate.
The Skip-Gram method of Section 5.3.1 is based on a
single layer artificial network. Deep learning algorithms
are based on multiple layer neural networks and is an at-
tractive alternative for more complicated dependencies.
The neural network approaches have an advantage in their
speed, making it possible to treat ultra-high dimensional
data sets with complex relationships.

In this paper we have covered selected methods of non-
linear embedding generalizing PCA, topological embed-
dings in persistence diagrams, network embedding and
embedding to dimension 2 (i.e., visualization). In addi-
tion, in the course of the review, we have pointed to some
cases of an apparent and arguably widening gap between
developments in data science, including computer and al-
gorithmic based methods, and more traditional statistical
modeling methods. We have also sought to point out spe-
cific issues that could benefit from more input from statis-
ticians. These may be conveniently summed up in the fol-
lowing keypoints:

1. In quite a few algorithms there are parameters to be
chosen, and the performance of the algorithm may
depend quite strongly on these choices. Examples
can be found in Skip-Gram, spectral community de-
tection, the Mapper, and there are others. There is a
need for well-founded methods for making in some
sense optimal or near optimal choices of such param-
eters – in some cases as an alternative to the com-
putational expensive empirical optimization routines
which typically also have a randomness component.
As mentioned in Section 5.7, information criterion
based solution is one option, in particular likelihood-
free methods like GIC might be one way to go about
this.

2. It is highly desirable to reduce the gap between ma-
chine learning algorithmic techniques and statistical
modeling. A good example of a bridging attempt is
the stochastic block models for which one can do sta-
tistical inference and which has also resulted in good
network algorithms. One needs more of this!

3. More critical statistical work is needed to test the
sanity and robustness of algorithms. One example is
the close investigation of the modularity algorithm
reported on in Section 5.2.4. It is useful to put algo-
rithms to stress tests, but it is important to find a bal-
ancing point between such criticism and perceived
usefulness of an algorithm.

It is crucial, however, to point out that this is a two-way
relationship. We are hopeful that interaction between ma-
chine learning and statistical modeling could bring about
synergy effects for both disciplines.
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Supplement to “Statistical
embedding: Beyond principal
components”
Dag Tjøstheim1, Martin Jullum and Anders Løland

1. PERSISTENCE DIAGRAMS AND SIMPLICAL COMPLEXES

Assume that we observe a sample X1, . . . , Xn drawn from a distribution P supported on a 
set S, and let us define the empirical distance function

d̂(x) = min
1≤i≤n

||x−Xi||.

It should be noted that lower level sets L̂ε defined by L̂ε = {x : d̂(x) ≤ ε} are precisely the
union of balls described in Equation (13) in the main paper, i.e.,

L̂ε = {x : d̂(x)≤ ε}= ∪ni=1B(Xi, ε).

The persistence diagram D̂ defined by these lower level sets is an estimate of the underlying
diagram D.

The empirical distance function is often used for defining the persistence diagram of a
data set in computational topology. However, as pointed out by Wasserman (2018), from a
statistical point of view this is a poor choice, as it is highly non-robust. Wasserman points out
several more robust alternatives. One of them is the so called DTM distance introduced by
Chazal, Cohen-Steiner and Mégot (2011) given by

d̂2m(x) =
1

k

k∑
i=1

||x−Xi(x)||2,

where k = [mn] is the largest integer less than or equal to mn and with 0 ≤m ≤ 1 being
a scale parameter. Further, Xj(x) denotes the data after re-ordering them so that ||X1(x)−
x|| ≤ ||X2(x)− x|| ≤ · · · . This means that d̂2m(x) is the average squared distance to the k-
nearest neighbors Other alternative references to a robustified distance measure are given in
Wasserman (2018).

Actually, in more complicated situations, the persistence diagram is not computed directly
from L̂ε, but from so-called simplical complexes. This approach is particularly interesting
since it generalizes the embedding of a point cloud in a graph as described in Sections 3.4
and 3.5 in the main manuscript. We will give a brief description here. Much more details can
be found in Chazal and Michel (2021).

First, recall the definition of a simplex: Given a set X = {X0, . . . ,Xk} ⊂ Rp of k + 1
“affinely independent” (i.e., the vectors (X0,X1, . . .Xk) are linearly independent), the k-
dimensional simplex σ = [X0, . . . ,Xk] spanned by X is the convex hull of X. For instance,
for k = 1 the simplex is simply given by the line from X0 to X1. The points of X are called
the nodes of σ and the simplices spanned by the subsets of X are called the faces of σ. A
geometric simplical complex K in Rp is a collection of simplices such that (i) any face of
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a simplex of K is a simplex of K , (ii) the intersection of any two simplices of K is either
empty or a common face of both.

As seen in Sections 3.4 and 3.5 in the main paper, connecting pairs of nearby data points
by edges leads to the standard notion of a neighboring graph from which the connectivity of
the data can be analyzed and clustering can be obtained, including non-convex situations, as
described in Section 3.4. Using simplical complexes, where simplical complexes of dimen-
sion 1 are graphs, one can go beyond this simple form of connectivity. In fact a central idea in
TDA is to build higher dimensional equivalents of neighboring graphs by not only connecting
pairs but also (k+ 1)-tuples of nearby data points. This enables one to identify new topolog-
ical features such as cycles and voids and their higher dimensional counterparts. Regarding
embedding of networks, as treated in Section 5, such a technique could possibly be used to
discover cycles in networks such as criminal rings in fraud detection, say.

Simplical complexes are mathematical objects that have both topological and algebraic
properties. This makes them especially useful for TDA There are two main examples of
complexes in use. They are the Vietoris-Rips complex and the C̆ech complex. The Vietoris-
Rips complex Vε(X) can be introduced in a metric space (M,d). It is the set of simplices
X = [X0, . . . ,Xk] such that dX(Xi,Xj)≤ ε for all (i, j). The C̆ech complex Cε(X) is defined
as the simplices [X0, . . . ,Xk] such that the k+1 ballsB(Xi, ε) have a nonempty intersection.

These definitions should be compared to the use of ball-coverings in Section 4 of the main
paper and level sets defined in the present subsection. It can in fact be shown that the ho-
mology of L̂ε is the same as the homology of Cε. The homology of Cε can be computed
using basic matrix operations. All relevant computations can be reduced to linear algebra.
This gives a method of computing homology and persistent homology relating the complexes
as ε varies as briefly mentioned in our simple introductory example of chain of circles, or
the more involved example involving Ranunculoids, in Section 4.2 of the main paper (see
Edelsbrunner and Harer (2010)). In fact, it is computationally easier to work out the algebra
for the Vietoris-Rips complex Vε. It can be shown that the persistent homology defined by Vε
approximates the persistent homology defined by Cε.

Given a subset X of a compact metric space (M,d), the families of Vietoris-Rips com-
plexes, {Vε(X)}ε∈R and the family of C̆ech complexes, {Cε(X)}ε∈R are filtrations, that is,
nested families of complexes. As indicated earlier, the parameter ε can be considered as
a data resolution level at which one considers the data set X. For example if X is a point
cloud in Rp, the filtration {Cε} encodes the topology of the whole family of unions of balls
Xε = ∪X∈XB(X,ε) as ε goes from 0 to∞.

As in the example in Section 4.2 of the main paper, the homology of a filtration {Fε}
changes as ε increases: new connected components can appear, existing components can
merge, loops and cavities may appear or be filled. Persistence homology tracks these changes,
identifies the appearing features, and attaches a lifetime to them. The resulting information
can be encoded as a set of intervals, the bar-code, or equivalently, as a multiset of points in R2,
where the coordinates of each point is the start and end point of the corresponding interval.
In Chazal and Michel (2021) a formal definition of bar-code and persistence diagram is given
via the concept of persistence module which again is defined in terms of an indexed family of
vector spaces and a doubly-indexed family of linear maps.

1.1 Persistent landscapes, functional spaces and applications

The space of persistence diagrams is not a function space in the sense that it is not a Hilbert
space. This may make it more difficult to directly apply methods from statistics and machine
learning. For example, the definition of a mean persistence diagram is not obvious and unique
(Chazal and Michel, 2021, p. 28). Further, according to Chazal and Michel (2021, p. 29) the
highly nonlinear nature of diagrams prevents them from being used as a standard feature of
machine learning algorithms. An exception, however, is Obayashi and Hiraoka (2017).

Bubenik (2015) introduced persistence landscapes. The persistence landscape is a collec-
tion of continuous linear functions obtained by transforming the points of the persistence
diagram into tent functions. This function space can be given a Hilbert space structure (in
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fact a more general structure of a separable Banach space in Bubenik’s original paper). The
random structure created by X1, . . . ,Xn may then be represented by Hilbert space variables,
and it becomes meaningful to consider means, variances and a central limit theorem. The vec-
tor space structure of persistent landscapes and similar constructions may appear to be more
directly extendable to machine learning, in particular to kernel methods, cf. also Section 3.7
in the main paper, in reproducing kernel Hilbert space (see for instance Reininghaus et al.
(2015), Kusano and Hiraoka (2016) and Carriere and Oudot (2019)). It can safely be stated
that combining TDA and persistence homology with machine learning is becoming an active
research direction with results having potential for unsolved practical problems.

Clearly, the bar codes, the persistence diagrams and Betti numbers can also be used directly
as feature extractors for classification problems. In particular, these have been used for net-
work characterizations in Cartsens and Horadam (2013). Possibly such features can be used
as a supplement to the network embedding and clustering methods presented in Section 5 in
the main paper of this survey.

Connections between persistent homology and deep learning has also started to be ex-
plored. Umeda (2017) has done this in a time series context. Another application to time
series is Ravisshanker and Chen (2019).

For applications to specific problems we refer to references in Wasserman (2018) and
Chazal and Michel (2021). Wasserman discusses briefly applications to the cosmic web, im-
ages and proteins, Chazal and Michel discuss applications to protein binding configurations
and classification of sensor data.

1.2 Statistical inference

A central concept in inference for persistence diagrams is the bottleneck distance. Given
two diagrams C1 and C2, the bottleneck distance is defined by

δ∞(C1,C2) = inf
γ

sup
z∈C1

||z − γ(z)||∞,

where γ ranges over all bijections between C1 and C2. Intuitively, this is like overlaying
the two diagrams and asking how much one has to shift the diagrams to make them the
same (Wasserman, 2018). The practical computation of the bottleneck distance amounts to
the computation of perfect matching in a bipartite graph for which classical algorithms can
be used (Chazal and Michel, 2021).

The bottleneck distance is a natural tool to express stability of persistence diagrams. An
alternative distance measure is the Wasserstein distance. The bottleneck distance is also a
natural tool in statistical inference on persistent landscapes, cf. Chazal et al. (2015).

The (estimated) persistence diagram Ĉ is based on a finite collection of random variables
X1, . . . ,Xn. One might think of a true persistence diagram C as n→∞. A central question
is then whether there is such a thing as consistency, and is it possible to introduce confidence
intervals? Such questions have been considered by Chazal and Michel (2021, Section 5.7; see
especially Section 5.7.4) and is based on the bottleneck distance between Ĉ and C .

For many applications, in particular when the point cloud does not come from a (per-
turbation of) a geometric structure, the persistence diagram will look quite complicated. In
particular, there will be a number of cases where the life time is quite short and consequently
with representative points close to the diagonal. The question then arises whether these points
can be considered as noise and should therefore be eliminated from the diagram. One needs
a concept of statistical significance to make such an evaluation, and again the bottleneck dis-
tance can be used as a tool. When estimating a persistence diagram C with an estimator Ĉ
one may look for a quantile type number ηα such that

(1) P (d∞ ≥ ηα)≤ α,

for α ∈ (0,1). This can be taken as a point of departure for computation of confidence inter-
vals and significance tests.

It is necessary to translate (1) into something that can be computed. This can be done by
the bootstrap as in Chazal, Massart and Michel (2016). Let (X∗1 , . . . ,X

∗
n) be a sample from
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the empirical measure defined from the observations (X1, . . . ,Xn). Moreover, let Ĉ∗ be the
persistence diagram derived from this sample. One can then take as an estimate of ηα the
quantity η̂α defined by

P [d∞(Ĉ∗, Ĉ)> η̂α|X1, . . . ,Xn] = α,

where it is straightforward to estimate η̂α by Monte Carlo integration. Chazal, Massart and
Michel (2016) have shown that the bootstrap is valid when computing the sub-level sets of a
density estimator. Using the bottleneck bootstrap and given a certain significance level, a band
can be constructed parallel to the diagonal of the persistence diagram, and such that points
in this level are considered as noise. A bootstrap algorithm can also be used to construct
confidence bands for landscapes as shown in Chazal, Massart and Michel (2016).

There are a number of problems of interest for statisticians in TDA. Chazal and Michel
(2021) in particular mentions four topics:

1. Proving consistency and studying the convergence rates of TDA methods.
2. Providing confidence regions for topological features and discussing the significance

of estimated topological quantities.
3. Selecting relevant scales (i.e. selecting ε in the examples discussed above) at which

topological phenomenons should be considered as functions of observed data.
4. Dealing with outliers and providing robust methods for TDA.

In addition, one may want to introduce the block bootstrap to take better care of dependence
structures There are also recent contributions to hypothesis testing, Moon and Lazar (2020),
sufficient statistics, Curry, Mukherjee and Turner (2018), and Bayesian statistics for topolog-
ical data analysis, Maroulas, Nasrin and Obello (2020).

2. EMBEDDING AND WORD FEATURE REPRESENTATION OF A LANGUAGE TEXT

Sections 5.2 and 5.3 of the main paper describe the importance of embedding of networks
and its use in feature extraction, in clustering, characterization and classification for ultra-
large data sets. It was pointed out in Section 5.3 that a main methodology for this is the
Skip-Gram procedure which was developed in the context of word embedding for a natural
language. The purpose of the present section is twofold. First, language processing is of con-
siderable independent interest. Second, it provides more details on the Skip-Gram procedure,
its background and its use. Although this material is couched in terms of language analysis,
we believe that when read in conjunction with Section 5.3 of the main paper, it will also
provide added insight into the details of network embedding.

2.1 A few basic facts of neural nets

The Skip-Gram procedure is based on a neural network with a single hidden layer, and we
therefore include a brief summary of neural networks in this supplement.

Neural networks are used for a number of problems in prediction, classification and clus-
tering. The developments perhaps stagnated somewhat in the early seventies, but received
renewed interest the last decades, following a massive increase in computational power.
Currently, there is an intense activity involving among other things deep learning, where
some remarkable results have been obtained. See Schmidhuber (2015) for a relatively recent
overview.

Assume that we are given an n-vector x as input. In a neural network approach one is in-
terested in transforming x via linear combinations of its components and possibly a nonlinear
transformation of these linear combinations. This transformation constitutes what is called a
hidden layer. Then this might be sent through a new transformation of the same type to create
a new hidden layer and eventually to an output layer y which should be as close as possible
to a target vector t. If there is more than one hidden layer, it is said to be a deep network, its
analysis being a base for so-called deep learning. In this supplement, mainly dealing with the
background of the Skip-Gram, only the case of one hidden layer will be treated, that, in our
context, will be formed by a linear transformation.
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Given the input layer, the first step in forming the hidden layer is to form linear combina-
tions

(2) hi =

n∑
j=1

wijxj ,

where i= 1, . . . ,m. Note that implicitly, there may be a constant term by taking x1, say, equal
to 1. (This is sometimes termed the bias term of the linear combination.)

In the case of one hidden layer, the output layer is given by

yj =

m∑
i=1

w′ijhi,

for j = 1, . . . , q. In subsequent applications for language and network embedding models
q = dim(y) = dim(x) = n.

In a classification problem, yj may be associated with an unnormalized probability for a
class j, which in Section 5.3 of the main paper is the appropriate neighborhood of a node vj
in a network. In such cases the output layer is also transformed. A common transformation is
the so-called softmax function given by

(3) softmax(yj) =
exp(yj)∑n
i=1 exp(yi)

.

This is recognized (if there is no hidden layer) as the multinomial logistic regression model
which is a standard tool in classification.

Using a training set, the coefficients (or weights) wij and w′ij are determined by a penalty
function measuring the distance between the output y and the target vector t, for example
measured by the loss function E = ||y − t||2. In a classification and clustering problem the
training set consists of input vectors x belonging to known classes i (known words in the
vocabulary in the text). The target vector is a so-called “one hot” vector having 1 at the
component j for the given target word and zeros elsewhere. The weights are adjusted such that
the output vector is as close as possible to this vector, which means that the softmax function
should be maximized for this particular component and ideally exp(yi)≈ 0 for i 6= j.

The error function is evaluated for each of the samples coming in as inputs, and the gradient
of the error function with respect to y is evaluated with the weights being re-computed and
updated in the direction of the gradient by stochastic gradient descent.

The weights w′ij for the output layer is computed first and then wij by the chain differen-
tiation rule using so-called back propagation. Details are given in e.g. the appendix of Rong
(2016). Schematically this may be represented by

w
(new)
ij =w

(old)
ij − ε ∂E

∂wij

and similarly for w′ij . Initial values for the weights can be chosen by drawing from a set of
uniform variables. Below the updating scheme will be illustrated on word representation of
natural languages, which next can be applied to embedding of networks.

2.2 Word feature representation of natural languages

Consider a natural language text. We start with a set of input vectors xi, i = 1, . . . , n,
where n is the number of words in the vocabulary of the text, and xi represents word i in
the vocabulary. Each vector is of dimension n, where xi has a one in position i of the vector
and zeros elsewhere (“one-hot” encoded vector). Let m be the dimension of the desired word
embedding feature representation. The dimension may be quite large. Common choices are in
the range 100−1000. Let the one-hot vector for the wordwi, word number i in the vocabulary,
be xi. Further, consider a n×m weight matrix W. Define the m-dimensional hidden units
hi, i= 1, . . . ,m (without a nonlinear transformation) by

(4) hi = WTxi
.
= vTwi

,
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which is essentially copying the m-dimensional ith row of W to hi. The vector vwi
is the

input word representation vector for word number i in the vocabulary, or the feature vector
fi of the word wi . This means that the link (activation) function of the hidden layer units
is simply linear. The weights, i.e., the vector word representation can then be learned by the
neural network given appropriate targets and a penalty function.

An obvious question is whether a nonlinear transformation is needed. Bengio et al. (2003),
in their pioneering paper suggest an added nonlinearity, whereas the approach of Mikolov
et al. (2013a,b) is entirely linear, but using the softmax transformation henceforth. The latter
papers also have some other ingredients which have made them extremely influential.

An essential feature of the papers by Mikolov et al. (2013a,b) and related papers is that
they have found clever approximations to simplify and speed up the calculations of Bengio
et al. (2003).

2.3 The Mikolov et al. approach: word2vec

We have already presented the input linear representation of word vectors as rows of the
weight matrix W, see (4). The output layer should consist of conditional probabilities of
words in the vocabulary as in Bengio et al. (2003), but Mikolov et al. has a purely linear
transformation to the output layer prior to the softmax transformation.

As a further simplification we assume that we have a window passing over a given text
with the window consisting of just two words wt,wt−1 in position t and t − 1 of the text.
Here, wt is the target word of the text wO , wt−1 is the input word wI , and the conditional
probability P (wt|wt−1) can also be written P (wO|wI). This means that there is only one
context word wI for the output word, whereas in the case of Bengio et al. (2003) there were
l − 1 context words. (Note that in Skip-Gram, and the use of it in network embedding, the
context words are more naturally being thought of as target words belonging to the output.)
To describe the transition from the hidden layer to the output layer we introduce a new m×n
dimensional weight matrix W′ = {w′ij}. Let v′wj

be the jth column of the matrix W′ (it has
dimensionm). It is the output vector representation of word number j in the vocabulary. Then
the n-dimensional output vector is defined by

y = (W′)Th,

where h= vwI
. Component yj is given by

(5) yj = (v′wj
)Th, j = 1, . . . , n.

To obtain the posterior distribution one uses softmax as defined in (3),

(6) P (wj |wI)
.
= uj =

exp(yj)∑n
i=1 exp(yi)

,

where now uj is the transformed output of the jth unit in the output layer. By substitution,
one obtains

(7) P (wj |wI) =
exp
(

(v′wj
)T vwI

)
∑n

i=1 exp
(
w′i)

T vwI

) .
It should be noted that one gets two distinct word representations vw and v′w for each word w
in the vocabulary, one input and one output word vector. The output vector is the relevant one
in the sense that the context relations are baked into it. Since the system is completely linear,
there are no extra parameters to be learned from the network, “just” the matrices W and W′.

The network is trained by stochastic gradient descent as in Bengio et al. (2003) and most
other neural network applications. Given the input word wI and the output word wO , one is
interested in maximizing the conditional probability P (wO|wI); i.e., finding the index j = j?

and the corresponding probability uj in the output layer so that, using (6),

(8) maxuj = maxP (wO|wI) or max loguj = yj? − log

n∑
i=1

exp(yi).
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By taking derivatives one gets the update equation

(w′ij)
(new) = (w′ij)

(old) − ηejhi,

or

(9) (v′wj
)(new) = (v′wj

)(old) − ηejhi.

for j = 1, . . . , n, where η > 0 is the learning rate and ej = uj − tj with tj = 1(j = j?). One
has to go through every word in the vocabulary, check its output probability uj , and compare
uj with its targeted output, either 0 or 1.

Going through the same exercise for the transition between the input and the hidden layer,
one obtains (see Rong (2016) for details) for the update equation if wI =wi

v(new)
wi

= v(old)
wi

− ηF,

where F is the vector whose ith component, using back propagation, is given by
∑n

j=1 ejw
′
ij .

Recall that vTwI
is a row of W, the “input word vector” of the only context word wI = wi,

and it is the only row of W whose derivative is non-zero. All the other rows will remain
unchanged after this iteration, since their derivatives are zero.

The generalization from a one word context to a context with several words is quite
straightforward in the Mikolov et al. (2013a,b) set-up. They distinguish between two ways
of doing this, the CBOW and the Skip-Gram model.

Traditional text classification is based solely on frequencies in the text of words in the
vocabulary. This is the bag of words (BOW) approach. Mikolov et al. (2013a,b) take context
into account resulting in a continuous bag of words (CBOW). We are then essentially back
to the situation in Bengio et al. (2003) where there are C = l− 1 context words and we want
to maximize P (wO|w1, . . . ,wC ), but Mikolov et al. assume linearity in the concatenated C
words in such a way that the concatenated word vector corresponding to [w1, . . . ,wC ] is
simply given by the average 1

C (vw1
+ · · ·+ vwC

) of the individual pairwise word vectors. The
hidden layer is then given by

h=
1

C
WT (x1 + x2 + · · ·xC)

=
1

C
(vw1

+ · · ·+ vwC
).(10)

This is the CBOW assumption. With this assumption one is more or less back to the one-
context word updates. The loss function can be written (cf. (5) and (8)),

E =− logP (wO|w1, · · ·wC)

=−yj? + log

n∑
i=1

exp(yi) =−(v′wO
)Th+ log

n∑
i=1

exp((v′wi
)Th),(11)

which is the same as (8), the objective of the one-word context model, except that h is differ-
ent, being defined as in (10) instead of in (4). This leads to an update equation for the output
words which is identical to (9), whereas the update equation for input words has to be updated
separately for every word wc, c= 1, . . . ,C , namely

v(new)
wc

= v(old)
wc

− 1

C
ηF,

where F is defined as before.

2.4 The Skip-Gram model

The Skip-Gram model is in a sense the opposite of the CBOW model, and this
is the situation considered in the network embedding in Section 5.3. It is also differ-
ent from the Bengio model. For a window centered at the word wI , the window con-
tains C/2 (with C being an even number) words before the center word wI and C/2
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word after the center word, so that in the notation of Bengio et al. (2003) the win-
dow consists of the words [wt+C/2, . . . ,wt, . . . ,wt−C/2]. Sliding the window, the objec-
tive is to predict each of the C context words (i.e. maximize the conditional probability)
[wt+C/2, . . . ,wt+1,wt−1, . . . ,wt−C/2] given the input word wI =wt. Here, conditional inde-
pendence is assumed, so that the conditional probability for each context word is maximized
separately.

For the input word representation the derivation in the two word case is the same as the
present situation for the input word and with the same definition of the hidden layer h, so that
we still have hI = vTwI

. Instead of outputting one (multinomial) distribution, we are outputting
C (multinomial) distributions. But, importantly, each output is computed using the same ma-
trix W′ mapping the hidden layer into the output layer. (This means that the sequencing of
the context words does not matter, only which words are there in the window). Moreover,

P (wc,j |wI) =
exp(yc,j)∑n
i=1 exp(yi)

,

where wc,j , c= 1, . . . ,C , j = 1, . . . , n, and where the index j is referring to the number in the
vocabulary of the word wO,c. Further for h= vwi

,

yc,j = (v′wj
)Th,

for c = 1, . . . ,C , where v′wj
is the output vector for the jth word wj in the vocabulary, and

also v′wj
is taken from the jth column of weight matrix W′ transforming the hidden layer to

the output layer.
The derivations of the parameter update equations are similar to the one-word context.

Assuming conditional independence, the loss function in (11) is changed to

E =− logP (wO,1, . . . ,wO,C |wI) =−
C∑
c=1

(v′wc
)T vwI

+C log

n∑
i=1

exp{(v′wi
)T vwI

}.

The updating equations can be derived by taking derivatives similarly to the CBOW case, and
we refer to Rong (2016) for details.

In spite of the relatively simple linear structure of CBOW and Skip-Gram, it makes for
some quite astonishing properties that goes beyond simple syntactic regularities. This is
obtained using just very simple algebraic operations in the word representation space Rm,
such that for example the embedded word vector(“King”)-word vector(“Man")+word vec-
tor(“Woman”) has a high probability of having the word vector(“Queen”) as its closest word
vector, as measured by cosine distance in word feature space Rm. Several similar examples
are given in Mikolov et al. (2013a,b), and they have also examined quite systematically the
capabilities of CBOW and Skip-Gram compared to other word representation routines in
solving such tasks.

2.5 The computational issue

For all of the word models presented so far, there is a computational issue. As the size of
the vocabulary and the size of the training text set increase, they are heavy to update. For
the two-word, the CBOW and the Skip-Gram models there are two vector representations
for each word in the vocabulary: the input vector vw and the output vector v′w. Learning the
input vectors is cheap, but learning the output vectors is expensive. From the update equations
(6), (7), (8) and (9) it is seen that to update v′w for each training instance, one has to iterate
through every word wj in the vocabulary, compute yj , the prediction error ej and finally use
the prediction error to update the output vector v′wj

.
Such kind of computations makes it difficult to scale up to large vocabularies or large

training corpora. The obvious solution to circumvent this problem is to limit the number of
output vectors that must be updated per training instance. There are two main approaches for
doing this, hierarchical softmax and negative sampling. Both approaches optimize only the
computation for updates for output vectors.
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Hierarchical softmax is an efficient way of computing softmax (Morin and Bengio, 2005;
Mnih and Hinton, 2008). With this method the frequency of words appearing in texts is taken
into account. In hierarchical softmax the list of words from word 1 to word n is replaced
by a binary Huffman encoded tree with the n words appearing at the leaves (outer branches)
of the tree. The probability of the occurrence of a word given an input word is computed
from a probability path from the root of the tree to the given word. This reduces the number
of operations in an update from n to log2 n, e.g. for n = 1 million = 106, the number of
operations are reduced to 6 log2 10≈ 20. We refer to Morin and Bengio (2005) and Mnih and
Hinton (2008) for a detailed description of hierarchical softmax.

2.6 Negative sampling

The idea of negative sampling is far more straightforward than hierarchical softmax. It is
sampling-based, and for each updating instance, only a sample of output vectors are used.
This seems to be an, perhaps the, essential idea that makes Skip-Gram work so well.

Obviously the output words; i.e. wO in CBOW and each of the words wO,c for c= 1, . . . ,C
in the Skip-Gram procedure should be included in the updating sample. They represent the
ground truth and are termed positive samples. In addition, a certain number k of word vectors
(noise or negative samples) are updated, such that k = 5 − 20 are useful for small training
sets, whereas for large training sets, k = 2− 5 may be sufficient (Mikolov et al., 2013b). The
sampling is carried out via a probability mechanism where each word is sampled according
to its frequency f(wi) in the text. In addition, Mikolov et al. recommend from empirical
experience that each word is given a weight equal to its frequency (word count) raised to the
3/4 power. The probability for selecting a word (vector) is just its weight divided by the sum
of weights for all words, i.e.,

Pn(wi) =
f(wi)

3/4∑n
j=1 f(wj)3/4

.

In addition, in word2vec, instead of using the loss functions (8) and (11) constructed from
multinomial distributions, the authors argue that the following simplified training objective is
capable of producing high-quality word embeddings:

(12) E =− logσ((v′wO
)Th)−

∑
wj∈Wneg

logσ(−(v′wj
)Th),

where σ(u) is the logistic function given by σ(u) = 1/(1 + exp(−u)) andWneg is the col-
lection of negative samples for the given update. Further, wO is the output word (the positive
sample), v′wO

is the output vector; h is the value of the hidden layer with h= 1
C

∑C
c=1 vwc

in
the CBOW model and h= vwI

in the Skip-Gram model. Note that Mikolov et al. write (12)
as

E =− logσ((v′wO
)Th)−

k∑
i=1

Ewi∼Pn(w) logσ(−(v′wi
)Th).

To obtain the update equations we again use the chain rule of differentiation. First, the deriva-
tive of E with respect to (v′wj

)Th is computed as

∂E

∂((v′wj
)Th)

=

{
σ((v′wj

)Th)− 1 if wj =wO
σ((v′wj

)Th) if wj ∈Wneg

}
,

which results in the derivative being equal to σ((v′wj
)Th)− tj where tj is the label of word

wj such that tj = 1 if wj is a positive sample, and 0 otherwise. Next, we take the derivative
of E with regard to the output vector of the word wj ,

∂E

∂v′wj

=
∂E

∂((v′wj
)Th)

∂((v′wj
)Th)

∂v′wj

=
(
σ((v′wj

)Th)− tj
)
h.
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This results in the following update equation for the output vector

v′ (new)
wj

= v′ (old)
wj

− ε
(
σ((v′wj

)Th)− tj
)
h,

which only needs to be applied towj ∈ {wO}∪Wneg instead of every word in the vocabulary.
This equation can be used both for CBOW and the Skip-Gram model. For the Skip-Gram
model, the equation has to be applied for one context word at a time.

To back-propagate the error to the hidden layer and thus update the input vectors of words,
it is necessary to take the derivative of E with regard to the hidden layer’s output, obtaining

∂E

∂h
=

∑
wj∈{wO}∪Wneg

∂E

∂(v′wj
)Th

∂(v′wj
)Th

∂h

=
∑

wj∈{wO}∪Wneg

(
σ((v′wj

)Th)− tj
)
v′wj

.
= F.

Using this, one can obtain update equations for the input vectors of the CBOW and Skip-Gram
models.

2.7 Some results

There are a number of results for variously structured text data sets in Mikolov et al.
(2013a,b), where it is seen that CBOW and Skip-Gram perform well compared to other meth-
ods and that with negative sampling or hierarchical softmax the methods can be applied to
vocabularies in the millions and text samples in the billions of words. Choices of parameters
such as the number of context words (not much greater than 10), sample size of negative
samples, and dimension of word vectors are discussed. Further, there are several experiments
analyzing the sensitivity of the results on applications to empirical data. The Skip-Gram is a
slightly heuristic method when combined with negative sampling (such as a sudden shift from
one objective function to another one, raising the empirical frequencies to an exponent of 3/4).
The authors justify this from the empirical results obtained, which are quite impressive. There
are several papers attempting to simplify and complement the rather brief description in the
papers by Mikolov et al. (2013a,b), and trying to give it a firmer mathematical basis. We have
found Rong (2016) useful. The shift of objective function is sought explained in Goldberger
and Levy (2014).

There are extensions to classification of text extending the context of word-vector to the
concept of paragraph-vector in Le and Mikolov (2014), but it is very concisely written. There
is also a paper on machine translation by Mikolov, Le and Sutskever (2013). Software is easily
available for all of the algorithms described in this section.

3. A MORE INVOLVED ILLUSTRATING EXAMPLE

Fig. 1 contains more challenging variants of the graphs in Fig. 5 in the main paper. The ho-
mogeneous graph in Fig. 1a is simulated from a stochastic block model with 2 communities,
100 nodes, average node degree d= 10 and ratio of between-community edges over within-
community edges β = 0.75, i.e. it is generated from the same model as Fig. 5a in the paper,
except that β has increased form 0.4 to 0.75. As for Fig. 5 in the main paper, embeddings with
dimension 64 were computed using node2vec with 30 nodes in each walk with 200 walks per
node, and a word2vec window length of 10 where all words are included. The accompanying
2-dimensional visualizations of the embeddings are done with PCA and t-SNE, UMAP and
LargeVis, all with different tuning parameters.

Compared to Fig. 5a in the main paper, the PCA is far inferior to the three other embedded
visualizations for this more involved example. Similarly to Fig. 5b in the main paper, the het-
erogeneous graph in Fig. 1b is simulated from three stochastic block models (three subgraphs
a, b and c, each with 2 communities:

Graph a: 30 nodes, average node degree d = 7, ratio of between-community edges over
within-community edges β = 0.1
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(a) Homogeneous graph from the stochastic block model.
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(b) Heterogeneous graph from a combination of three stochastic block models.

Fig 1: Graphs, visualizations and classification results with a k-nearest neighbors algorithm
with k = 5.

Graph b: 30 nodes, average node degree d = 15, ratio of between-community edges over
within-community edges β = 0.2
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Graph c: 40 nodes, average node degree d = 7, ratio of between-community edges over
within-community edges β = 0.1, and an unbalanced community proportion; a proba-
bility of 3/4 for community 1 and a probability of 1/4 for community 2

To link graphs a, b and c, some random edges are added between nodes from the same com-
munity1. The results are somewhat similar to those of Fig. 5b of the main paper. Again, PCA
is inferior to the three other methods, but it is closer than in Fig. 1b.
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