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A B S T R A C T

Hydrological impact assessments are increasingly performed at fine spatial and temporal resolutions in order
to resolve local-scale changes under a future climate. Apart from the uncertainty represented by different
climate models, emission scenarios and post-processing methods, the local-scale internal variability of the
climate can be a major source of uncertainty for hydrological projections. To assess the latter at the catchment
scale, this paper presents a methodology which is particularly suitable for spatially distributed hydrological
models. An ensemble of daily precipitation and daily mean temperature realizations on a high-resolution grid
is simulated from stochastic weather generators (WGs) trained on historical data and equipped with climate
change information obtained from a regional climate model. Based on the resulting simulated daily runoff
data, the significance of changes in the runoff regime is assessed using a statistical hypothesis test, and the
variability contributed by the two input variables is quantified using the analysis of variance (ANOVA). As a
proof of concept, simulations on a 1-km grid over a period of 19 years are carried out for nine catchments in
central Norway. Significant changes in runoff regimes are found, indicating that the trends introduced in the
WGs are not overwhelmed by the local-scale internal variability. Variability in the runoff simulations varies
substantially throughout the year; it is highest in periods with potential snowmelt and lowest during winter.
Temperature is the dominant source of variability in the colder months (November–March) due to its influence
on rainfall and snowmelt. High variability in May–June is contributed comparably by both temperature and
precipitation. In summer and early autumn the runoff variability is precipitation dominated. The results are
in line with findings in the literature where the runoff variability is driven by the large-scale internal climate
variability. This indicates that ignoring the local-scale internal variability may yield an underestimation of the
overall variability in runoff projections and projected changes.
1. Introduction

In order to develop adaptation strategies relevant for e.g. agricul-
ture, civil water use, hydropower production and reservoir operation,
information on hydrological changes at regional to local scales under
a changing climate can be required at natural catchments or catch-
ments that are subject to extensive human interventions (Barros et al.,
2014; Hanssen-Bauer et al., 2017b; Abhishek and Kinouchi, 2021;
Abhishek et al., 2021). In Northern Europe, the projected warming
rate is amongst the highest in the world (Collins et al., 2013), which,
combined with the projected changes in precipitation, is expected to
considerably impact evaporation, rainfall and snow, leading to signifi-
cant changes in future runoff regime, floods and droughts (von Storch
et al., 2015). In Norway, large variations in topography, climate and
land cover are commonly characterized within a catchment, where
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hydrological processes can be highly sensitive to small-scale climate
variability (Beldring et al., 2003). For an accurate quantification of the
local-scale changes, hydrological impact assessments have optimally
been performed at fine spatial and temporal scales (e.g. Wong et al.,
2011; Hanssen-Bauer et al., 2017a).

Progress in high-resolution gridded observational data products
such as the seNorge dataset (Lussana et al., 2019) presents new op-
portunities for hydrologists to carry out reliable impact assessments
at required fine scales. However, climate projections at equivalent
scales are currently not widely available. Future climate information
derives from coupled atmosphere–ocean general circulation models
(GCMs) that are too coarse. Regional climate models (RCMs), typically
at a spatial resolution of 10–15 km (e.g. Jacob et al., 2014), provide
valuable information on mesoscale changes over a region with new
vailable online 25 March 2023
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advances in convection-permitting climate modeling (Lind et al., 2020;
Prein et al., 2020). To bridge the scale gap and remove systematic
biases in climate model outputs, various post-processing methods have
been performed in hydrological impact studies (Maraun and Widmann,
2018).

It has been found that the uncertainty in hydrological model pro-
jections is primarily caused by the uncertainty in future climatic forc-
ing (e.g. Wilby and Harris, 2006; Dobler et al., 2012; Bosshard et al.,
2013; Addor et al., 2014; Wang et al., 2020). In a multi-model frame-
work, uncertain climatic forcing is represented by using projections
from different climate models and/or under different emission scenar-
ios post-processed with different methods, and often assessed against
the uncertainties arising from different hydrological models and/or
parameter sets, or furthermore different analysis methods e.g. flood fre-
quency analysis (Lawrence, 2020; Meresa et al., 2021). Less intensively
explored is the effect of the internal variability of the climate, partly
because of the limited number of model runs available for any partic-
ular GCM or RCM (Peel et al., 2015). The natural, internal variability
of the climate stems from its intrinsic chaotic nature, and cannot be
reduced with our increasing knowledge in climate science (Yip et al.,
2011; Ghil and Lucarini, 2020). It thus determines a lower limit of our
uncertainties associated with the climate system (Gelfan et al., 2015)
and potentially represents a major source of uncertainty in hydrological
projections.

Various methods have been suggested to account for the large-
scale internal variability of the climate in hydrological impact stud-
ies. Seiller and Anctil (2014) found that the uncertainty arising from
a five-member GCM/RCM ensemble is larger than the uncertainties
contributed by different lumped hydrological models. Peel et al. (2015)
proposed to approximate the within-GCM uncertainty using stochastic
replicates of available projections, where they found the within-GCM
uncertainty is amplified from mean annual precipitation to the sim-
ulated mean annual runoff and reservoir yield. Gelfan et al. (2015)
simulated a 45-member initial condition ensemble of a GCM and found
higher uncertainty in streamflow simulations for flood periods and in
catchment with stronger nonlinearity of runoff generation mechanisms.
One common issue with these studies is that the climate projections are
bias-corrected and downscaled using model output statistics (MOS) meth-
ods such as simple mean adjustment and empirical quantile mapping,
which are problematic for capturing spatial and temporal variability at
the finer hydrological modeling scale (Maraun and Widmann, 2018).

To better represent the local-scale internal variability of the cli-
mate, stochastic ensembles are commonly generated using statistical
methods. Lafaysse et al. (2014) empirically downscaled GCM daily
outputs to 100 possible realizations of local-scale surface variables
using K-nearest neighbors (K-nn) resampling. They found the sign of
change in future annual discharge is uncertain mainly as a result
of the internal variability, and the small-scale internal variability ac-
counts for 15%–25% of the total uncertainty in projections given the
uncertainties from GCM and downscaling method. Gao et al. (2020)
generated 1000 replicates of bias-corrected, downscaled GCM rainfall
series using a stochastic daily rainfall model. Their results highlight the
dominant effect of the precipitation internal variability in projections
of future extreme flows. In Fatichi et al. (2014), hourly precipitation
and temperature data were generated using a multi-site weather gen-
erator (WG) approach. They found that internal climate variability
overwhelms climate change signals in streamflow mean, frequency and
seasonality. However, these methods have limited strength to represent
the internal variability of a changing climate in a colder region on a
high-resolution grid, because (1) temporal sequence was not consid-
ered in the resampling procedure (Lafaysse et al., 2014); (2) only the
rainfall variability was represented in Gao et al. (2020), whereas in
regions with seasonal snow cover the variability of temperature is not
negligible (Dobler et al., 2012; Gelfan et al., 2015); and (3) climate
change information derived from climate model outputs was added
2

assuming piece-wise stationarity in each future period (Fatichi et al.,
2014), whereas a changing climate could preferably be described as a
continuously evolving space–time process.

In this paper, we present a methodology for exploring the hydro-
logical uncertainty simulated when local-scale internal variability is
represented on a high-resolution grid. Specifically, we employ the WG
methods developed for daily mean temperature (Yuan et al., 2019)
and daily precipitation (Yuan et al., 2021) to simulate an ensemble
of gridded time series. A generator for each variable is trained on a
high-resolution observational data product for Norway, where the fine-
scale spatial and temporal marginal variations and the spatio-temporal
dependences are described using parametric statistical models. The
climate change signals obtained from an RCM are added to equivalent
components of the generator including the trend. The ensemble of
temperature and precipitation data is then used to simulate daily runoff
series with a spatially distributed hydrological model, which has been
used to perform hydrological impact assessments for the governmental
report ‘‘Climate in Norway 2100’’ (Hanssen-Bauer et al., 2017a) issued
by the Norwegian Centre for Climate Service (NCCS).

Based on the simulated runoff, we first perform a statistical hy-
pothesis test to assess whether there are significant changes in runoff
regime given the trends in the WGs and the simulated variability in the
input data. Assessing the significance of regime change is a common
task in many studies. Some found that climate change signals in river
streamflow are largely masked by internal climate variability (e.g.
Lafaysse et al., 2014; Fatichi et al., 2014), while others found robust
expected changes in runoff cycle despite projection uncertainty (e.g.
Finger et al., 2012; Addor et al., 2014). Our assessment can contribute
to this ongoing discussion.

Next, we quantify the variability contributions of the two input vari-
ables. Variability in simulations arising from various sources are often
estimated using analysis of variance (ANOVA) techniques. Some use a
time series based approach called the Quasi-Ergodic ANOVA (Hingray
and Saïd, 2014; Lafaysse et al., 2014; Vidal et al., 2016; Hingray
et al., 2019), which assumes, among other things, that the uncertainty
from the internal climate variability is constant or roughly constant
across projection lead times. Here, we adopt the traditional ANOVA
approach as it requires fewer assumptions. This approach has seen
applications in climate projections (Yip et al., 2011) and hydrological
impact studies (Finger et al., 2012; Bosshard et al., 2013; Addor et al.,
2014; Lawrence, 2020; Meresa et al., 2021). Quantifying sources of
variability related to input variables is supposed to help focus attention
on the process tractable components of the total variability.

In a case study, we consider nine different catchments in central
Norway. The catchments have different runoff regimes, climatic types
and areas varying between 144 km2 and 3084 km2. The remainder of
the paper is organized as follows. Section 2 introduces the study area.
Methods for generating climate input data, simulating daily runoff data
and analysis of the simulated runoff data are given in Section 3. The
results are presented in Section 4, followed by a discussion in Section 5.
The paper then concludes with a brief summary in Section 6.

2. Study area

The study area is located in Trøndelag in central Norway, a region
with large climatic variation and abundant hydropower resources. As
shown in Fig. 1, it covers the entire Trøndelag and a small part
of neighboring Sweden. We focus on nine catchments in this region
(shaded in gray in Fig. 1) with sizes ranging from 144 to 3084 km2 and
median elevations varying between 295 and 734 m.a.s.l (see Table 1).
They are natural catchments, i.e. direct human interventions have neg-
ligible impacts on the catchment hydrology. Most of these catchments
have daily discharge time series available for decades long period,
maintained and archived in the station network at the Norwegian
Water Resources and Energy Directorate. Referring to the Nordic runoff
regime map presented by Gottschalk et al. (1979), there is a gradual

change of the regime as we move from east to west. The catchments
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Fig. 1. The study area in central Norway. The nine catchments considered are shaded in gray and indicated by the catchment ID given in Table 1.
Table 1
Characteristics of the nine catchments considered in the case study in Trøndelag, Norway. Annual mean temperature and annual precipitation in
the simulation period 1987–2005 are given by the sample mean computed based on the WG-simulated time series averaged over the catchment
area, see Section 3.1.1.

Catchment ID Size Median elevation Discharge record Runoff regime Temperature Precipitation
(km2) (m.a.s.l) (date) (◦C) (mm)

Gaulfoss A 3084 734 1958-05-19 mountain 0.4 1037
Aamot B 286 460 1987-07-31 mountain 2.2 1239
Krinsvatn C 206 349 1915-12-19 Baltic 3.1 2379
Oeyungen D 245 295 1916-09-26 Baltic 2.9 2169
Trangen E 852 558 1934-10-10 mountain 0.2 1304
Veravatn F 176 514 1966-10-07 transition 1.1 1561
Dillfoss G 484 506 1973-01-01 transition 1.7 1161
Hoeggaas H 491 505 1912-04-25 transition 1.6 1248
Kjeldstad I 144 578 1913-01-01 transition 1.4 1914
Gaulfoss, Aamot and Trangen (A, B and E) have the mountain type
regime, with dominant high flows in spring due to snowmelt and
dominant low flows in winter due to snow accumulation. Located in a
transition zone between the mountain type and the inland type regime,
the four catchments Veravatn, Dillfoss, Hoeggaas and Kjeldstad (F-I)
tend to have a second or third highest runoff occurring in autumn in
addition to the snowmelt high flows. The catchments Krinsvatn and
Oeyungen (C and D) have the Baltic type regime and usually experience
a summer low flow in addition to the lowest winter flows. According
to the Köppen–Geiger climate classification presented by Kottek et al.
(2006), Krinsvatn and Oeyungen have a maritime climate while the
other catchments have a humid continental climate.

3. Methods and data

3.1. Climate input data and hydrological model simulation

3.1.1. Generating gridded daily mean temperature and daily precipitation
High-resolution gridded climate input data required for hydrolog-

ical simulations are stochastically simulated using weather generator
(WG) approaches proposed for daily mean temperature (Yuan et al.,
2019) and daily precipitation (Yuan et al., 2021). The WGs are trained
3

on a 1-km gridded observational data product, seNorge_2018 version
18.12, provided by the Norwegian Meteorological Institute (Lussana
et al., 2019), and combined with climate change information obtained
from an RCM in the EURO-CORDEX-11 ensemble (Jacob et al., 2014)
operating at a 12 km spatial resolution. The RCM combines the COSMO
model in CLimate Mode (CCLM; Steger and Bucchignani, 2020) with
boundary conditions from the MPI Earth system model (Giorgetta et al.,
2013). As shown in Fig. 1, our study area comprises 695 RCM grid cells
(rectangular-like polygons) and 109 514 seNorge grid cells (within the
polygons, not shown). The RCM outputs are simulated with different
types of forcing before and after the year 2005, i.e. recorded and
projected emissions respectively. We thus take only the historical run
to avoid possible inconsistency in the model behavior due to the shift
in the forcing. Both seNorge and RCM data are available from 1957.
We train the WG for each variable and catchment using the seNorge
data from 1957 to 1986, and derive climate change information on the
RCM grid by comparing the RCM data from the two time periods 1957–
1986 and 1987–2005. Simulations of each variable are then performed
for the period 1987–2005 for each catchment.

The WGs employed here comprise marginal models with param-
eters varying smoothly across grid cells and over time, and models
describing spatial and temporal dependences for realistic simulations
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of daily temperature and precipitation fields. Specifically, the WG for
temperature uses a Gaussian distribution with a mean and a variance
component, and a stationary and separable spatio-temporal model for
residuals (Yuan et al., 2019). We independently sample 10 realiza-
tions of spatial residuals and 10 realizations of temporal residuals to
sufficiently account for the randomness in the model, and by adding
the RCM simulated changes in the mean while keeping the variance
unchanged, we obtain 100 realizations of temperature simulations (in
◦C).

The WG for precipitation uses a discrete-continuous distribution
with precipitation occurrence described by a probit regression model,
amount on wet days by a gamma distribution, and a single non-
stationary Gaussian random field driving the spatio-temporal correla-
tions in both the occurrences and the amounts (Yuan et al., 2021). The
RCM simulated changes in the probability of occurrence, the amount
on wet days, and the temporal correlation in the underlying spatial ran-
dom field are used to update the corresponding model components of
the WG. From the single random field model, we sample 10 realizations
which are then transformed into 10 realizations of precipitation data (in
mm day−1).

In Table 1, we list the annual mean temperature and the an-
ual precipitation averaged over the simulation period 1987–2005 for
ach catchment. The two larger mountain catchments, Gaulfoss and
rangen, have a relatively colder and dryer climate, while the two
maller coastal catchments, Krinsvatn and Oeyungen, are considerably
armer and wetter.

.1.2. Simulating daily runoff with a distributed HBV-model
For hydrological simulations, we consider the spatially distributed

BV-model developed by Beldring et al. (2003) for Norway. The HBV
Hydrologiska Byråns Vattenbalansavdelning) model has undergone
ecades of developments and applications in Nordic countries and over
he world (Bergström, 1976; Sælthun, 1996; Seibert and Bergström,
022). The model version employed in this study has a 1 km spatial
esolution and is run with a daily time step. It has an interception
outine, a snow routine where snowmelt is calculated based on a
imple degree-day method, a soil moisture routine where the potential
vapotranspiration is estimated using a temperature index method (e.g.
ælthun, 1996; Xu and Singh, 2001), and a dynamical part where runoff
s generated from an upper zone and a lower zone. Two land use classes
forests and open lands) and two soil types (wetlands and others) are
sed to specify the parameters of the processes above and beneath the
round surface (Beldring et al., 2003).

We calibrate and validate the model based on the seNorge data. The
onlinear parameter estimation method PEST (Doherty et al., 1994;
awrence et al., 2009) is used to find an optimal set of parameters
eparately for individual catchments, where model simulated discharge
s compared with the observed discharge, using the Nash–Sutcliffe effi-
iency (Nash and Sutcliffe, 1970) and relative volume bias (Yapo et al.,
996) as performance measures. Initial spin-up periods of six months
re used to adjust the model before the calibration and validation pro-
edures are started. The calibration period,1988–2002, shows a mean
ash–Sutcliffe efficiency of 0.80 with a mean volume bias of −0.7%,

while the validation period,2003–2018, yields a mean Nash–Sutcliffe
efficiency of 0.74 with a mean volume bias of 7%.

We then run the model for all possible combinations of the 100
simulated temperature realizations and the 10 simulated precipitation
realizations. This yields 1000 time series of simulated daily runoff for
each catchment over the period 1987–2005, i.e. time series of daily
discharge averaged over the catchment area (in mm day−1). As an
example, Fig. 2 shows the simulated mean annual runoff cycles over
the period 1987–2005. On average, the runoff is highest in the two
smaller coastal catchments Krinsvatn and Oeyungen, followed by the
smallest catchment Kjeldstad, consistent with the simulated precipita-
tion amounts (cf. Table 1). In general, low flows in January–March are
4

followed by high flows in April–June with a peak simulated in May. The
flows then become more stable or have a mild increase in autumn and
decline again in November–December. Krinsvatn and Oeyungen have
a summer low flow preceding an autumn high flow as is characteristic
for the Baltic type regime. The internal variability of the input results
in considerable variability in the simulated runoff, particularly in the
catchments with the highest runoff and in the snowmelt season. In
addition, there appears to be a pattern of clustering between July
and October in some catchments. This will be investigated further in
Section 3.2.3.

3.2. Analysis of simulated runoff data

In the following, we focus on the annual cycle of runoff, that is,
how runoff volumes vary throughout the year. We follow, for exam-
ple, Finger et al. (2012) and Addor et al. (2014) and describe the annual
ycle of a year by monthly values which are computed as the average
ver the simulated daily values in the respective months. Alternatively,
t can be estimated by 𝑚-day moving averages (e.g. Bosshard et al.,
013) to avoid separation of the data by month. The mean annual cycle

refers to the average annual cycle over a period of years, represented
by (multi-year) mean monthly values (e.g. Fig. 2), while the change in
the mean annual cycle refers to the difference in the mean monthly
values between two periods. Here, we divide the simulations for the
period 1987–2005 into two non-overlapping periods,1987–1995 and
1997–2005. We consider the mean annual cycle for each period as well
as changes between the two periods. The corresponding runoff statistics
(in mm day−1) are computed for each of the 1000 simulations, and the
following analyses are performed separately for each catchment.

3.2.1. Testing changes in the mean annual runoff cycle
To assess the significance of changes in the mean annual runoff

cycle, we perform a statistical hypothesis test for each calendar month.
Denote by 𝑋 the mean monthly runoff in a given month and by 𝐷 the
imulated change between the two time periods, specifically,

= 𝑋1997−2005 −𝑋1987−1995. (1)

or each month, we have 𝑛 = 1000 independent realizations of the
imulated change, 𝐷1,… , 𝐷𝑛. We assume the simulated change 𝐷
ollows a normal distribution with mean 𝜇𝐷 and standard deviation 𝜎𝐷.

Then, the mean value �̄� follows a normal distribution with mean 𝜇𝐷
and standard deviation 𝜎𝐷∕

√

𝑛; formally,

�̄� = 1
𝑛

𝑛
∑

𝑖=1
𝐷𝑖 ∼  (𝜇𝐷, 𝜎𝐷∕

√

𝑛). (2)

The objective is now to test the null hypothesis 𝐻0 ∶ 𝜇𝐷 = 0 versus the
lternative 𝐻𝑎∶ 𝜇𝐷 ≠ 0. Denote by 𝑆𝐷 the sample standard deviation,

𝐷 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝐷𝑖 − �̄�)2. (3)

e use the test statistic of the one-sample 𝑡-test, 𝑡 = �̄�
𝑆𝐷∕

√

𝑛
, which is

pproximately standard normal for large 𝑛. We reject 𝐻0 at the 5% level
if 𝑡 ≥ 1.96 or 𝑡 ≤ −1.96.

Alternatively, it is common in the literature to use the signal-to-
noise ratio (𝑆∕𝑁) for assessing the significance of change signal. The
signal 𝑆 is usually the ensemble mean, however, it varies somewhat
how the noise 𝑁 is defined. For example, 𝑁 has been calculated
based on the standard deviation of a multi-member ensemble from
a different climate model (e.g. Zhuan et al., 2018; Gu et al., 2019),
the observed discharge records (Addor et al., 2014), the interannual
variability of the sample averaged future projections (Finger et al.,
2012), and based on the control scenario ensemble generated for each
climate model (Fatichi et al., 2014). Moreover, the significance has
been assessed at different levels. Using our notation, we can write
𝑆
𝑁 = �̄�

𝑐𝑆𝐷
, where 𝑐 is a constant. The constant 𝑐 has been set to e.g. 1.65,

2 or 1 (Hawkins and Sutton, 2009; Zhuan et al., 2018; Gu et al., 2019).
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Fig. 2. 1000 simulations of the mean annual runoff cycle for the period 1987–2005. Each simulated runoff series is summarized by multi-year mean monthly averages and indicated
by a thin gray line. Results are shown for all 9 catchments considered in this study.
3.2.2. Quantifying variability due to climate inputs using ANOVA
Variability in the runoff simulations is analyzed using analysis of

variance (ANOVA). The ANOVA method has been applied to quantify
different sources of variability in future climate projections (e.g. Yip
et al., 2011) hydrological projections of the runoff cycle (e.g. Fin-
ger et al., 2012; Bosshard et al., 2013; Addor et al., 2014), extreme
flows (e.g. Gao et al., 2020) and flood hazards (e.g. Lawrence, 2020;
Meresa et al., 2021).

Here, ANOVA is applied to quantify sources of variability related
to temperature and precipitation input data in the runoff simulations.
For a given month, denote by 𝑋𝑖𝑗 a response driven by temperature
simulation 𝑖 ∈ {1,… , 100} and precipitation simulation 𝑗 ∈ {1,… , 10}.
The ANOVA model equation for 𝑋𝑖𝑗 is given by

𝑋𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜂𝑗 + 𝜀𝑖𝑗 , (4)

with ∑100
𝑖=1 𝜏𝑖 = 0, ∑10

𝑗=1 𝜂𝑗 = 0, and the error terms 𝜀𝑖𝑗 are assumed
independent and identically distributed. The overall mean response is
given by 𝜇, 𝜏𝑖 is the effect of the 𝑖th temperature simulation and 𝜂𝑗 is the
effect of the 𝑗th precipitation simulation, both given as the deviation
from the overall mean.

The total variability in 𝑋𝑖𝑗 and variability due to various factors can
be quantified by sums of squares, an approach adopted by e.g. Finger
et al. (2012), Bosshard et al. (2013), Addor et al. (2014), and Gao
et al. (2020). Here, we follow Yip et al. (2011) and define all sources
5

of variability in terms of variance:

VT = 1
100

100
∑

𝑖=1
[�̄�𝑖⋅ − �̄�⋅⋅]2, (5)

VP = 1
10

10
∑

𝑗=1
[�̄�⋅𝑗 − �̄�⋅⋅]2, (6)

VE = 1
1000

10
∑

𝑗=1

100
∑

𝑖=1
[𝑋𝑖𝑗 − �̄�𝑖⋅ − �̄�⋅𝑗 + �̄�⋅⋅]2, (7)

Vtotal = 1
1000

10
∑

𝑗=1

100
∑

𝑖=1
[𝑋𝑖𝑗 − �̄�⋅⋅]2 = VT + VP + VE, (8)

where e.g. �̄�𝑖⋅ denotes the average over the index 𝑗, �̄�𝑖⋅ =
1
10

∑10
𝑗=1 𝑋𝑖𝑗 .

That is, the total variability is given by the sample variance Vtotal.
It decomposes into variability due to temperature simulations, VT,
precipitation simulations, VP, and an unexplained part, VE.

We apply the ANOVA framework to three types of responses re-
lated to the mean annual runoff cycle: (1) for each month, the mean
monthly runoff for 1987–1995 and 1997–2005, respectively, where the
sample variance is considered a measure of natural variability in the
corresponding period; (2) for each month, the monthly runoff for each
year, to study the interannual variation of the variability throughout the
entire simulation period; and (3) for each month, the change in the
mean monthly runoff between 1987–1995 and 1997–2005. Variance
decomposition results will be presented in unit (mm day−1)2, i.e. the
square of the runoff statistics’ unit.
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Table 2
Average simulated changes in the mean annual runoff cycle from 1987–1995 to 1997–2005 for each catchment, given as change in the mean
monthly runoff for each calendar month. Values where the null hypothesis of no change cannot be rejected are indicated in italic. For each
catchment, the largest positive change and the largest negative change are indicated in bold.

Catchment ID 1 2 3 4 5 6 7 8 9 10 11 12

Gaulfoss A 0.00 −0.16 −0.23 −0.88 0.81 1.21 −0.04 0.17 0.15 −0.15 −0.19 −0.37
Aamot B −0.12 −0.28 −0.30 −1.04 2.74 1.60 0.38 0.17 0.24 −0.07 −0.19 −0.13
Krinsvatn C −0.15 −0.78 −1.19 −1.07 4.06 1.94 0.77 1.37 0.70 0.14 −0.02 −0.42
Oeyungen D −0.40 −0.75 −0.96 −2.07 5.83 3.69 0.72 1.30 0.53 0.89 0.04 −0.34
Trangen E −0.12 −0.25 −0.18 −0.89 0.62 2.50 0.75 −0.10 0.02 −0.29 −0.22 −0.05
Veravatn F −0.21 −0.34 −0.29 −1.68 2.09 3.30 0.38 0.39 0.89 0.23 −0.10 −0.14
Dillfoss G −0.24 −0.47 −0.46 −1.12 1.95 0.97 0.04 −0.17 0.10 −0.24 −0.60 −0.22
Hoeggaas H −0.28 −0.34 −0.38 −1.47 1.36 1.48 0.32 −0.04 −0.01 −0.05 −0.42 −0.33
Kjeldstad I −0.31 −0.45 −0.51 −1.76 2.54 3.34 1.28 0.81 0.51 −0.41 −0.41 −0.34
Fig. 3. Interannual variation of the sample averaged monthly runoff across the simulation period 1987–2005 shown for the catchment Krinsvatn.
.2.3. Assessing model assumptions using bootstrap
To assess the model assumptions of the procedures described above,

e additionally apply a bootstrap procedure similar to that employed
y Addor et al. (2014) to assess natural variability based on observed
ischarge records. Specifically, we perform the following: (1) for our
et of 𝑛 = 1000 simulations, randomly select a sample of size about
0% of the total number of 𝑛(𝑛−1)∕2 pairs; (2) compute the difference
ithin each selected pair, and then for each month, compute the sample

tandard deviation based on the difference values. These two steps
re repeated 100 times to account for sampling variability, and we
ubsequently take the 95% bootstrap confidence interval based on the
esults.

Denote by 𝐷𝑘 = 𝑋1𝑘 −𝑋2𝑘 for 𝑘 = 1,… , 𝑚 the differences computed
in step (2) for the 𝑚 randomly selected pairs (𝑋1𝑘, 𝑋2𝑘)𝑚𝑘=1 of step (1).
The sample variance of the differences is given by

V𝐷 = 1
𝑚

𝑚
∑

𝑘=1
[𝐷𝑘 − �̄�]2

= 1
𝑚

𝑚
∑

𝑘=1
[(𝑋1𝑘 − �̄�1⋅)2 + (𝑋2𝑘 − �̄�2⋅)2 − 2(𝑋1𝑘 − �̄�1⋅)(𝑋2𝑘 − �̄�2⋅)] (9)

≈ 2Vtotal,

where the approximation in the last step holds when 𝑚 is large and the
realizations in the sample are independent. The bootstrap results can
thus be used to investigate possible correlations in the data. Specif-
ically, if the 95% bootstrap confidence interval lies below 2Vtotal,
6

the realizations in the sample may be positively correlated, causing
e.g. systematic clustering in the runoff simulations. We perform this
assessment for both the mean monthly runoff and the change in the
mean monthly runoff.

4. Results

4.1. Changes in the mean annual runoff cycle

The average simulated changes in the mean annual runoff cycle
from 1987–1995 to 1997–2005 are listed in Table 2, annotated with
conclusions from 𝑡-tests testing the significance of the changes. The null
hypothesis of no change is generally rejected except for six instances
scattered among different months and catchments: January in Gaulfoss,
November in Krinsvatn and Oeyungen, September in Trangen, August
and September in Hoeggaas.

In addition, the pattern of changes is similar across the catchments:
there is generally less runoff from October to April in the more recent
time period with the largest decline mostly occurring in April, while
the largest increases are simulated in May or June followed by smaller
increases of runoff in July–September. Furthermore, Fig. 3 shows that
in the catchment Krinsvatn, despite the interannual variation, the sam-
ple averaged monthly runoff seems to have underlying trends across
the simulation period that generally reflects the change values shown
in Table 2. Similar correspondence is found in the other catchments
(results not shown), which means in general the changes are driven by
an evolving process rather than by randomness.
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Fig. 4. Left: the simulated mean annual temperature cycle in the two periods 1987–1995 and 1997–2005 with each boxplot representing 100 values. Right: the simulated changes
n the mean annual cycle of precipitation (not phase differentiated), rainfall (liquid), snowmelt and the resulting runoff across the two periods; for precipitation, each boxplot
epresents 10 values, while for the other hydrological variables each represents 1000 values. Horizontal gray lines are drawn at zero for ease of interpretation. Results are shown
or the catchments Gaulfoss (top) and Krinsvatn (bottom).
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To better understand the changes in the mean runoff for each
onth, we look at the corresponding changes in the hydroclimato-

ogical variables shown in Fig. 4 for two representative catchments.
aulfoss has a continental climate, mountain type runoff regime and

s the largest catchment (3084 km2), whereas Krinsvatn has a maritime
limate, Baltic type regime and is much smaller in size (206 km2). For
he temperature generator, the RCM indicates a negative trend over
he simulation period (Yuan et al., 2019), and therefore on average

lower temperature is obtained in all months for the period 1997–
005 compared to 1987–1995 (see Fig. 4a and c). Precipitation changes
re less consistent between the months and catchments (Fig. 4b and
) because the long-term trends as well as the seasonal variations in
he probability of occurrence and amount on wet days are adjusted
y the RCM-simulated changes which again vary slightly between the
atchments (Yuan et al., 2021).

In the catchment Gaulfoss, the reduced runoff from October to April
s associated with the decreasing rainfall and snowmelt (Fig. 4b), where
he largest runoff decline in April is mostly driven by the snowmelt.
s temperature rises above zero degree in May–June, runoff increases
ainly with snowmelt, changes of which exhibit a wide spread. From

uly to September, the effect of snowmelt diminishes and runoff tends
o vary more closely with rainfall. A similar pattern can be found in the
atchment Krinsvatn, while the key difference is that Krinsvatn has a
armer climate. Temperature rises above zero during April (Fig. 4c)
hich triggers an earlier snowmelt than Gaulfoss, causing a larger
mount of snowmelt in May with relatively less snowpack left in June,
nd therefore the largest increase of runoff is in May (Fig. 4d). We
ound that the runoff changes in the other catchments are similarly
elated to the changes in rainfall and snowmelt (not shown). Effects
f warming on snowmelt flood timing and intensity, as well as rainfall
overned changes in autumn discharge are widely discussed based on
7

rojections over a longer lead time in the future (e.g., Seiller and Anctil,
014; Lafaysse et al., 2014).

.2. Sources of variability in simulated runoff

ANOVA results on the variability in the simulated mean annual
unoff cycle for the periods 1987–1995 and 1997–2005 are shown in
ig. 5 for the two catchments Gaulfoss and Krinsvatn. Overall, the
otal variability varies substantially between calendar months, it is
ighest around the snowmelt season in spring, followed by autumn and
ummer, and lowest in February. That is, the physical mechanisms of
nowmelt and rainfall high flows are more sensitive to climate vari-
bility than the more inertial low flow generation mechanisms (Gelfan
t al., 2015). The highest mean runoff in May–June (cf. Fig. 2) is
ssociated mainly with snowmelt, the amount of which is highly un-
ertain due to uncertainty in temperature changes in that month, as
ell as changes in snowpack volume which has been adjusted by the

emperature and precipitation from previous months until the onset of
nowmelt. Therefore, the runoff variability in May–June has compa-
ably large contributions from both temperature and precipitation, as
ell as other, unexplained variability.

Sources of variability follow a clear seasonal pattern. Variability in
emperature is a major source of overall variability in runoff during
nowmelt season and in early spring/late autumn when temperatures
bove or below freezing cause precipitation to fall as rain or snow,
espectively. The former echos the findings of Dobler et al. (2012)
hat the spread of temperature projections by different GCMs leads
o uncertain projections of winter and spring runoff. During summer
nd early autumn, rainfall becomes the primary source of runoff and
ariability in runoff is thus tightly linked to that in precipitation. The
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Fig. 5. Sample variance of the simulated mean annual runoff cycles analyzed using ANOVA for the two periods 1987–1995 (left) and 1997–2005 (right). The plots show total
variability (Vtotal; red lines), the variability due to temperature simulations (VT; teal lines) and precipitation simulations (VP; violet lines), and the unexplained variability (VE;
green lines). Results are shown for the catchments Gaulfoss (top) and Krinsvatn (bottom). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
unexplained variability is generally low compared to the other two
factors.

As Fig. 5 shows, there are substantial changes in the total variability
between the two time periods in Gaulfoss, represented by a large
increase in May due to the temperature simulations and a smaller
increase in June contributed mostly by the precipitation simulations. By
contrast, the seasonal pattern in Krinsvatn seems more consistent across
the two time periods, except for increases in June and September.
In both catchments, the low variability in February–March further
decreases. The results shown here and found in the other catchments
(not shown) suggest that natural variability and the underlying sources
may vary somewhat between the two time periods.

To better understand the changes in the variability over the two
time periods, interannual variation of the variability in the annual
runoff cycle at Krinsvatn is shown in Fig. 6. For most months, the
total variability varies across the years without showing an apparent
trend, which is in line with the results shown in Fig. 5. However,
the increasing trend in June and September as well as the decreasing
trend in February and March seem to have good correspondence with
the changes found in Fig. 5. In addition, trends in the individual
sources of variability match the changes shown in Fig. 5, for instance
the increasing dominance of temperature in April and the increased
variability due to both temperature and precipitation in June.

A distinct feature shown in Fig. 6 is that the variability in the
simulations can be very high in October for individual years, although
the variability in the decadal mean runoff in October is much lower
than that for May (cf. Fig. 5). This is because the average variability
is higher in May. In the other Baltic-type catchment Oeyungen and
8

the catchments with a transition-type runoff regime, the simulated
runoff variability in August–October fluctuates substantially between
the years. It can be as high as the variability in April but always lower
than variability in the snowmelt high flow season (results not shown).

Variability in the simulated changes in the mean annual runoff cycle
from 1987–1995 to 1997–2005 are shown in Fig. 7 for the two catch-
ments Gaulfoss and Krinsvatn. The patterns in variability correspond
well with the patterns shown in Fig. 4. Note that the total variability
in the simulated changes roughly corresponds to the sum of the total
variability over the two time periods, cf. Fig. 5. This indicates that there
is a low correlation between the mean runoff values of the two time
periods, and stresses that ignoring the local-scale internal variability
has a compound effect when projected changes are considered rather
than projected values.

4.3. Assessment of model assumptions

Fig. 8 shows the results of the bootstrap procedure described in
Section 3.2.3 to assess model assumptions of independent simulations
of runoff. The results show that the sample standard deviation

√

Vtotal
of the ANOVA procedure given in Eq. (8) and the standard deviation
estimate

√

V𝐷 based on a set of pairwise differences given in Eq. (9)
possess identical seasonal patterns. Furthermore, the ratio between
the two measures is generally close to

√

2, the expected value for
independent simulations.

Specifically, the 95% bootstrap confidence interval for
√

V𝐷 in-
cludes

√

2Vtotal in all months for Gaulfoss (see Fig. 8a and b). For
Krinsvatn, the confidence interval is slightly lower than the expected
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Fig. 6. Interannual variation of the variability in the annual runoff cycle over the period 1987–2005 for the catchment Krinsvatn. For each calendar month, the total variability
n the monthly runoff for each year as measured by the sample variance (Vtotal; red lines) is decomposed using ANOVA into the variability due to temperature simulations (VT;
eal lines) and precipitation simulations (VP; violet lines), and the unexplained variability (VE; green lines). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
Fig. 7. Total variability in the simulated changes from 1987–1995 to 1997–2005 in mean monthly runoff as measured by the sample variance (Vtotal; red line), decomposed using
ANOVA into the variability due to temperature simulations (VT; teal line) and precipitation simulations (VP; violet line), and the unexplained variability (VE; green line). Results
are shown for the catchments Gaulfoss and Krinsvatn. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
value in July, September and October for the period 1987–1995
(Fig. 8d) and August and September for 1997–2005 (Fig. 8e). We found
that except for the catchment Trangen (E), the confidence interval
is slightly below the expected value in individual months typically
between July and October (not shown), which coincides with the
months exhibiting a pattern of clustering in Fig. 2. As indicated by
the ANOVA results, the mean runoff of these months probably cluster
around the 10 precipitation simulations. This coincides with the results
of Fig. 5 that the total variability in the mean monthly runoff during
this time of the year is largely dominated by the variability in the
precipitation simulations.
9

The bootstrap procedure was additionally applied to the sample
of changes in the mean monthly runoff. As shown in Fig. 8c and f,
there does not seem to be significant correlations, apart from August
in Krinsvatn. We found that in four of the nine catchments (A, E, F
and I) no month tends to have correlated changes, whereas for the
other catchments, positive correlations may be found typically between
August and October (not shown). The effects of correlations in the
mean monthly runoff across different simulations are thus somewhat
mitigated by considering change in runoff rather than runoff itself.
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Fig. 8. Bootstrap results to assess model assumptions of independent simulations of runoff: 95% bootstrap confidence interval for the sample standard deviation
√

V𝐷 of Eq. (9)
(gray bars), the sample standard deviation

√

Vtotal of Eq. (8) (dotted lines) and
√

2Vtotal (solid lines), see Section 3.2.3 for details. Results are shown for the catchments Gaulfoss
(top row) and Krinsvatn (bottom row), for the mean monthly runoff in 1987–1995 (left column) and 1997–2005 (middle column), and for the change in mean monthly runoff
between the two time periods (right column).
5. Discussion

5.1. Parametrization of hydrological processes in the HBV-model

The simple structure of the parameter parsimonious HBV-model is
an advantage in the sense that parameters are more clearly identified,
and the problem of parameter equifinality is reduced (Perrin et al.,
2001; Abebe et al., 2010; Poulin et al., 2011). However, there are
some limitations with simple models. If atmospheric processes such
as wind speed, radiation and humidity under climate change has a
strong impact on some processes, it may be leading to model pa-
rameters not being valid under non-stationary conditions (Beldring
et al., 2008; Poulin et al., 2011). As an example, the temperature
index approach used for estimating potential evapotranspiration may
exaggerate the increase in evaporation in the future (Beldring et al.,
2008). A similar argument could be used for snowmelt since the main
atmospheric processes determining this process are radiation, wind
speed and humidity (Dingman, 2015), whereas the HBV-model uses a
temperature index approach in this case as well. Hydrological models
with physically based equations could potentially have the possibility
to identify changes in the significance of different processes, but on
the other hand the lack of ability to identify correct parameter values
for the equations describing the hydrological processes limits this pos-
sibility, in particular for sub-surface processes like soil moisture and
groundwater.

5.2. Significance testing

The results of the significance tests indicated significant changes in
mean monthly runoff from 1987–1995 to 1997–2005 for most months
and catchments. The changes additionally show a similar seasonal
patterns across the different catchments. These are not unexpected
since the climate change information is derived from only one RCM,
10

which in particular predicts a negative trend in temperature over the
study period. Furthermore, the subsequent hydrological simulations
do not introduce additional uncertainty as they are performed using
a single optimized set of parameters. However, such detectable and
consistent changes may not be common and are not expected when
different RCMs, hydrological parameters/models or catchments with
more heterogeneity are involved in a case study. Besides, given the
large sample size here, a small change may likely have statistical sig-
nificance, yet whether such a change has practical significance should be
considered in context, a discussion we consider beyond the scope of the
current paper.

5.3. The ANOVA framework

In this study, the simulated variability is measured by the sample
variance. Applications seeking a variability measure in the same unit
as the variable of interest may find a decomposition of the total
standard deviation more appropriate (e.g., Addor et al., 2014; Lafaysse
et al., 2014). In this case, an equation of the standard deviations may
be derived from Eq. (8) using e.g. a scaling method as proposed in
Appendix B of Hawkins and Sutton (2011).

The full model chain for assessing hydrological impacts of climate
change includes multiple components, each associated with its own
sources of uncertainty. Commonly, some components have fewer levels
than the other, e.g. there may be two post-processing methods applied
to outputs from eight climate models, raising a concern of uneven
representation of different sources in the total uncertainty. To address
this, Bosshard et al. (2013) propose a subsampling method where
components with many levels are downsized to match the size of the
component with fewest levels, and iteratively apply ANOVA on each
subset of the full sample. This provides technical benefits when sample
sizes are restricted, e.g. less than 10 (Bosshard et al., 2013). Here,
there are relatively small computational costs associated with each
additional precipitation or temperature sample, compared to the costs
of increasing the sample size of other components of the full model
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chain. Specifically, the number of simulations for temperature and
precipitation differing by a factor of 10 was chosen so that each of the
stochastic parts in the weather generator is equally represented.

In the current setup, interactions between temperature and precip-
itation cannot be separated from other unexplained variability, since
only one simulation of runoff is obtained for each combination of the
inputs. Throughout the study, we found that the unexplained variability
is significantly smaller than that directly linked to precipitation and
temperature. Nonetheless, interactions between different factors can be
important (Bosshard et al., 2013; Meresa et al., 2021), and in order to
quantify these interactions, the current framework has to be expanded.
One option would be to produce multiple runoff simulations for each
combination of inputs using equally suitable parameter sets in the
hydrological model (e.g. Lawrence, 2020; Meresa et al., 2021). Accord-
ingly, the ANOVA model Eq. (4) would be extended to include both the
main effects and an interaction between temperature and precipitation.
As a result, the sample variance would be decomposed into four parts,
where the unexplained part in Eq. (8) would be replaced by variability
due to the interaction between temperature and precipitation, and the
variability due to the hydrological model parameters.

The ANOVA framework applied here is a fixed effect model, in
the sense that the effects of individual climate variable simulations
are treated as if they were fixed instead of being randomly drawn
from a population distribution. Consequently, the analysis is a finite-
population inference through a variance decomposition of an existing
sample. However, theoretically, the weather generators provide an op-
portunity of generating more realizations if needed, which corresponds
to a superpopulation of effects. Therefore, when there is a need to
consider the uncertainty of having a different set of inputs realiza-
tions, methods of superpopulation inferences (Gelman, 2005) are more
suitable. See also Northrop and Chandler (2014) for an application to
climate projections.

The current analysis is performed for the annual runoff cycle, while
other statistics such as extreme runoff indicators, or other hydro-
logical fluxes and states e.g. actual evapotranspiration, soil moisture
deficits, could be analyzed in a similar manner. While the application
here is focused on climate change impacts on regional hydrology, the
methods provide a general approach to uncertainty investigation for
various time horizons. Other promising applications include seasonal
to decadal water resources prediction on the basis of weather and
climate predictions. The computationally efficient downscaling meth-
ods of temperature and precipitation are particularly useful where
large ensembles are required in order to achieve prediction skill and
a reliable quantification of sources of variability.

6. Conclusions

This paper carries out a study to simulate and analyze uncertainties
in hydrological impact studies that arise from the local-scale internal
variability of the climate. To represent that at the catchment scale,
we simulate multiple sets of gridded daily precipitation and mean
temperature data at 1 km resolution using a weather generator (WG)
approach. The WG uses local information from a high-resolution obser-
vational data product and climate change information from an RCM.
A large set of daily runoff series are then generated based on the
temperature and precipitation simulations using a spatially distributed
hydrological model. The analysis is focused on the annual runoff cycle
of nine catchments in central Norway, with different runoff regimes,
climatic types and areas ranging from 144 to 3084 km2. Significance
ests are applied to assess changes in the mean monthly runoff from
987–1995 to 1997–2005, and sources of variability in the runoff sim-
lations are quantified using analysis of variance (ANOVA) where the
otal variability is decomposed into contributions from the two input
ariables as well as an unexplained component. Model assumptions of
11

ndependence are assessed using a bootstrap procedure.
The change signal in the mean annual runoff cycle is found to be
enerally significant, indicating that the trends imposed on the WG are
ot overwhelmed by the simulated internal variability. Variability in
he runoff simulations is highest in high flow periods, in the snowmelt
eason between April and June, and in autumn for some catchments.
hile the simulated runoff variability in autumn varies substantially

etween the years, the average level of variability is lower than the
nowmelt season. Temperature is the main source of variability in the
older months (November–March), both temperature and precipitation
ontribute to the variability in the snowmelt season, and variability in
uly–October is largely due to that in precipitation. The analysis as-
umes that the individual simulations are independent, even if they may
hare either a precipitation input or a temperature input. An assessment
f this assumption reveals that the simulations are largely independent,
ith some simulations showing a low degree of correlation between
ugust and October when the variability in runoff is largely dominated
y that in precipitation only.

A reliable estimation of the changes in annual runoff cycle and the
ssociated uncertainties can be applied for climate adaptation measures
n water management. For example, hydropower companies will need
o adapt planning to a changed seasonal pattern of runoff volumes
nder a changing climate. In Norway, reservoir operation commonly
eeds to adjust the water levels properly before the snowmelt in order
o avoid the spring flood and also meet requirements for environ-
ental low-flow and many other water use purposes during summer.
delayed, more concentrated snowmelt that is accompanied by an

ncreased level of variability, as simulated for some catchments in our
ase study, may pose challenges such as accommodating to a prolonged
ow-flow period in early spring and dealing with an increased difficulty
n adjusting the water levels such that both the spring flood and
ossible deficits in summer could be avoided.

This study considers variability in runoff simulations caused by the
ocal-scale internal variability in temperature and precipitation. The
esults are in line with findings where the large-scale internal climate
ariability is represented by a multi-member GCM ensemble (Gelfan
t al., 2015) or a GCM/RCM chain Seiller and Anctil (2014). This
ndicates that ignoring the local-scale internal variability may yield an
nderestimation of the overall variability in projections and projected
hanges, which may further affect the adaptation strategies not only
or the changes in future water resources but also for water-related
azards (e.g. Lawrence, 2020; Zhao et al., 2022).
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