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Abstract: Continuous authentication enhances security by re-verifying a user’s validity during
the active session. It utilizes data about users’ behavioral actions and contextual information to
authenticate them continuously. Such data contain information about user-sensitive attributes such
as gender, age, contextual information, and may also provide information about the user’s emotional
states. The collection and processing of sensitive data cause privacy concerns. In this paper, we
propose two efficient protocols that enable privacy-preserving continuous authentication. The
contribution is to prevent the disclosure of user-sensitive attributes using partial homomorphic
cryptographic primitives and reveal only the aggregated result without the explicit use of decryption.
The protocols complete an authentication decision in a single unidirectional transmission and have
very low communication and computation costs with no degradation in biometric performance.

Keywords: cryptographic protocols; homomorphic encryption; continuous authentication; privacy;
biometrics

1. Introduction

Computing technology is growing rapidly; mobile devices are now commonly used for
different applications and services. The rapid advancement of technology also invites vari-
ous security threats in different domains. Security breaches, including unauthorized access
to user accounts, malware attacks, insider attacks, brute-force attacks, etc., are happening
every day. Authentication is considered a fundamental aspect of digital security; it ensures
whether the identity claimer is the right person or not. Verifying user identity with a weak
authentication mechanism is one of the reasons for such security breaches. User authentica-
tion is usually accomplished in a static way, where the user is authenticated only once at
the beginning of a session. Security problems likely occur when the PINs/passwords are
stolen, or the device remains unattended for a while and somebody else uses it. To reduce
security vulnerabilities, a second-factor authentication may be employed so that the user
validity can be verified persistently. In this regard, continuous authentication may help to
prevent unauthorized access by continuously authenticating the user during the session.
It can be accomplished by collecting and monitoring user contextual information such as
user physical location by GPS, logical location IP addresses, etc., or authenticating users
using their behavioral traits.

Both behavioral biometrics and context-aware modalities offer passive and seam-
less authentication; therefore, they do not reduce usability. But, sometimes, they may
face problems, and to address such problems, one should carefully choose the mode of
continuous authentication. Different modalities solve different problems; for example,
monitoring users by their location data, IP addresses, or other context-aware data only
enhances security when an attacker tries to breach security from a different place with
different devices, etc. Still, the limitation of this particular mechanism is that it gives no
protection when the user leaves the device unattended and an imposter uses it. Behavioral
biometric modalities may overcome this problem because users are authenticated based
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on the behavioral patterns they perform while using a device [1]. The limitation can be
overcome because the imposter can be identified immediately. In this regard, keystroke
dynamics or swipe gestures are the most suitable modes for continuous authentication.

Continuous authentication may have different applications, such as it can be used to
secure mobile devices, financial services, IoT and smart homes, E-commerce, healthcare,
cloud-based services, etc. Continuous authentication for such applications is also crucial
because it requires outsourcing user data. Continuous authentication can be performed
locally in the device, but devices have limited storage and computation resources, and there
is a possibility of malicious or compromised client [2,3].

Continuous authentication modalities use user behavioral data such as keystroke
patterns, swipe gestures, gait dynamics, and contextual data, including user location data,
IP addresses, carrier data, user calendars, Bluetooth connectivity, or other personal data [1].
Such data are enormous and contain sensitive information about the user’s appearance,
biometric information, and other user-sensitive and demographic information that may
be induced from such features [4]. Outsourcing such personal data to a third party raises
privacy concerns. These data contain biometric traits and contain identifiable and sensitive
attributes. As per GDPR [5,6], these data must be stored and processed in a privacy-
preserving manner.

Efficiency is another important concern in continuous authentication that requires
attention. Continuous authentication works actively throughout the session; therefore, it
requires low transmission overhead and efficient performance. The privacy-preserving
continuous authentication protocols in the literature are either very inefficient [7,8] or
proven insecure in [9]. For instance, in most cases, the authentication decision is made by
performing many rounds of interaction between the client and the authentication server.
This causes communication and computation overhead, as mentioned in the later Section 8.

Our contribution
To solve privacy and efficiency issues, this article makes the following contributions:

1. Using the additive homomorphic encryption property, we propose two efficient proto-
cols that protect the privacy of user behavioral features (enrollment vector and probe
vector). Protocol 1 assumes an honest client and a malicious authentication server,
and protocol 2 assumes a compromised client and malicious authentication server.

2. Low communication and computation costs. Taking high communication and
computation costs into consideration, we propose very efficient authentication
protocols that avoid rounds of communication between the client and the authenti-
cation server; the protocols complete the authentication in a single unidirectional
(client/server) transmission.

3. The biometric performance (accuracy) of the proposed protocols is the same as is in
the plaintext domain. In other words, there is no degradation in accuracy.

The rest of the paper is organized as follows: we discuss the related work in Section 2; the
preliminaries are discussed in Section 3; the adversarial model is presented in
Section 5; security requirements are discussed in Section 5.4; privacy-preserving protocol 1
is presented in Section 6; an extended protocol, taking a compromised client into account,
is presented in Section 7; computation cost and communication is assessed in Section 8;
a biometric evaluation is shown in Section 9; and Section 10 concludes the paper and
discusses the future work.

2. Related Work

This section presents the literature review of privacy-preserving continuous authen-
tication schemes. We only consider privacy-preserving solutions that utilize only cryp-
tographic primitives to achieve privacy. Govindarajan et al. [7] proposed protocols for
privacy-preserving continuous authentication. They use additive homomorphic encryption
and computed encrypted Scaled Euclidean Distance (SED) and Scaled Manhattan Distance
(SMD) to determine the dissimilarity between a reference template and a fresh input probe.
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Safa et al. [10] proposed a generic implicit authentication scheme for contextual data.
They used additive homomorphic encryption accompanied by order-preserving symmetric
encryption. The final result is based on the dissimilarity scores of Average Absolute Devia-
tion (AAD) between the enrollment and probe vector. Domingo-Ferrer et al. [11] presented
an implicit authentication protocol using an additively homomorphic encryption primitive
and computed a private set intersection between a set of enrollment features and a set of
probes. Sitová et al. [8] used the idea of a fuzzy commitment scheme proposed by Juels
and Wattenberg [12] to propose a touch dynamics-based authentication scheme. However,
such techniques face certain limitations related to data reversibility and data distinguisha-
bility and do not achieve privacy [13]. Balagani et al. [14] presented privacy-preserving
keystroke dynamics-based protocols for implicit authentication. Like Govindarajan et al.,
they also used additive homomorphic with a secure comparison protocol presented by
Damgård et al. [15,16].

Acar et al. [17] proposed a second-factor hybrid privacy-preserving authentication
protocol using keystroke dynamics. Their multi-factor authentication mechanism uses two
types of cryptographic primitives: fully homomorphic encryption (FHE) [18] and fuzzy
hashing [19].

Wei et al. [20] proposed a privacy-preserving continuous authentication protocol using
the Paillier cryptosystem. The cosine similarity is used to determine the similarity between
the encrypted reference template and the probe. The enrollment features are encrypted
using the public key of the authentication server, and privacy is achieved using secret
random numbers (secret key), such as each element is blinded with a secret blinding factor
that is only known to the client. However, it is shown by Eskeland and Baig [9] that the
Wei et al. scheme is insecure and not privacy preserving. They showed that the honest and
curious authentication server obtains not only the plaintext of biometric features, but also
the secret key vector. Moreover, they also showed that the Wei et al. scheme is vulnerable
to active adversarial attacks.

Loya and Bana [21] used fully homomorphic encryption proposed by Cheon et al. [22]
with differential privacy to propose a privacy-preserving protocol for keystroke analy-
sis. Their solution trains neural networks utilizing differential privacy and evaluates the
encrypted data.

Baig and Eskeland [23] proposed a privacy-preserving keystroke dynamics-based con-
tinuous authentication that computes penalty and reward functions defined by Bours [24].
Their privacy-preserving solution uses additive homomorphic encryption with a secure
comparison protocol and completes authentication in five rounds.

Baig et al. [25] utilized an oblivious transfer protocol (OT) with homomorphic en-
cryption to propose two privacy-preserving continuous authentication protocols. Their
proposed protocols protect user biometric data and user activities and complete authentica-
tion in four rounds. Their proposed protocols provide communication efficiency as they
compute similarity based on k actions and make interaction after k actions.

3. Preliminaries

This section discusses the building blocks.

Building Blocks

Our privacy-preserving continuous authentication protocols use the following build-
ing blocks:

(a) The Paillier cryptosystem [26,27] can be explained as follows: During a key generation
phase, two large random prime numbers p, q of equal length are selected and RSA product
n = pq is computed.The public and private keys are generated, of which (n, g) is the public
key, where g = 1 + n, and (λ, n) is the private key, where λ = λ(n) = lcm(p − 1, q − 1),
respectively. Encryption is performed as c = (1 + mn)rn mod n2, where r is chosen ran-
domly in 0 < r < n. Decryption is performed as m = L(cλ mod n2) · λ−1 mod n, where L
is a function L(x) = x−1

n .
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Homomorphic encryption schemes enable the algebraic plaintext computations in the
encrypted domain. The Paillier cryptosystem supports the following homomorphic proper-
ties: E(x1) · E(x2) = E(x1 + x2) and scalar multiplication can be stated as E(x)k = E(k · x),
where notation E(x) represents the encryption of x. The notation is presented in Table 1.

Table 1. Notation.

x⃗ Reference feature vector y⃗ Probe vector
c⃗ Encrypted reference feature vector d⃗ Encrypted probe
C Client AS Authentication server
λ AS private key-pair n, g AS public key-pair

(b) The cosine similarity. Assume x⃗ = (x1, . . . , xm) and y⃗ = (y1, . . . , ym) are two vectors,
where the cosine similarity between (x⃗, y⃗) is defined as

cos(x⃗, y⃗) =
∑m

j=1 xjyj√
∑m

j=1 x2
j

√
∑m

j=1 y2
j

(1)

The cosine similarity of 1 indicates that vector x⃗ and vector y⃗ are exactly similar, where 0
indicates complete dissimilarity between two vectors.

4. Generic Continuous Authentication Algorithm Based on Cosine Similarity

User authentication is accomplished in two phases: an enrollment phase and an
authentication phase. A generic authentication scenario is presented in Algorithm 1. In
the enrollment phase, biometric features a⃗ = (a1, . . . , am) are sampled, and in accordance
with the cosine similarity, a reference feature vector (template) x⃗ = (x1, . . . , xm) is created
by computing A =

√
∑m

j=1 a2
j , where xj = aj/A, 1 ≤ j ≤ m.

Algorithm 1
Enrollment phase
a⃗ = (a1, . . . , am)

A =
√

∑m
j=1 a2

j
x = aj/A, 1 ≤ j ≤ m
x⃗ = (x1, . . . , xm)

Authentication phase
b⃗ = (b1, . . . , bm)

B =
√

∑m
j=1 b2

j
y = bj/B, 1 ≤ j ≤ m
y⃗ = (y1, . . . , ym)

s = ∑m
j=1 xjyj

if (s > T) then
Accept

end if

Authentication features b⃗ = (b1, . . . , bm) are sampled in the authentication phase,
where B =

√
∑m

j=1 b2
j , yj = bj/B, 1 ≤ j ≤ m, are precomputed in the same way as stated

above to construct the probe vector y⃗ = (y1, . . . , ym), where m indicates the total elements
in a vector. The cosine similarity s between the template vector x⃗ and the probe vector y⃗ is
computed as a dot product:
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s = x⃗ · y⃗ =
m

∑
j=1

xjyj (2)

Finally, to make an authentication decision, s is compared to a predefined threshold τ.
If s > τ is true, then the user is accepted.

5. Adversarial Model

Different types of adversaries are considered in biometric authentication systems,
such as malicious parties, semi-honest parties, etc.; malicious parties are considered strong
adversaries, whereas semi-honest parties follow the protocol honestly. The protocols
presented in the later sections do not take external adversaries into account and assume
that communication between the user and the server is secure and that external threats,
such as replay attacks and other similar attacks, are mitigated by applying other security
techniques. Note that the enrollment phase is completed in a trusted environment. The
proposed authentication protocols consider the following adversaries.

5.1. Trusted Client

A trusted client in a biometric system is considered fully reliable and honest. In this
regard, Protocol 1 assumes that the client’s device is secure and that the client is trusted
and honestly follows the protocol, and the trusted client is not even curious about the
protocol working.

5.2. Malicious Authentication Server

The malicious parties may deviate from the protocol and may act as an active adversary.
We assume the authentication server is a malicious party and may deviate from the protocol.
The goals of a malicious authentication server may include attempting to learn the stored
enrollment data or authentication features by any means. The malicious AS may send false
messages to the client to extract additional information [28].

5.3. Malicious Client

A malicious client is a type of adversary that may also deviate from the protocol. This
type of adversary may try to learn enrollment data or may forge the biometric data and try
to gain unauthorized access. In the extended protocol, protocol 2, we assume that the client
is malicious and can deviate from the protocol [28].

5.4. Security Requirements

To preserve the privacy of biometric features, we assume that a privacy-preserving
protocol fulfills the following privacy requirements (PR):

• PR1: The authentication server must not learn the reference features stored during the
enrollment phase.

• PR2: The authentication server must not learn the probe during the authentication
phase.

• PR3: The authentication server should only learn the outcome but nothing more.
• PR4: The identity claimer should not learn the enrollment feature vector.

6. The Novel Privacy-Preserving Authentication Protocol

In this section, we propose a novel privacy-preserving authentication protocol that
protects the enrollment feature vector and the probe vector. It consists of three phases: A
setup phase, an enrollment phase, and an authentication phase. The privacy-preserving
protocol is shown in Figure 1.

6.1. Setup Phase

The authentication server (AS) generates a Paillier public key (g, n), that is shared
with the client (C).
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6.2. Enrollment Phase

During the enrollment phase, C is registered to AS by providing reference biometric
features (template) in a privacy-preserving way.

This phase samples biometric features as a⃗ = (a1, . . . , am) and prepares the template
vector x⃗ = (x1, . . . , xm), in accordance with the cosine similarity, as stated in Section 4.
C randomly selects a vector r⃗ and computes cj = grj(1 + xjn) mod n2, where the secret
encryption factor grj is an element in Z∗

n2 , 1 ≤ j ≤ m. Note that the encryption factor
grj is computed differently from the Paillier encryption scheme. The encryption factor
grj is removed using α and β in the authentication phase without a private key while the
enrollment features remain protected. C computes an encrypted reference template vector
c⃗ = (c1, . . . , cm) and sends c⃗ to AS. AS stores the encrypted reference template c⃗, and C
stores (x⃗, r⃗) locally.

Client C Authentication server AS

Enrollment phase

a⃗ = (a1, . . . , am)

A =
√

∑m
j=1 a2

j

xj = aj/A, 1 ≤ j ≤ m
x⃗ = (x1, . . . , xm)
Generate:
r⃗ = (r1, . . . , rm)
Compute:
cj = grj(1 + xjn) mod n2 ,
1 ≤ j ≤ m
c⃗ = (c1, . . . , cm) c⃗−−−−−−−−−−−−−→

store: x⃗, r⃗

Authentication phase

retrieve r⃗, x⃗ Retrieve c⃗
b⃗ = (b1, . . . , bm)

B =
√

∑m
j=1 b2

j

yj = bj/B, 1 ≤ j ≤ m
k j ∈ Z∗

n
dj = yj + k j, 1 ≤ j ≤ m
d⃗ = (d1, . . . , dm)

α = g−∑m
j=1 rjdj mod n2

β = ∑m
j=1 xjk j mod n2 α, β, d⃗−−−−−−−−−−−−−→

s = α(∏m
j=1 c

dj
j )− βn

s > τ

Figure 1. Privacy-preserving authentication protocol.

6.3. Authentication Phase

During the authentication phase, the similarity between the probe and the reference
template is determined. The probe vector b⃗ = (b1, . . . , bm) is sampled for each behavioral
action, and C computes B =

√
∑m

j=1 b2
j and yj = bj/B, 1 ≤ j ≤ m in accordance with the

cosine similarity.
C randomly chooses k j ∈ Z∗

n for blinding the probe elements as dj = yj + k j, 1 ≤ j ≤ m,
where d⃗ = (d1, . . . , dm). C retrieves the reference enrollment template x⃗ and secret vector r⃗,
and computes
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α = g−∑m
j=1 rjdj mod n2

and

β =
m

∑
j=1

xjk j mod n2

α and β are computed for subsequent elimination of the encryption factors grj of cj and k j
of dj, such that AS obtains only the result of dot product s (Equation (2)), but learns nothing
about (x⃗, y⃗, r⃗, k⃗).

C sends an authentication request message (α, β, d⃗) to the AS for the authentication.
Upon receiving (α, β, d⃗) from C, AS retrieves encrypted reference template c⃗ and computes

S = α
m

∏
j=1

c
dj
j − βn (3)

The correctness can be verified as

S =α
m

∏
j=1

c
dj
j − βn mod n2

=α
m

∏
j=1

(grj(1 + xjn))
dj − βn mod n2

=α
m

∏
j=1

grjdj(1 + xjdjn)− βn mod n2

=α
m

∏
j=1

grjdj
m

∏
j=1

(1 + xjyjn + xjk jn)− βn mod n2

=αα−1
m

∏
j=1

(1 + xj(yj + k j)n)− βn mod n2

=1 + n
m

∑
j=1

xjyj + n
m

∑
j=1

xjk j − βn mod n2

=1 + n
m

∑
j=1

xjyj + βn − βn mod n2

=1 + n
m

∑
j=1

xjyj mod n2

=1 + sn

(4)

Finally, the dot product s = L(S) = S−1
n = ∑m

j=1 xiyi is restored. AS checks s > τ. If this is
true, then AS accepts the request.

6.4. Security Analysis

Note that protocol 1 does not deal with the malicious client (privacy requirement 4
PR4). The proposed protocol fulfills the privacy requirements mentioned in Section 5.4
as follows:

PR1. The authentication server must not learn the reference feature vector x⃗ stored during the
enrollment phase.

The client sends c⃗ to the authentication server during the enrollment phase, and the
elements of the reference template vector c⃗ are created as cj = grj(1+ xjn), 1 ≤ j ≤ m. Each
element xj is protected with grj , which is randomly chosen. As xj and grj are unknown to
the adversary, it is hard to determine xj.
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AS has knowledge of (⃗c, d⃗, α, β). Since α = g−∑m
j=1 rjdj , β = ∑m

j=1 xjk j, are aggregated
values, they do not reveal information about the elements of (x⃗, y⃗, r⃗).

PR2. The authentication server must not learn the probe vector y⃗ during the authentication phase.

In the authentication phase, C blinds each element of the probe vector y⃗ as dj = yj + k j,
1 ≤ j ≤ m, with a secret random integer k j ∈ Z∗

n. Due to the blinding, it is impossible to
determine yj or k j from d⃗. However, k j, 1 ≤ j ≤ m, occur in the computation of the dot
product β = ∑m

j=1 xjk j mod n2. Thus, no information about y⃗ from β could be learned.

PR3. The authentication server should only learn the outcome but nothing more.

The reference template vector and probe vector are blinded by the mean of random
secret elements (⃗r, k⃗), which are canceled out by means of α and β in a privacy-persevering
way. AS can only see the final result of the dot product, which is the cosine similarity
between the probe and the reference template.

7. Extended Scheme w.r.t a Malicious Client

The privacy-preserving scheme in Section 6 requires that the enrollment template
vector x⃗ and the random vector r⃗ are stored unprotected in the device. Considering that the
client is a malicious adversary who can potentially obtain access to the enrollment template
vector x⃗. To deal with this problem, we extend the previous protocol w.r.t protecting the
enrollment template vector x⃗. The extended protocol is presented in Figure 2 and solves.

7.1. Setup Phase

The authentication server shares the public key with the client C and keeps λ secret,
as stated in Section 6.1.

7.2. Enrollment Phase

During this phase, C prepares an encrypted reference template c⃗ in the same way as
stated in Section 6.2. C randomly selects a vector r⃗, where grj is an element in Z∗

n2 and
blinds each element of x⃗ as cj = grj(1 + xjn) mod n2. Note that the encryption factor grj is
computed differently from the Paillier encryption scheme, as stated in protocol 1. C sends c⃗
to AS. C stores r⃗ = (r1, . . . , rm) locally in the device.

To protect the reference template x⃗, each element is encrypted using an AS public key
in agreement with the Paillier cryptosystem. C randomly chooses r′j ∈ Z∗

n and computes the
Paillier encryption c′j = r′nj (1 + xjn) mod n2, 1 ≤ j ≤ m, and stores the encrypted vector

c⃗′ = (c′1, . . . , c′m) locally.

7.3. Authentication Phase

The probe vector b⃗ = (b1, . . . , bm) is sampled and C randomly chooses k j ∈ Z∗
n

for blinding the probe elements as dj = yj + k j, 1 ≤ j ≤ m, where d⃗ = (d1, . . . , dm),

and computes α = g−∑m
j=1 rjdj mod n2 in the same way as in Section 6.3. C computes

γ = ∏m
j=1 c′j

kj mod n2, where k j ∈ Z∗
n is an element of random vector k⃗, which is also used

in d⃗. C sends (α, γ, d⃗) to the AS for the authentication.
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Client C Authentication server
AS (λ)

Enrollment phase

a⃗ = (a1, . . . , am)

A =
√

∑m
j=1 a2

j

xj = aj/A, 1 ≤ j ≤ m
Generate:
r⃗ = (r1, . . . , rm)
Compute:
cj = grj(1 + xjn) mod n2

c⃗ = (c1, . . . , cm)
c⃗−−−−−−−−−−−−−→

Store c⃗
Select: r′j ∈ Z∗

n
c′j = r′j

n(1 + xjn) mod n2

c⃗′ = (c′1, . . . , c′m)
store: c⃗′, r⃗

Authentication phase

Retrieve: c⃗′, r⃗ Retrieve c⃗
b⃗ = (b1, . . . , bm)

B =
√

∑m
j=1 b2

j

yj = bj/B, 1 ≤ j ≤ m
y⃗ = (y1, . . . , ym)
k j ∈ Z∗

n
k⃗ = (k1, . . . , km)
dj = yj + k j, 1 ≤ j ≤ m
d⃗ = (d1, . . . , dm)

α = g−∑m
j=1 rjdj mod n2

γ = ∏m
j=1 c′j

kj mod n2 α, γ, d⃗−−−−−−−−−−−−−→

γ′ = γλ mod n2

β = L(γ′)

s = α ∏m
j=1 c

dj
j − βn

mod n2

s > τ

Figure 2. Extended privacy-preserving authentication protocol.

Upon receiving the message from C, AS first decrypts γ in agreement with the Paillier
cryptosystem by first computing

γ′ =γλ =
m

∏
j=1

c′j
kjλ mod n2

=
m

∏
j=1

r′j
kjλn

(1 + xjn)
kjλ mod n2

=
m

∏
j=1

1 + xjk jλn mod n2

=1 + nλ
m

∑
j=1

xjk j mod n2

(5)
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where r′j
kjλn ≡ 1 mod n2, AS restores

β = L(γ′) · λ−1 mod n =
m

∑
j=1

xjk j

which is same as β, as stated in the Section 6.3,
After that, AS retrieves the encrypted template c⃗ and computes

S = α
m

∏
j=1

c
dj
j − βn

The correctness is in agreement with Equation (4).
The dot product s = L(S) = S−1

n = ∑m
j=1 xiyi is restored. AS verifies whether s > τ is

true, then C is accepted.

7.4. Security Analysis

This section presents the security analysis of PR4; the rest of the privacy requirements
(PR1, PR2, and PR3) are in agreement with the security analysis presented in Section 6.4.
Since both protocols do not send anything back to the client, the malicious AS cannot send
any false messages to the client. Any message from AS will considered as a false message.

PR4. The identity claimer should not learn the enrollment feature vector

The device stores the encrypted reference template vector c⃗′ by the public key of AS;
due to that, C cannot access the unencrypted reference template vector. Hence, if the device
gets compromised, the adversary cannot access x⃗. Moreover, C sends the blinded probe to
AS, where AS determines the similarity between the encrypted reference template and the
blinded probe in a privacy-preserving way without a second interaction.

8. Computation Cost Analysis and Comparison

The computation and communication efficiency of the proposed protocol are deter-
mined by comparing them with the existing protocols proposed in a similar domain. We
analyze the computation cost of encrypted operations, the number of rounds required to
complete the authentication decision, and the transmitted encryptions in each transmission.

The proposed protocols complete an authentication decision in a single unidirectional
transmission between the client (C) and the authentication server (AS). C blinds each
element of the probe vector and sends it the AS. Using a homomorphic property, AS
computes m scalar products.

The abbreviations used in Table 2 are denoted as SE: Symmetric encryption, PSI:
Private set intersection, OPE: Order preserving encryption, and OT: Oblivious transfer
protocol.

Table 2. Complexity comparison.

Protocol Number of Rounds Number of
Encryptions

Cryptographic
Primitives

Safa et al. [10] 3 3m Paillier + OPE

Domingo-Ferrer et al. [11] 2 2m Paillier, PSI

Baig et al. [25] 4 km + 4 Paillier Threshold
Decryption + OT

Proposed protocol (s) 1 m + 2 Modified Paillier

The protocol proposed by Govindarajan et al. [7] completes the authentication decision
by performing four round transmissions between the client and the server, whereas in the
first transmission, a vector of the m encrypted element is transmitted to the client. Then,
the client and the server invoke the privacy-preserving comparison protocol proposed
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by Damgård et al. [15,16] to compute the Scaled Manhattan Distance. Note that the
Damgård et al. [15,16] protocol compares integers in privacy-preserving manners without
compromising their confidentiality. They computed the Squared Euclidean distance based
on the Erkin et al. protocol [29]. Due to computational and communication inefficiencies of
the sub-protocol proposed by Damgård et al. [15,16], the Govindarajan et al. protocols [7,14]
are very inefficient.

The Wei et al. protocol [20] completes an authentication decision by making three
rounds of transmissions between the client and the server. In each interaction, m encrypted
elements are transmitted. Each party computes m scalar multiplication in each interaction.

The Baig et al. [25] protocols complete the authentication decision for k activities in four
rounds. Other means of continuous authentication, such as utilizing user physical location
data, cookies, IP addresses, etc., proposed in [10,11,30], are also very inefficient. Domingo-
Ferrer et al. [11] protocol takes two rounds, where each round sends an encryption of m
elements. Similarly, Shahandashti et al. [30] protocol also takes three rounds to complete
the authentication decision, and each round transmits m encryptions.

In comparison to the protocols in [7,20,23,25], our proposed protocols are very efficient
in terms of computation cost and communication costs.

Considering the scenario of continuous authentication, the authentication decision
is made periodically, such as instead of making the authentication decision based on a
single behavioral action, it should be decided on the basis of more than one action, such as
(k) actions; for such scenarios, the protocols in [7,20] take 4k, 3k interactions, respectively.
Meanwhile, for k actions, our protocols require only k round transmissions. The comparison
is presented in Table 2.

9. Performance Evaluation

To analyze the performance of the proposed protocols, we perform the biometric
analysis of the proposed protocols and determine the running time in milliseconds (ms).

9.1. Biometric Evaluation

Table 3 presents the biometric analysis of the proposed protocols. To determine the
biometric performance of the proposed protocols, we used a publicly available dataset [4]
(Available at: https://www.ms.sapientia.ro/~manyi/bioident.html, accessed on 15 June
2023) to evaluate the biometric performance. The touch gestures data are collected from
51 participants, 42 male and 9 female. A swipe gesture contains the following feature
elements [4]:

“stroke-duration, start-x, start-y, stop-x, stop-y, direct-end-to-end-distance, mean-resultant-
length, up-down-left-right-flag, direction-of-end-to-end line, largest-deviation-from-end-
to-end-line, average-direction, length-of-trajectory, average-velocity, mid-stroke-pressure,
mid-stroke-area”.

Table 3. Biometric evaluation of the proposed protocols.

T FNMR FMR EER

0.90 0.247 0.334 0.291
0.91 0.275 0.282 0.279
0.92 0.313 0.236 0.274
0.93 0.355 0.198 0.277
0.94 0.396 0.165 0.281
0.95 0.423 0.138 0.280
0.96 0.462 0.109 0.286

Each user provides l samples in different sessions and on different devices. The
biometric performance is analyzed by determining the false match rate (FMR), false non-
match rate (FNMR), and equal error rate (EER). We randomly select one sample and make
it a reference template. For each user, a template is created by following the steps stated in

https://www.ms.sapientia.ro/~manyi/bioident.html
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the enrollment phase of proposed protocols; for example, we created 51 reference templates
(one for each user). The rest of the l − 1 samples are utilized for the testing. FNMR
determines the similarity between the reference template and the remaining samples.

For FMR, we construct (l) imposter samples by choosing different samples from
different users. FMR is determined by computing the similarity between the reference
template of each user and the imposter samples. The similarity is computed by following
steps mentioned in the proposed protocols.

The performance on the blinded features is the same as the performance of the baseline
in the plaintext domain. We achieved different performances on different thresholds (T).
The lower threshold gives lower FNMR but also gives high FMR. The highest FNMR of
0.462 has been achieved on T = 0.96, whereas the lowest FNMR has been 0.275 on T = 0.91.
The best FNMR 0.275 and FMR 0.282 are achieved on T = 0.91. Note that the accuracy of
the proposed protocols is the same as without privacy presented in Algorithm 1. Adding
cryptography does not degrade the accuracy.

9.2. Running Time

The running time of the proposed protocols is measured on Intel(R) Core(TM) i5-
7440 HQ CPU@2.80 GHz, 32 GB RAM in Python 3.10. The running time of the proposed
protocols is tested on different security levels (k = 112, 128, 192). The running time of the
proposed protocol 1 is shown in Figure 3a.

(a) Protocol 1

(b) Protocol 2

Figure 3. Running time of the proposed protocols.
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Figure 3b shows the running time of the proposed protocol, protocol 2; due to the
decryption, protocol 2 has a slightly higher running time than protocol 1. This analysis
does not include the communication costs.

10. Conclusions and Future Work

In this paper, we have proposed two efficient privacy-preserving continuous authenti-
cation protocols that protect user biometric features. The proposed protocol 1, provides
privacy protection under the malicious authentication server and honest client, and the pro-
posed protocol 2, considers malicious parties. The biometric evaluation on a publicly avail-
able dataset has shown that the proposed protocols have good performance. The privacy-
preserving protocols provide the same accuracy as without encryption. The proposed
protocols offer low communication and computation costs and complete authentication in
a single uni-directional transmission. Low costs overhead and good biometric performance
prove the practicality of the proposed protocols in real-life applications.

The proposed protocols can be utilized for continuous authentication as well as static
authentication, such as authentication using any biometrics or contextual modalities.

In future work, we will consider making the final comparison in a privacy-preserving way.

Author Contributions: Conceptualization, A.F.B. and S.E.; Methodology, A.F.B. and B.Y.; Validation,
A.F.B. and S.E.; Investigation, A.F.B., S.E. and B.Y.; Writing—original draft, A.F.B.; Writing—review &
editing, A.F.B.; Supervision, S.E. and B.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is part of the Privacy Matters (PriMa) project. The PriMa project has received
funding from European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 860315.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baig, A.F.; Eskeland, S. Security, Privacy, and Usability in Continuous Authentication: A Survey. Sensors 2021, 21, 5967. [CrossRef]

[PubMed]
2. Atanassov, N.; Chowdhury, M.M. Mobile device threat: Malware. In Proceedings of the 2021 IEEE International Conference on

Electro Information Technology (EIT), Mt. Pleasant, MI, USA, 14–15 May 2021; pp. 7–13.
3. Weichbroth, P.; Łysik, Ł. Mobile security: Threats and best practices. Mob. Inf. Syst. 2020, 2020, 8828078. [CrossRef]
4. Antal, M.; Bokor, Z.; Szabó, L.Z. Information revealed from scrolling interactions on mobile devices. Pattern Recognit. Lett. 2015,

56, 7–13. [CrossRef]
5. GDPR. Processing of Special Categories of Personal Data. 2021. Available online: https://gdpr-info.eu/art-9-gdpr/ (accessed

on 3 March 2023).
6. On the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data,

and Repealing Directive 95/46/EC (General Data Protection Regulation). 2016. Available online: https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=CELEX%3A02016R0679-20160504 (accessed on 14 January 2024).

7. Govindarajan, S.; Gasti, P.; Balagani, K.S. Secure privacy-preserving protocols for outsourcing continuous authentication of
smartphone users with touch data. In Proceedings of the 2013 IEEE Sixth International Conference on Biometrics: Theory,
Applications and Systems (BTAS), Arlington, VA, USA, 29 September–2 October 2013; pp. 1–8.
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