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Abstract: The analysis of maritime traffic patterns for safety and security purposes is increasing in
importance and, hence, Vessel Traffic Service operators need efficient and contextualized tools for the
detection of abnormal maritime behavior. Current models lack interpretability and contextualization
of their predictions and are generally not quantitatively evaluated on a large annotated dataset
comprising all expected traffic in a Region of Interest. We propose a model for the detection of
abnormal maritime behaviors that provides the closest behaviors as context to the predictions. The
normalcy model relies on two-step clustering, which is first computed based on the positions of the
vessels and then refined based on their kinematics. We design for each step a similarity measure,
which combined are able to distinguish boats cruising shipping lanes in different directions, but also
vessels with more freedom, such as pilot boats. Our proposed abnormality detection model achieved,
on a large annotated dataset extracted from AIS logs that we publish, an ROC-AUC of 0.79, which is
on a par with State-of-the-Art deep neural networks, while being more computationally efficient and
more interpretable, thanks to the contextualization offered by our two-step clustering.

Keywords: maritime surveillance; vessel traffic service; AIS; maritime traffic patterns; trajectory
clustering; anomaly detection

1. Introduction

According to the International Maritime Organization, international shipping is cur-
rently responsible for 80% of global trade and is the most efficient and cost-effective form of
long-distance transportation [1]. Despite international efforts to combat maritime piracy, it
remains a serious threat to international shipping and is estimated to have a global financial
impact of up to 16 billion dollars annually [2]. Accidents such as collisions or groundings can
lead to the loss of lives, environmental damage, and disruption of trade routes [3,4]. Further-
more, it is estimated that one fifth of all wild-caught fish is caught illegally or not reported,
endangering marine ecosystems and resulting in industry losses upwards of 23.5 billion
dollars [5]. Most recently, the sabotage of the Nord Stream gas pipelines in the Baltic Sea [6]
has raised the issue of territorial protection and protection of key infrastructure assets. These
vulnerabilities in our society highlight the need for maritime security, safety, and threat
assessment, to protect the stability of the global supply chain and key infrastructure.

Real-life maritime laws and regulations are complex. While commercial vessels such
as cargo and tankers mainly follow well-defined shipping lanes with near-constant speeds,
other ship types, such as fishing vessels and sailing ships, have fewer constraints and more
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complex behaviors. Maritime security requires extensive knowledge of maritime traffic
patterns. Research in this field has gained momentum over the past decade, thanks to the
advent of the Automatic Identification System (AIS) [7]. The AIS is compulsory for all vessels
that exceed a certain tonnage, and it provides hundreds of millions of messages every day
on a global scale [8]. The data include static information, such as the unique identifier of
the ships (MMSI), size, and dynamic information such as Global Positioning System (GPS)
coordinates, speed, course, etc. The AIS forms the basis for modern maritime trajectory
data collection, which allows one to model navigational characteristics and rules. The wide
variety of possible maritime behaviors means that the most common method of analysis
remains clustering, either of individual AIS updates [9,10] or of trajectories compared using
specific similarity measures [11,12].

Dense and critical maritime areas are constantly monitored, but the ever-increasing
traffic and amount of data call for automatic decision support for Vessel Traffic Service
(VTS) operators. In practice, whether or not an event is abnormal is a combination of
several factors: the location, the speed, the course, the type of vessel, and the time of
day/week/year, etc. For instance, in specific locations, pilot boats steam between harbors
and commercial traffic in the shipping lanes, but in other locations or for different ship
types, this type of behavior may be highly unexpected. Similarly, it can be expected that
diving vessels perform frequent starts or stops to support divers in the water, but if this
behavior occurs near major shipping lanes, it can be considered abnormal unless permission
has been granted. Automatic detection of abnormal maritime behaviors is thus a difficult,
ill-defined problem that requires the disentanglement of multiple possible explanatory
factors, of which location, kinematic behavior, and type of ship are the most important.

Previous works have shown that shipping lanes can be identified using only a posi-
tional clustering of vessels [9,11,13]. However, to disentangle traffic not constrained to major
shipping lanes, the exact route is less important than the local kinematic behavior—that
is, changes in speed and course [10,14]. Recently, deep neural network models have been
suggested for abnormality detection of multiple ship types [13,15]. These models classify
as anomalies the trajectories for which they fail to predict the future position or to make
an adequate reconstruction. The main drawback here is the lack of interpretability as to
why the networks fail to predict/reconstruct the correct trajectory. According to Riveiro
et al. and Stach et al. [16,17], abnormality detection models should offer a large degree
of interpretability, to accommodate any skepticism VTS operators may have, and they
should promote human–machine interaction [16,17]. At the same time, recent research on
dynamical decision making indicates that automated systems for decision making tend to
perform poorly, as human operators simply copy the decision of the automated system [18].
This causes a degradation of operator experience and makes human operators less likely to
take over manual control when needed. Furthermore, many previous studies simplify their
data, to focus on a restricted Region of Interest (ROI) and on a single aspect of maritime
traffic—for instance, the behavior of commercial merchant traffic [19] or port entry/exit
ways [11,12,20]. However, such restrictions hinder the evaluation of the practical viability
of the methods. Stach et al. [17] further highlighted the need for standardized datasets
annotated with maritime abnormalities, to bridge the gap between research and practical
implementation in VTS operations.

A precise definition of what constitutes a maritime abnormality is difficult to state.
To this day, however, many maritime surveillance operations are conducted manually by
military or law enforcement. Thus, the reasons for flagging a behavior as abnormal are
often classified information, and the specific type of behavior that interests operators is not
fully known. For this reason, obtaining a large list of annotated maritime trajectories for
training or evaluation is often impossible. Previous works [21,22] have used simulated or
self-annotated labels based on extreme values. However, extreme values might not define
abnormal trajectories of operational interest for surveillance operators, who are ultimately
interested in deterring illegal or dangerous activities, such as the earlier examples. As for
unsupervised methods, the most common way to evaluate them is through qualitative
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examples [15,23,24]. This form of verification illustrates the potential type of abnormal
behavior that could be flagged. However, it completely negates the issue of false negatives,
which in a military or law enforcement operation may be of greater importance. Ideally,
abnormality detection algorithms would be evaluated on datasets with known behavior
of operational interest to operators. These datasets should be annotated by subject matter
experts, and the annotations should reflect the degree to which the operators find the
behavior suspicious or otherwise abnormal.

In this paper, we aim to overcome two gaps in the current research on vessel traffic
abnormality detection: the lack of interpretability and contextualization of the predictions
and the size and quality of the datasets used for evaluation. First, we introduce an abnor-
mality detection algorithm that provides an explanation of the closest expected/normal
behaviors. The normalcy model is learned using a two-step clustering method that disen-
tangles positional and kinematic behavior. The training is performed on historical AIS data
and consists of two stages: in the first step, a clustering is learned based on the positional
data of the trajectories; in the second step, each positional cluster is refined on the basis
of the kinematics of its trajectories—that is, speed and course. The final clustering of the
whole data is thus a summary of the typical behavioral patterns in the area. Concurrently, a
Local Outlier Factor (LOF) [25] is trained on each positional cluster, also based on the kine-
matic data, to detect trajectories with abnormal speed and course sequences. In a practical
scenario, a new trajectory is first assigned to one of the positional clusters. If flagged as
abnormal, using an LOF, it is brought to the attention of an operator who can further assess
the situation, using the kinematic clustering of the positional cluster as support.

Next, we present and use for the evaluation two large hand-annotated AIS traffic
datasets for abnormal maritime behavior detection that we have created, based on contex-
tual knowledge of the environment and news events. These datasets contain more than
30,000 trajectories from 11 types of vessels and are expected to be of operational interest to
operators. Labeled abnormalities cover a full day and include a collision accident, Search
and Rescue activity, and deviating commercial traffic. The collision accident is by itself an
important test case, but may also serve as a proxy evaluation method for the detection of
rendezvous situations that are of interest in finding smuggling events. Similarly, Search
and Rescue activity is always of interest, especially as similar behavioral patterns may
be seen in more nefarious activities like smuggling and illegal mapping of the seabed
or seafloor infrastructure [26]. For the sake of reproducibility and to foster research on
methods suitable to a real-world scale, we provide public access to the datasets. Further
details are given in Section 4.1.

We summarize our contributions as follows:

• We present a novel method for detecting abnormal maritime trajectories based on
two-step clustering, which also provides a contextual decision support tool to help a
VTS operator make the final decision.

• We design positional and kinematic similarity measures that focus on different dimen-
sions of maritime trajectories.

• We provide evidence that a multi-step clustering approach can disentangle positional
and kinematic information, resulting in a better description of behavioral patterns in a
large ROI.

• We provide public access to datasets of preprocessed maritime trajectories in regions
of Danish waters, including annotations during a Search and Rescue event.

The paper is organized as follows. In Section 2, we provide an overview of the related
work within trajectory clustering. In Section 3, we present our proposed two-step clustering.
In Section 4, we give a detailed description of the maritime traffic datasets that we publish
and that we also use to show the ability of our proposed method to disentangle maritime
traffic patterns, as well as to detect real-life abnormal trajectories from a ship collision.
Finally, we present our conclusion in Section 5.
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2. Related Work

Clustering of maritime trajectories has been widely employed to extract traffic pat-
terns and find abnormal trajectories. The type of behavior discovered by clustering spatio-
temporal trajectories depends heavily on the chosen similarity measure. Laxhammar et al. [27]
suggested using the maximum synchronous Euclidean distance between each pair of co-
inciding points along two trajectories of the same length. The requirements of equal tra-
jectory length and synchronous comparison can be relaxed by using either the Hausdorff
distance [12,19,28], Dynamic Time Warping (DTW) [11,29], or the Longest Common Subse-
quence (LCSS) [24] to measure trajectory similarity. The Hausdorff distance is independent
of the time component, which can make trajectories following the same route in oppo-
site directions indistinguishable. In addition, from the clusters reported in [19], we note
that the Hausdorff distance may assign a large similarity to significantly different trajec-
tories. Additionally, both of these methods have quadratic time complexity, and several
works, therefore, suggest a compression using the Douglas–Peucker (DP) algorithm [30].
Klaas et al. [29] proposed a two-stage DP algorithm: first, reducing the trajectory based on
the speed time series and, secondly, based on the position. This two-stage approach was
found to better retain periods of acceleration, such as stops.

Several different clustering algorithms have been applied to clustering of trajectories.
Methods such as K-means [29] and K-medoids [28] have been utilized in collaboration
with different similarity measures. However, density-based clustering techniques have
long been the predominant approach to data mining within maritime trajectory analysis.
Pallotta et al. [31] proposed the widely used TREAD method, to cluster trajectories into
traffic routes, which can then be used for anomaly detection and trajectory prediction.
TREAD is a point-based method that extracts the coordinates of new entries, exits, and
stops within the ROI. These points are clustered using DBSCAN [32], to form waypoints in
which ships enter, exit, or stop within the ROI. A route between waypoints is then formed
whenever a certain number of transitions between them have been observed. Several
works [11,12,19,24] have combined the idea of a similarity measure and density-based
clustering. First, trajectories are simplified using the DP algorithm. The similarities are then
computed using the Hausdorff distance, DTW, or LCSS, before being clustered by DBSCAN.
Wang et al. [19] considered a hierarchical search over the hyperparameters of DBSCAN,
which allowed for groups with different densities, and helped to find clusters in sparsely
populated geographical regions.

Recently, trajectory similarities based on deep learning have been suggested. Murray
et al. [13] clustered the latent encodings of a Recurrent Variational Autoencoder (RVAE)
trained for trajectory reconstruction using hierarchical DBSCAN and found clusters corre-
sponding to the major shipping lanes. The clusters were then used to train neural networks
to predict the future position. Luo et al. [33] proposed a graph-based trajectory contrastive
learning framework. A Graph Neural Network encoder was trained, using contrastive learn-
ing with five different trajectory augmentations. The similarity of two trajectories could then
be computed by their distances in the latent space. The method was evaluated by downsam-
pling random trajectories from the training set as test trajectories. The proposed similarity
measure was found to perform better than traditional trajectory distance measures.

The abovementioned approaches only considered the positional input, yielding clus-
ters that mostly corresponded to the primary shipping lanes. Zhen et al. [28] introduced
the difference of the average course in their similarity measure, and Liu et al. [10] extended
the DBSCAN clustering model, to consider not only the geographical distance of the co-
ordinates, but also the difference in speed and course. This allowed them to distinguish
between shipping lanes in opposite directions and to find speed differences within the
main shipping lanes. However, the work was limited to small geographical areas and a
limited number of ship types. Li et al. [23] suggested a similar extension to the DBCSAN
algorithm but split the speed and course differences into two different clustering models.

Knowledge about maritime traffic patterns is useful for detecting abnormal activity.
Widyantara et al. [24] directly reported outliers from the DBSCAN clustering, but several
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clustering methods have been extended with a detection step. Often, this step includes
knowledge about the kinematic behavior. Pallotta et al. [14] proposed a two-stage anomaly
detection scheme, using the routes extracted by TREAD. First, using only the positional
inputs, a trajectory was associated with a route. Afterwards, kinematic outliers were found,
by comparing the speed and course to the average behavior of the route. Liu et al. [10]
proposed to divide the clusters into smaller geographical regions and compute the average
kinematic values for each split. These values would then be used to detect abnormalities [20].
Zhao et al. and Li et al. [23,34] used normal trajectories determined from DBSCAN clusters
to train deep neural networks for trajectory prediction. Abnormalities were then detected,
based on the prediction error.

Recently, an abnormality detection model based purely on deep learning has been
suggested. Hu et al. [21] suggested an ensemble of a Variational LSTM AutoEncoder and
a Graph Variational AutoEncoder. Each ensemble member was trained to reconstruct
the input trajectory, and the reconstruction errors were then combined, to make a final
binary prediction of the abnormality. Liu et al. [22] self-annotated training data based on
extreme position, speed, or course values and trained a deep neural network to classify
abnormalities. Nguyen et al. [15] suggested a Variational Recurrent Neural Network
(VRNN) for the detection of abnormalities based on trajectory reconstructions. In this work,
Nguyen et al. also suggested an A-Contrario detection methodology, which was supposed
to account for regional differences in reconstruction accuracy. Although the results reported
using VRNN looked promising, our feedback from VTS operators mentioned the lack of
explainability as a key limitation for operational use. The lack of explainability of decision
support tools has been identified as a key issue for the automated detection of abnormal
maritime behavior in surveys by Riveiro et al. and Stach et al. [16,17].

Table 1 summarizes the normalcy models and the limitations of these normalcy models
utilized by the previous research discussed. We present a novel abnormality detection
algorithm based on a positional clustering followed by a kinematic clustering of historical
maritime trajectories. We rely on an efficient positional similarity measure, which allows us
to process a large, complex dataset of maritime trajectories representative of real-life traffic
in a reasonable time. The abnormality detection is made with respect to the kinematic
of the vessel, for which we design an alternative similarity measure based on DTW. The
latter is able to distinguish behaviors within the same positional clustering, giving VTS
operators a clear summary of normal behavior when assessing the suggestion of our
abnormality detector.

Table 1. Summary of the normalcy models and the limitations of these normalcy models utilized by
the previous research.

Normalcy Model Limitation of Normalcy Model Works

Clustering of individual updates Applied on restricted datasets [20]
Lack description of kinematic behavior [9,14]

Clustering of trajectory similarities Applied on restricted datasets [12,19,28]
Lack description of kinematic behavior [12,19,24,27,29,33]

Deep learning methods Interpretability [15,21–23,33,34]

3. Methodology

In this section, we first discuss similarity measures for trajectories and then introduce
our abnormality detection algorithm.

3.1. Notations

An AIS trajectory A of length TA ∈ N is a four-dimensional time series A =
(
a1, . . . , aTA

)
,

where at = (lont, latt, st, ct), with each dimension representing, respectively, the longitude,
latitude, speed, and course of the vessel as recorded in its AIS message at time t. For
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legibility, the timestamp t is used indiscernibly as an index of a variable, such that A(t) = at,
or s(t) = st.

Throughout the section, we consider two AIS trajectories A and B of time duration
TA and TB, and two timestamps t ∈ {0, . . . , TA} and τ ∈ {0, . . . , TB}. Also, we assume that
the trajectories are regularly sampled without missing data. The function d is a generic
distance on R or R2, depending on the context.

3.2. Similarity Measures

In the following, we discuss three commonly used trajectory similarity measures: the
Hausdorff distance, the average Haversine distance, and Dynamic Time Warping (DTW).
We define these similarity measures without specifying which dimensions of the time series
are used (positional or kinematics), as this depends on the use case. We also propose a
variant of DTW tailored to kinematic data.

3.2.1. Hausdorff

The Hausdorff distance [35] between two trajectories corresponds to the maximum
smallest distance realized by any pair of points in each one of the trajectories:

Hausdorff(A, B; d) = max
t∈[0,TA−1]

min
τ∈[0,TB−1]

d
(

A(t), B(τ)
)

. (1)

The computations require a comparison of all possible pairs of points, resulting in
quadratic time complexity. Furthermore, the Hausdorff distance ignores the time compo-
nent. This means that ships along parallel shipping lanes sailing in opposite directions are
not distinguishable. Such a situation is studied in [19].

3.2.2. Average Haversine

The quadratic time complexity and the issues mentioned above make the Hausdorff
distance unsuitable for measuring the similarity of many long and complex sequences of
geographical coordinates. On the other hand, the Average Haversine distance (AH) proposed
in [36] is able to compare the positional evolution of the AIS trajectories in linear time, with
respect to the length of the trajectories. It is defined as a continuous distance measure, but it
can be approximated using the trapezoidal rule and assuming a regular sampling:

AH(A, B; dH) =
T−1

∑
t=0

dH
(

A(t), B(t)
)
+ dH

(
A(t + 1), B(t + 1)

)
2T

, (2)

where T = min(TA, TB) and dH is the Haversine distance [36]. This similarity measure
computes the geographical distance between the trajectory points one by one in a linear
fashion until the length of the shortest trajectory is reached. This means that the measure
places an increased weight on the beginning of the trajectories. Thus, we expect the measure
to be able to separate trajectories based on their starting location. This is ideal in a real-time
operational setting when observing new trajectories, as even short trajectories can very
quickly be classified into a subset of historical trajectories with similar behavior.

3.2.3. Dynamic Time Warping

Dynamic Time Warping minimizes the pair-wise distance by re-indexing (alignment
of) the data points in the trajectories, according to certain rules. It can be defined as follows:

DTW(A, B; d) = min
π∈Π(TA ,TB)

 ∑
(i,j)∈π

d
(

A(ti), B(tj)
), (3)

where Π(TA, TB) is the set of all possible alignments that are sequenced pairs of indices
(i, j) ∈ [0, TA − 1]× [0, TB − 1] satisfying three constraints: (1) the beginning and end of the
time series must be matched; (2) the sequence must be monotonically increasing in i and j;
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(3) all indices i and j must appear at least once. These ensure that the sequences start and
end together and that each point on either sequence is mapped onto at least one point of
the other sequence without these mappings crossing in time.

As DTW processes pairs of indices, it also has a quadratic time complexity. The DTW
alignment may overestimate the distance of trajectories with similar behavior if this behavior
is spread over a large area. For example, consider two trajectories with the same starting
point and sailing along the same direction as illustrated in Figure 1. At one point, trajectory
A makes a 30 degree turn and continues in this direction, moving away from trajectory
B. Later, trajectory B makes a similar 30 degree turn and continues parallel to trajectory
A. Both vessels return to their initial course some time later, and the trajectories terminate
at the same point. As these two trajectories have the same origin and terminal location
and have similar behaviors throughout the journey, we would expect the distance between
them to be very small. However, their distance, calculated by DTW on the sequence of
geographical coordinates, may be significant. The re-indexing procedure of DTW aligns
the course changes between the trajectories. However, due to the spatial nature of the
geographical coordinates, DTW calculates the geographical distance between the location
where the trajectories changed course. If we instead were to use the time series of the
measured angles towards true north, the DTW distance would calculate the difference of the
course values. As these values are the same before and after the changes, the DTW distance
between the two trajectories would be zero. Using the time series data, we remove the spatial
dependence, and DTW can properly calculate the similarity of the course after aligning the
changes. Therefore, DTW is a good candidate as the building block of a similarity measure
for course and speed time series.

(a) DTW distance: 45.38 (b) DTW distance: 0.00

Figure 1. (a) Two trajectories with the same origin and terminal point and similar behaviors through-
out the journey may obtain a large distance calculated by DTW; (b) however, the course sequences of
the two trajectories may be warped perfectly onto each other and have zero distance between them
calculated by DTW.

3.2.4. Kinematic DTW

Following the previous discussion, we propose a variation of DTW for kinematic data,
referred to as Dkin. The measure is defined as the sum of the DTW of the time series of the
speed and of the DTW of the course time series:

Dkin(A, B) = DTW(sA, sB; dspeed) + DTW(cA, cB; dcourse), (4)

where sA, sB and cA, cB are, respectively, the speed and course sequences of trajectories A
and B. The differences in speed and course at each timestamp are measured, respectively,
by dspeed and dcourse, which correspond to the standardized absolute difference of the speed
and the normalized angular difference in radians, respectively:

dspeed(x, y) =
|x− y|

Σ
, (5)
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dcourse(x, y) =
1
π
·
{
|x− y| if |x− y| ≤ π,
π − (|x− y| mod π) otherwise,

(6)

where Σ is the standard deviation of the speed computed empirically from the speed time
series sA and sB.

3.3. Two-Step Clustering for Abnormality Detection

Our intention was to design an abnormality detection algorithm to assist VTS opera-
tors, which may serve as a contextual decision support tool and let them make the final
decision based on the contextual information provided by the algorithm itself. The reason
for a trajectory to be flagged as abnormal is that it is either similar to other abnormal trajec-
tories or that it diverges from the most similar non-abnormal trajectories. It is important to
state that the notion of the behavior of a vessel is not limited to a sequence of locations, but
also includes its speed and course. The similarity measure involved, to compare trajectories,
thus needs to take into account both the spatial and the temporal information. Note that the
assignment of kinematic clusters gives a context to the prediction of the LOF, as it shows
the most similar trajectories. Yet it is not an explanation, as the kinematic clustering is not
used by the detector.

We modeled this line of thought as a two-step algorithm:

1. Assign an input trajectory to a cluster, based on its positional dimensions (latitude,
longitude, and time).

2. Decide on abnormality, based on the kinematic dimension (speed and course), and
provide a context to the decision with the most similar trajectories.

Figure 2 shows the flow of our proposed two-step method.
(1) Positional Clustering: The first step required clustering of a historical database

and a classifier, using a fast-to-compute similarity measure, to ensure the reactivity of the
system. Hence, the Hausdorff and DTW were excluded. Also, both measures either distort
or simply disregard the time component, which is at odds with the rationale exposed above.
We chose to rely, both for clustering and classifying, on the average Haversine distance
(Equation (2)), which has a linear complexity and compares synchronous positions. The
clustering was a hierarchical clustering with average linkage which, once computed, allowed
us to easily change the number of clusters and, thus, isolate outliers. During inference,
cluster assignment was decided by a K-Nearest Neighbors (KNN) classifier with k = 3
trained on the clustering.

(2a) Abnormality Detection: As we did not have access to a large set of labels, we made
the assumption that none of the historical trajectories were abnormal. Therefore, none of
the positional clusters were considered as abnormal, and abnormality was defined as a
divergence from the training set. More precisely, we defined it as a divergence with respect
to the trajectories within the assigned positional cluster. As outlier detection, we employed
the Local Outlier Factor (LOF) [25] and Dkin (Equation (4)) as a similarity measure. Before
calculating Dkin, we compressed the trajectories, using the two-stage DP compression [29].
As the trajectory had been assigned to a cluster based on its positional information, it could
not be an outlier purely based on these data. The divergence needed to be measured on the
basis of another aspect of the behavior, namely the variations of the kinematics (speed and
course), which could be understood as the derivative of the positional data.

The LOF compares the density of the local neighborhood of a point to that of its KNN.
If the density of a point is significantly lower than its neighbors, the point is flagged as
an outlier. Following the discussion in [27], we set k = 5 nearest neighbors for the LOF
algorithm in our experiments. In practice, we did not see large changes in the number
of outliers detected when varying that number. However, we recommend a low value to
capture information only from the local neighborhood. The LOF also has a hyperparameter,
called contamination, related to the expected percentage of outliers. As we expect only a
small number of outliers, we recommend again to use small values for the hyperparameter.
See Section 4.6.2 for an ablation study.
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(2b) Kinematic Clustering: The explanation or context of the prediction of the LOF
consists of the most similar historical trajectories. Again, with the aim of speeding up
calculations, these trajectories will be extracted from a precomputed hierarchical clustering
with average linkage of the trajectories of the assigned positional cluster, using Dkin as a
similarity measure. The cluster assignment is decided by a KNN classifier with k = 3 using
Dkin and trained on that kinematic clustering.

Figure 2. Flowmap of the training and inference of our proposed two-step abnormality detector. In
the training phase, the positional distance matrix based on the Haversine distance is computed for
the preprocessed training dataset. The matrix is then used to train a hierarchical clustering base
and a KNN classifier for that clustering. For each positional cluster, the kinematic similarity matrix
based on Dkin is computed and then used to train an LOF (red), a hierarchical clustering (green),
and a KNN classifier for that clustering. In the inference phase, after preprocessing, the distances
between the input trajectory and the training data are used by the positional classifier (blue) to assign
a position cluster. In the second step, the kinematic similarities to the trajectories within the same
cluster are computed and then used by, on the one hand, the LOF to determine abnormality (red) and,
on the other hand, by the kinematic classifier to assign a kinematic cluster (green). The output is thus
double: the answer of the LOF and a context, in the form of the trajectories of the kinematic cluster.

4. Experimental Results

In this section, we evaluate the choice of similarity measure and of algorithm for
each positional and kinematic clustering. We also compare the final clustering to that of
a single-step algorithm. Finally, we discuss the abnormality detection capabilities of our
approach and compare it to State-of-the-Art neural-network-based baselines.

4.1. Datasets

For this work, we built two datasets of AIS data from Danish waters that cover large
ROIs and contain various types of vessels with different priorities and expected behavior
patterns. Both datasets are available for public use, to facilitate reproducibility and to give
researchers the ability to evaluate their proposed models on a complex dataset represen-
tative of a real-world setting [37] (datasets available at https://data.dtu.dk/collections/
AIS_Trajectories_from_Danish_Waters_for_Abnormal_Behavior_Detection/6287841. Ac-
cessed on 20 October 2023). The complete AIS data from all Danish waters are available
publicly [38]; however, minor differences between the two sources may occur.

The first dataset covers a rectangular ROI covering the island of Sjælland, bounded
by (54.4◦ N, 10.5◦ E) to (56.4◦ N, 13.5◦ E). The data were collected during November 2021
and contain 18.738 of trajectories from 11 different types of ships, ranging from commercial
cargo and tanker ships to private sailing and fishing boats. The second dataset covers a
rectangular ROI around Bornholm Island bounded by (54.5◦ N, 13◦ E) to (56◦ N, 16◦ E). The
data were collected during December 2021 and contain 12.591 of trajectories from 8 different
types of ships. The speed was limited to 20 m/s, and updates with higher speeds were
discarded. For both datasets, if the time interval between two successive AIS messages
exceeded 15 min, the trajectory was split into two contiguous trajectories. Trajectories
shorter than 10 min were discarded and trajectories exceeding 12 h were divided into
smaller trajectories, each between 10 min and 12 h. All trajectories were resampled every

https://data.dtu.dk/collections/AIS_Trajectories_from_Danish_Waters_for_Abnormal_Behavior_Detection/6287841
https://data.dtu.dk/collections/AIS_Trajectories_from_Danish_Waters_for_Abnormal_Behavior_Detection/6287841
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120 s, using linear interpolation. Table 2 shows an example of the information associated
with each extracted trajectory.

Table 2. Example information associated with a trajectory from a passenger ship.

MMSI Timestamp Latitude Longitude Speed Course

211149000 2021-11-29 22:47:39 54.40 12.16 7.13 25.83
211149000 2021-11-29 22:49:39 54.41 12.17 7.12 27.30
211149000 2021-11-29 22:51:39 54.42 12.18 7.15 27.05
211149000 2021-11-29 22:53:39 54.42 12.18 7.16 27.40

...
...

...
...

...
...

211149000 2021-11-30 09:45:39 54.41 11.91 8.16 122.16
211149000 2021-11-30 09:47:39 54.40 11.90 8.09 233.83

We used the Sjælland data to evaluate the proposed two-step clustering algorithm.
The entire dataset was used for training. We evaluated the proposed automated anomaly
detection algorithm on the Bornholm dataset. Data from 13 December 2021 was withheld
as a test set, the rest serving as a training set. On that day, a collision accident between
two ships occurred, causing several abnormal trajectories. Trajectories from this day were
manually labeled, resulting in 25 abnormalities out of 521 trajectories. In addition to the
colliding vessels, the abnormal trajectories corresponded to commercial traffic, which had
to deviate from the planned course, for Search-and-Rescue and law-enforcement vessels
responding to the accident, and to any other vessel taking part in the search for the two
missing sailors.

4.2. Experimental Setting

Similarity measure baselines include the Hausdorff distance and DTW, both based on
Haversine distance, as suggested in [11,12]. In terms of the clustering algorithm, we com-
pared hierarchical clustering and DBSCAN. The linkage distance threshold for hierarchical
clustering was decided using the Kneedles algorithm [39], to select the number of clusters.
The hyperparameters of the DBSCAN were tuned by creating candidate lists of minimum
distances and samples, as suggested in [12]. The optimal value of these candidates was
then determined, using the Kneedles algorithm [39]. We have provided quantitative, quali-
tative, and runtime analyses of the clustering. We quantitatively evaluated the clusterings,
using the Silhouette score [40]. The qualitative evaluation was performed by manually
gauging the similarity of the behaviors of the extracted clusters while also accounting for
the purpose of the two steps. In the positional clustering, the primary purpose was to be
a fast clustering of all the trajectories into groups, in which similar behaviors might be
discovered. As such, we were looking for trajectories that originated in the same area and
shared some common positional evolution. In the kinematic clustering, we were interested
in clusters describing uniquely different maritime behavior, i.e., we wished to identify dif-
ferent behavioral patterns across clusters. The baselines for abnormality detection included
the State-of-the-Art VRNN [15] and RVAE [13] deep learning architectures. We measured
the performance of the detectors, using the area under the receiver operating characteristic
(AUC). The code was implemented in Python 3.8, using standard libraries, and it ran on an
Intel Xeon Processor 2660v3. Similarity calculations were parallelized across eight cores.

4.3. Positional Clustering

The positional clustering is the basis for the outlier detector and the kinetic clustering.
It needs, thus, to separate well-different behaviors, e.g., by distinguishing vessels traveling
along shipping lanes in different directions. We considered different combinations of
distance measures (Hausdorff, DTW based on Haversine distance, and average Haversine
distance computed using Equation (2)) and clustering algorithms (hierarchical, DBSCAN).
Recall that our model combines the average Haversine distance with hierarchical clustering.
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4.3.1. Quantitative Analysis

In Table 3, we report various statistics on the clustering of each combination of distance
measure and algorithm, including hyperparameters selected using the Kneedles algorithm,
the number of clusters found, the median number of members in each cluster, and, when
DBSCAN was used, the percentage of outliers. The quality of the clusterings was mea-
sured in terms of silhouette score (the larger, the better). Our combination of hierarchical
clustering with the average Haversine distance achieved the best score.

Table 3. Positional clustering performance, in terms of the silhouette score for various combinations
of distance and clustering algorithms, along with the hyperparameters and characteristics of the
clusterings. Bold denote the highest recorded silhouette score. Our model corresponds to the last line.

Distance Measure Clustering
Algorithm Eps-Threshold MinSamples # Clusters Median of #

of Members % Outliers Silhouette
Score

Hausdorff Hierarchical 9000 - 1515 2 - 0.535
Hausdorff DBSCAN 12,504 242 15 569 45.7 0.127
Hausdorff DBSCAN 12,504 25 53 110 10.7 0.376
Hausdorff DBSCAN 27,000 242 7 1446 12.6 0.265

DTW Hierarchical 140,000 - 2862 1 - 0.349
DTW DBSCAN 60,941 91 7 190 68.8 −0.454

Avg. Haversine DBSCAN 1.07 261 14 485.5 57.8 −0.033
Avg. Haversine Hierarchical 10 - 52 232 - 0.651

The silhouette scores show that DBSCAN generally performed worse than hierarchical
clustering. One explanation could be the large number of trajectories flagged as outliers
by DBSCAN. For all three similarity measures, DBSCAN considered at least 45% of the
data as outliers. This is too many false positives for an automated system to be useful.
Despite the better silhouette scores, hierarchical clustering with the Hausdorff distance and
DTW suffered from a similar phenomenon. In fact, both combinations produced the largest
number of clusters. Most of these clusters contained very few trajectories and, thus, served
a similar purpose as the outliers in DBSCAN.

On the other hand, our proposed combination found a reasonable number of 52 clus-
ters with a median number of trajectories per cluster of 232. These were reasonable numbers
that allowed for further analysis in the second step. Note that these numbers of trajecto-
ries per cluster are comparable to the size of the full datasets used in most other works,
such as [11,12].

4.3.2. Qualitative Analysis

Clustering using DTW or Hausdorff distances resulted in clusters corresponding
to well-defined shipping lanes, as seen in Figure 3a,b. However, they failed to cluster
two types of trajectories: small groups of trajectories on less populated maritime routes
and trajectories that shared a segment along a shipping lane but did not follow it; see
Figure 3d. These trajectories were marked as outliers by DBSCAN or as single-observation
clusters by hierarchical clustering. Fine-tuning the hyperparameters might reduce the
number of outliers by slowly admitting trajectories with similar positions into the clusters
but with the risk of joining clusters of different shipping lanes, as shown in Figure 3c.
This indicates that real, unfiltered trajectory recordings from a diversely populated ROI
have too much randomness for these combinations of measures and algorithms to find
well-separated clusters using only the latitude, longitude, and the timestamps without
flagging the majority of the data as outliers.

In Figure 3e,f, we plotted the four most populated clusters in the ROI around Sjælland,
using our positional clustering algorithm. Each cluster shown contained more than 1000 tra-
jectories. We see that in each cluster, the trajectories began in the same geographical area
unique to each cluster. This was expected, due to the increased attention by the average
Haversine distance to the initial part of the trajectories. The discovered clusters contained
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trajectories from all different shipping lanes that originated in a given area. However, this
was acceptable, as we expected the second-step clustering to separate the shipping lanes
based on their common kinematic behaviors and the outlier detector to catch those that did
not travel steadily along the lanes.

(a) DTW, hierarchical (b) Hausdorff, DBSCAN

(c) Hausdorff, DBSCAN,
increased threshold

(d) Hausdorff, DBSCAN,
outliers

(e) Avg. Haversine, hierarchical (f) Avg. Haversine, hierarchical

Figure 3. Examples of clusters and outliers discovered in the first positional step, using different
similarity measures and clustering methods. Clustered trajectories are shown in color, historical
traffic is shown in gray, and trajectory origins are denoted by a black circle.
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Note that the blue cluster of Figure 3e looks similar to that of Figure 3c. However, the
difference is major. In Figure 3e, all the trajectories start in the same area, while in Figure 3c
there are trajectories starting where others end. This is due to the fact that the Hausdorff
distance compares asynchronous pairs of positions and is thus invariant to the direction of
travel. This is a potential problem for the real-time classification of incomplete trajectories
in the discovered clusters.

4.3.3. Runtime Analysis

In Table 4, we report average runtimes for computing the average Haversine distance,
based on Equation (2), DTW, and the Hausdorff distance. The distances were implemented
in Python 3.8.11 programming language, using Numpy 1.23.2. The Hausdorff and DTW dis-
tances were calculated using the trajectory_distance library (https://github.com/bguillouet/
traj-dist accessed on 20 October 2023), implemented in Cython 0.29.24. With its linear time
complexity, the average Haversine distance is undoubtedly the fastest to compute: it is
10 times faster than DTW and 100 times faster than the Hausdorff distance.

Table 4. Average time in seconds to compute a pair of trajectory similarities during computation of
the distance matrix.

Avg. Haversine, Equation (2) DTW Hausdorff Kinematic, Equation (4)

16.38 µs 107.2 µs 1084 µs 12,788 µs

4.3.4. Discussion of the Positional Clustering

The traditional distance measures DTW and Hausdorff result in many outliers when
applied to a complex, unfiltered dataset that resembles trajectories expected in real-life
applications. By contrast, the average Haversine distance results in clusters that contain all
the different routes that originate in a location that varies between clusters. Additionally,
the average Haversine distance is much faster to compute, which allows for real-time
assignment of unseen trajectories into precomputed clusters. However, these clusters do
contain trajectories from many different maritime routes. Therefore, simply reducing the
threshold in the hierarchical clustering does not yield a more detailed clustering describing
their global positional or local kinematic behavior. To refine the cluster, a different distance
measure must thus be used.

4.4. Kinematic Clustering

The kinematic clustering of the second step serves to provide a context to the outlier
detectors prediction. It is expected to refine the gross positional clustering. Therefore, in
this section, we study the refinement of the blue positional cluster shown in Figure 3e. The
trajectories of this cluster originated at the southeastern edge of the ROI and split into
four major shipping lanes—one going west towards the Kieler Channel, allowing passage
to the Atlantic, one going north towards the North Sea, one going east towards the Baltic
Sea, and one going northeast, terminating in the Swedish port of Trelleborg. In addition to
these shipping lanes, the Danish port of Gedser (southern tip of the Lolland island) is a
hub for pilot boats, which often have to rendezvous with larger ships passing through the
Fehmarn Belt between Denmark and Germany. These pilot boats form a triangle fanning
outwards east from the port of Gedser, seen in the bottom of Figure 3e.

We compared the clusters obtained using both kinematic and positional similarity
measures. Regarding the positional clustering, based on the results of Section 4.3, we
considered only hierarchical clustering combined with the average Haversine distance and
the Hausdorff distance. The former produced better groupings, and the latter showed
potential to further split clusters. As for the kinematic clustering, we tested our proposed
kinematic similarity measure Dkin, Equation (4) with hierarchical clustering, and DBSCAN.
Finally, to evaluate the benefit of basing Dkin on DTW, we also considered the average of
the synchronous speed and course distances of Equations (5) and (6):

https://github.com/bguillouet/traj-dist
https://github.com/bguillouet/traj-dist
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AK(A, B) =
T−1

∑
t=0

dspeed
(

sA(t), sB(t)
)
+ dcourse

(
cA(t), cB(t)

)
2T

, (7)

where T = min(TA, TB).
We report in Table 5 the hyperparameters and statistics about each clustering. The

two positional-based clusterings found fewer clusters and obtained better silhouette scores
than our proposed kinematic distance measure, Equation (4). However, if we look at some
of the clusters shown in Figure 4a,b, we note that these methods did not produce a more
detailed clustering, in terms of the local kinematic behavior of the trajectories. This was
expected, as without a refinement in local kinematic behavior a two-step clustering was
not relevant, as we would have expected to find the same subclusters if we had accepted
more groups in the first step when clustering the whole data.

(a) Avg. Haversine (b) Hausdorff

(c) Avg. Kinematic (d) Kinematic, Equation (4)

Figure 4. Second-step clusters obtained using hierarchical clustering and different similarity measures.
Clustered trajectories are shown in color, trajectories in gray denote trajectories in the same positional
cluster, and trajectory origins are denoted by a black circle.
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Table 5. Hyperparameter values and clustering results of DBSCAN and hierarchical clustering using
distances computed by Hausdorff, the average Haversine distance, Equation (2), or our proposed
kinematic distance measure, Equation (4), on trajectories assigned to positional cluster 0 in the
first step. Bold denote the highest recorded silhouette score.

Distance Measure Clustering
Method Eps-Threshold MinSamples # Clusters # Outliers/

Singletons
Silhouette

Score

Avg. Haversine, Equation (2) Hierarchical 0.9 - 49 12 0.558
Hausdorff Hierarchical 6250 - 134 62 0.533

Avg. Kinematic Hierarchical 1.8 - 34 0 0.126
Kinematic DBSCAN 12.0 46 2 821 0.036
Kinematic DBSCAN 12.0 2 21 477 −0.221
Kinematic Hierarchical 22.5 - 221 147 0.217

4.4.1. Positional Similarity Measures

Clustering based on the average Haversine distance (Figure 4a) was unable to split
the shipping lanes. We believe the focus on the initial part was the cause. The Hausdorff
distance (Figure 4b) allowed the separation of the maritime routes through the ROI. We
also noticed some maritime routes divided into two or more clusters, as seen in Figure 4b.
Thus, we gained a more detailed clustering, in terms of describing their global positional
behavior. In Figure 5, we show the speed and course of the trajectories assigned to the
two clusters of Figure 4b. We see that both clusters are not clearly distinguishable, in terms
of speed or course. Note that fast trajectories significantly decreased their speeds while in
the shipping lane (blue trajectories with an initial speed of about 12 m/s). We would expect
such trajectories to be grouped separately. Looking at the course, we see the two clusters
generally had similar course changes, although they happened at different times, due to
the time invariance of the Hausdorff distance. Based on the results above, we conclude
that using the Hausdorff distance in the second-step clustering resulted in a more detailed
clustering regarding the global positional behavior but not the local kinematic behavior.

(a) Speed (b) Course

Figure 5. Kinematic time series of the trajectories assigned to clusters obtained from the Hausdorff
clustering shown in Figure 4b.

4.4.2. Kinematic Similarity Measures

We now study the clusterings obtained using kinematic-based similarity measures.
Our proposed similarity measure combined with hierarchical clustering obtained a higher
silhouette score than the average kinematic distance, yet the latter found fewer clusters.

We found that our choice of hierarchical clustering with average linkage was superior
to the DBSCAN variants, as shown in Table 5. DBSCAN returned only two large clusters
and most of the trajectories were assigned as outliers. Reducing the minimum number
of samples required to define clusters increased the number of clusters to 21, but the vast
majority of trajectories were assigned to the same cluster.

We see in Figure 4c that the average kinematic distance groups trajectories followed
very different shipping lanes. Using Equation (4) as a similarity measure for hierarchical
clustering resulted in 221 different clusters. Most of these clusters were singleton clusters
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and could themselves be considered outliers. Despite their naturally similar behavior, we
found that pilot boats were not clustered together, but belonged to singleton clusters that
were closer to one other than to other kinematic clusters. This shows that singleton clusters
could occur for normal expected behavior in sparse regions of our feature space. Clusters
with more than five trajectories assigned to them are shown in Figure 6. The clusters clearly
split the major maritime routes. Looking at the speed trajectories within these clusters
(Figure 7a–c), we note that the clusters clearly partitioned the speed behaviors. Although
less obvious, this also applied to the trajectories of Figure 6d heading towards the port of
Trelleborg. In Figure 7b,d, we can distinguish five unique types of behavior: slow-speed
returns south (green), fast-speed return south (red), slow-speed stops in port (orange),
fast-speed stops in port (yellow), and fast-speed stops in port with a spike in speed during
slowdown (blue). Note that the high-frequency course changes at low speeds in Figure 7d
were due to a vessel drifting in port. These random course changes may artificially decrease
the similarity between trajectories of the same behavior, but it is expected that two-stage
DP compression [29] filters out the majority of these stationary periods at drift. In general,
Dkin yielded well-separated clusters with consistent kinematic behavior.

(a) Clusters going west (b) Clusters going east

(c) Clusters to Gedser (d) Clusters to Trelleborg

Figure 6. Second-step clusters with more than five assigned trajectories obtained using the kinematic
distance matrix. Colors denote different clusters. Trajectories in gray denote trajectories in the same
positional cluster.
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(a) Speed, eastbound (b) Speed, Trelleborg

(c) Course, eastbound (d) Course, Trelleborg

Figure 7. Kinematic time series of all clusters following two different maritime routes; see Figure 6b–d.
Different colors represent different clusters.

4.4.3. Discussion on the Kinematic Clustering

Our combination of Dkin and hierarchical clustering was able to refine a positional
clustering from the first step. This refinement disentangled the positional and kinematic
features, which resulted in subgroups with well-defined and unique kinematic behaviors,
thus obtaining a more detailed description of maritime behavioral patterns. There existed
an inherent trade-off between clustering kinematic behaviors that we knew to be similar
but that naturally had a higher distance and clustering different behaviors that naturally
were very close to one another. As discussed above, all the pilot boats were clustered into
singleton clusters. But had the clustering threshold been increased, all the pilot boats would
have formed a single kinematic cluster. However, increasing the threshold would have had
the added downside of merging the different speed clusters of Figure 7a.

4.5. Single-Step Clustering

We now compare the clustering obtained from our two-step algorithm with one
computed with a single hierarchical clustering using the sum of the average Haversine
distance, Equation (2), and of Dkin of Equation (4) as the similarity measure. Combining
positional and kinematic information into a single similarity measure may hide some
variations that may be captured when the dimensions are processed separately, as in our
approach. Therefore, the two-step method was expected to return more clusters.

The Kneedles algorithm for the single-step clustering obtained a silhouette score of
0.095 and found 2880 clusters. The two-step clustering approach achieved a silhouette score
of 0.162 and a total of 6963 clusters when applied to the entire dataset. In both methods, the
majority of the discovered clusters were singleton clusters, which we previously highlighted
for the two-step algorithm. The single-step and two-step clustering approaches found 2168
and 6221 singleton clusters, respectively.

Using single-step clustering, trajectories traveling along different shipping lanes
could be clustered together (Figure 8a), while our two-step algorithm disentangled them
(Figure 8b). A detailed analysis reveals that the single-step approach grouped together
(orange cluster of Figure 8a) trajectories with distant initial points and following different
shipping lanes because the speed of the trajectories was very similar. The differences
in position were compensated by similar speed behaviors. On the other hand, the two-
step algorithm split these two routes into multiple clusters, as it processed positional and
kinematic information separately.
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(a) Single-step clusters (b) Two-step clusters

Figure 8. Trajectory clusters produced by the single-step clustering (a) that were split into multiple
clusters, (b) using the the two-step algorithm. Clustered trajectories are shown in color, trajectories in
gray denote trajectories in the same positional cluster, and trajectory origins are denoted by a black circle.

Our proposed two-step approach results in a better disentanglement of position and
kinematic behavior. Even though our proposed similarity measure focuses on different
aspects of the trajectories, treating them as a sum results in a situation where differences
in the positional similarity are canceled by differences in the kinematic similarity. The
better disentanglement of the two-step approach results in clusters with more well-defined
and unique kinematic behaviors, thus obtaining a more detailed description of maritime
behavioral patterns. Better disentanglement also means that the learned normalcy model
can distinguish a higher number of possible kinematic behaviors at each location in the
ROI. As such, the normalcy model is more useful for supplying contextual information to
VTS operators. As discussed previously, the two-step approach has a trade-off between
clustering behaviors that we know to be similar but that naturally have a larger distance
and clustering different behaviors that naturally are very close to one another. Using a
single-step approach seems to push this trade-off towards the latter option, automatically.
Additionally, the two-step approach is computationally more efficient than the single-step
approach. The computational requirements of the kinematic distance measure shown
in Table 4 are large compared to the positional distance measure. Thus, computing the
proposed kinematic distance measure on the entire dataset is not feasible for large datasets.
Comparatively, the first positional clustering in the two-step approach functions as a filter
that reduces the number of trajectory pairs for which to calculate the kinematic distance.

4.6. Outliers and Embedding Analysis

In this section, we use a TSNE representation of the kinematic similarity matrix of the
blue positional cluster of Figure 3e, to show how the LOF and the kinematic clustering are
related despite being computed independently.

4.6.1. LOF Contamination and Cluster Size

Although the LOF does not use kinematic clustering, it is computed on the same
similarity matrix. In this experiment, we use a TSNE representation of the kinematic
similarity matrix, to show how the kinematic clustering and the LOF handle outliers.

In Figure 9, we plotted a TSNE embedding of the kinematic distance matrix and the
LOF results with different contamination levels of all trajectories of the blue positional cluster
of Figure 3e. In the following, we compare four values of the contamination hyperparameter:
(a) 0.14, computed as suggested in [25], (b) 0.1, (c) 0.05, and (d) 0.01. Points in clusters with
at least five trajectories are colored blue and the others are in yellow. Outliers are denoted
by red borders.
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(a) Contam. 0.14, 178 outliers (b) Contam. 0.10, 128 outliers

(c) Contam. 0.05, 64 outliers (d) Contam. 0.01, 13 outliers

Figure 9. T-SNE of the kinematic distance matrix of the blue cluster of Figure 3e with varying levels
of contamination in the LOF. Crosses denote detected outliers. Colors denote cluster assignments,
with gray being clusters with fewer than five members. The contamination level in (a) is determined
using [25].

We see that the TSNE projects the trajectories in low populated clusters in the fringe
of those in highly populated. Increasing or decreasing the contamination hyperparameter
causes more or less of the trajectories along the fringe to be flagged as outliers. With a
contamination of 0.10, even trajectories from large clusters are flagged as abnormal. Reducing
it to 0.01 leaves almost no outliers. Therefore, we recommend contamination levels of 0.05.

Note that yellow dots that are grouped together in the TSNE projection without
necessarily being in the same kinematic cluster better resist the increase of the contamination
hyperparameter and remain inliers. An example is the group of yellow dots on the top-right
of the large blue cluster at the bottom of the representation.

4.6.2. Outliers and Embedding Analysis

In Figure 10, we plot the same TSNE representation of the kinematic similarity matrix of
all trajectories in positional cluster 0, shown in blue in Figure 3e, but the colors denote here
cluster assignments of the kinematic clustering. The gray dots are clusters with fewer than
five trajectories. The red borders denote outliers flagged by the LOF, using a contamination
level of 0.05. The squares denote embeddings of pilot boats, triangle trajectories with U-turns,
and crosses trajectories with stops outside a port.
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Figure 10. TSNE of the kinematic distance matrix of the blue cluster in Figure 3e. The colors denote
the kinematic cluster assignment, with gray being clusters with less than five members. The red
borders denote outliers flagged by the LOF. The shapes denote manually identified special trajectories.

As we mentioned previously, the majority of the closest neighbors of the pilot boats
were other pilot boats. Most of the pilot boats form a small gray group near a larger cluster
(blue) in the bottom of the figure. This blue cluster represents ships coming from the south
that docked at the port of Gedser and return back towards the south after docking. In
the same area, we find cases of ships (red, green) sailing north and docking at Trelleborg
before returning south. In between the pilot boats and the large blue cluster we notice three
trajectories discovered to be outliers by the LOF. These three trajectories were boats coming
from the south and making a stop and a U-turn in the middle of the shipping lane, very
similarly to the pilot boats. However, small differences in the course time series led the
three U-turns trajectories to be flagged as abnormal. In Figures 11a,b, we show an example
of a U-turn trajectory and that of a pilot boat nearby.

Note the crescent clustered in many different clusters on the left of Figure 10. These
clusters correspond to the traffic following the shipping lanes to the east (Figure 6b) at
different speeds. Around the right end of this crescent, we find some pilot boats (square)
and a highlighted outlier corresponding to a trajectory following the shipping lanes going
east with multiple sudden stops in the middle of the shipping lane (cross). This type of
behavior is of interest for certain types of ships, such as research vessels and diving vessels.
These two trajectories are shown in Figure 11c,d. The large yellow cluster in the center of
Figure 10 corresponds to trajectories going north and stopping in the port of Trelleborg.
Contrary to the previous smaller red and green clusters in the bottom of Figure 10, these
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trajectories ended in the port. This means that our proposed kinematic distance measure
found the start-stopping behavior to be more akin to the trajectories ending in port or pilot
boats; however, not so much as to be part of their cluster, due to differences in the course.
This confirms that our proposed distance measure is capable of capturing local kinematic
similarities, regardless of the geographical position, and it can serve to flag trajectories with
abnormal local kinematic behavior.

(a) U-turn (b) Pilot boat

(c) Multiple stops on shipping lane (d) Pilot boat

Figure 11. Trajectories of abnormal activity, such as (a) U-turns and (c) stopping in the shipping lane,
found to have similarity with the behavior of pilot boats (b,d). Historical traffic is shown in gray, and
trajectory origins are denoted by a black circle.

4.7. Abnormality Detection

We evaluate now the performance of our algorithm for the detection of abnormalities.
We first compare it to State-of-the-Art abnormality detectors and then provide an example
showing how the context provided by the kinematic clustering helps to understand the pre-
diction of the LOF. For comparison, we also propose an interpretation of the VRNN baseline.

Throughout this section, we use the data from the Bornholm area of December 2021. All
the models were trained using all the data, except that from 13 December and tested on that
day. As a Search and Rescue operation took place that day, all the trajectories were annotated.

4.7.1. Anomaly Detection

We investigate the precision of our model and discuss which value of contamination
parameter to use, based on the receiver operating curve from outlier detection on the
13 December data, as shown in Figure 12. We compare to the A-Contrario outlier detection
method [15], using RVAE [13] and VRNN [15].
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(a) All trajectories (b) Without stationary trajectories

Figure 12. ROC of the outlier detection on the Bornholm 13 December data.

We see that our method outperforms detection based on RVAE reconstruction but not
VRNN reconstruction. In particular, we see that our method suffers from false positives early
in the detection. Looking at these trajectories, we note that the vessels were mostly stationary
in port with a highly varying course, resulting in a large directional distance to all other
trajectories. By removing trajectories with an average speed of less than 0.3 m/s from the
detection, we can reduce the number of early false positives to similar levels as RVAE.

Previously, we counted outliers to infer the contamination parameter. Here, we show
how the ROC curve may provide more insight into this hyperparameter. In order to
detect 96% of the abnormal trajectories, a false alarm was triggered on 40% of the normal
trajectories, which corresponded to a contamination rate of 0.43. A contamination level of
0.05, 0.10, and 0.14 yielded a true positive rate of about 20%, 25%, and 40%, respectively.

The detection performance of our proposed method is below that of the VRNN, but it
is much faster to computer. Indeed, in our experiments, the VRNN model and A-Contrario
detection had an average evaluation time of 176 seconds per trajectory. By comparison,
our two-step algorithm required only 6.8 seconds per trajectory. The large processing
time of the VRNN model and A-Contrario detection is a major drawback that questions
the viability of both algorithms for a real-life scenario where a quick response is vital,
e.g., in the case of a collision or prediction of ongoing piracy. Our algorithm spends most
of the 7 s to compute the positional similarity matrix, which compares the input to all the
training dataset. This operation could be dramatically sped up, using some heuristics to
avoid computations with obviously different trajectories.

4.7.2. Anomaly Detection and Context

We present here an example to highlight how the context provided by the kinematic
clustering helps to assess the prediction of the LOF. We consider the case of an abnormal
trajectory making a double U-turn in the shipping lane. The trajectory was made by the
sister ship of the vessel that caused the collision accident and was returning to the site of
the collision, perhaps to transfer crew to the collided vessel.

We fed the algorithm with the trajectory truncated at t = 205, which corresponded
to when the vessel finished the first U-turn and was traveling in the opposite direction
of the shipping lane. The positional trajectory (a), speed (b), and course (c) time series of
that trajectory are depicted in red (plain before t = 205 and dotted after) in the plots of
Figure 13. The five most similar trajectories in the kinetic context are depicted in black.
Note that all five trajectories originated in the northeastern part of the ROI, and all five
vessels had extended periods of time in which they traveled at reduced speeds.
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(a) Geographical evolution

(b) Speed (c) Course

Figure 13. Top five most similar trajectories (black) to the abnormal trajectory in red determined by
Equation (4) at time step t = 205. The future trajectory is shown in dashes.

The three visualizations issued from the kinetic context provide complementary infor-
mation to the VTS operator. Indeed, if the the U-turn may be overlooked in Figure 13a,b, the
plot of the course is clear. Another hypothesis could be that the abrupt change of direction
suggests a turn toward a harbor, but this is dismissed by the fact that the vessel is still close
to the shipping lane.

For comparison, we propose an interpretation of the outputs of the VRNN, the best-
performing model, to justify the anomaly of the red trajectory. Note that VRNN outputs
a multivariate Bernoulli distribution, which indicates if an input can or cannot be pre-
dicted/reconstructed accurately. In Figure 14, we plot the multivariate Bernoulli distri-
bution of the VRNN model at two time steps during and after the first U-turn. During
the U-turn, the speed and course are not reconstructed accurately. After the U-turn, the
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model recovers and is able to reconstruct accurately both the speed and the course. This
means that at t = 205, the trajectory will still be flagged as abnormal because it was at
t = 189. Thus, the operator needs to manually evaluate several previous updates, to
understand the context that led the model to flag the anomaly. Another solution is to assess
the situation based on the visualization of the different dimensions of the trajectory, as in
Figure 13, but without the support of the black trajectories. This complicates the task, as
one would expect—for example, pilot boats performing U-turns close to a shipping lane
but not commercial vessels. Again, the operator needs to look for more information before
making a decision.

(a) During first U-turn t = 189

(b) After first U-turn t = 205

Figure 14. Multivariate Bernoulli distribution (blue) for the VRNN output at two time steps observed
during and after the first U-turn. True values are indicated by orange lines.

5. Conclusions

In this work, we have presented and made public two large hand-annotated AIS
traffic datasets for abnormal maritime behavior detection that we have created. One dataset
contains all traffic AIS data around Sjælland Island during November 2021. The second
dataset contains all AIS trajectories around Bornholm Island during December 2021, with
the full annotation for the data of 13 December 2021, with events expected to be of interest to
VTS operators. In addition, we also have proposed an abnormality detection algorithm for
maritime trajectories based on two-step clustering, for which we proposed a novel kinematic
similarity measure based on DTW. The two separate steps allow the clustering to better focus
on the kinematic behavior expected in a certain geographical position. This disentanglement
of positional and kinematic features results in better descriptions of behavioral patterns
and clusters with well-defined and unique kinematic behaviors. These behavioral clusters
and kinematic similarity measures can be used to provide context to the VTS operator, to
accept or reject the algorithm prediction. We evaluated our proposed abnormality detection
method on the annotated data of 13 December 2021 of the Bornholm dataset. Although our
proposed model achieved a lower area under the ROC than the VRNN model, it had a clear
advantage, in terms of runtime and interpretability, over current deep learning methods. In
future work, we aim to compute the proposed similarity measures with neural networks and
to utilize deep models for reconstruction-based outlier detection that also align trajectories
in the latent space, to preserve a certain level of interpretability.

A limitation of our method is that it has been designed for and tested mostly on
near-coastal traffic with a large variety of different maritime behaviors. We speculate that
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application in the open ocean with more extreme weather differences would result in
separate clusters for each weather profile. We leave this question for future work.

Author Contributions: Conceptualization, K.V.O.; methodology, K.V.O. and A.B.; software, K.V.O.
and A.B.; formal analysis, K.V.O.; investigation, K.V.O.; resources, S.H.; data curation, K.V.O. and
S.H.; original draft preparation, K.V.O.; review and editing, A.B., M.C.K., R.J., A.N.C. and L.H.C.;
visualization, K.V.O.; supervision, A.B., M.C.K., R.J., A.N.C. and L.H.C.; funding acquisition, R.J. and
L.H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Danish Ministry of Defence Acquisition and
Logistics Organisation, grant no. 4600005159. Visual Intelligence publications are financially supported
by the Research Council of Norway, through its Centre for Research-based Innovation funding scheme
(grant no. 309439), and Consortium Partners.

Data Availability Statement: The data used in this paper are made freely available at https://data.
dtu.dk/collections/AIS_Trajectories_from_Danish_Waters_for_Abnormal_Behavior_Detection/6287
841, (accessed on 20 October 2023 ).

Acknowledgments: The datasets used in this paper and the visualization tools to identify abnormal
behavior were provided by Terma A/S (Lystrup, Denmark).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in
the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AIS Automatic Identification System
MMSI Maritime Mobile Service Identity
GPS Global Positioning System
VTS Vessel Traffic Service
LOF Local Outlier Factor
ROI Region of Interest
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