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ABSTRACT
Deep learning has the potential to revolutionize medical prac-
tice by automating and performing important tasks like de-
tecting and delineating the size and locations of cancers in
medical images. However, most deep learning models rely on
augmentation techniques that treat medical images as natural
images. For contrast-enhanced Computed Tomography (CT)
images in particular, the signals producing the voxel intensi-
ties have physical meaning, which is lost during preprocess-
ing and augmentation when treating such images as natural
images. To address this, we propose a novel preprocessing
and intensity augmentation scheme inspired by how radiolo-
gists leverage multiple viewing windows when evaluating CT
images. Our proposed method, window shifting, randomly
places the viewing windows around the region of interest dur-
ing training. This approach improves liver lesion segmenta-
tion performance and robustness on images with poorly timed
contrast agent. Our method outperforms classical intensity
augmentations as well as the intensity augmentation pipeline
of the popular nn-UNet on multiple datasets.

Index Terms— Segmentation, medical imaging, prepro-
cessing, data augmentation, hounsfield units, CT signals.

1. INTRODUCTION

Deep learning (DL) based applications are becoming crucial
tools for medical image analysis [1]. This includes accurately
and robustly segmenting lesions, such as primary and sec-
ondary tumors in different organs. For patients with liver can-
cer, segmentation is crucial for diagnostics, treatment plan-
ning, and follow-up [2]. Contrast-enhanced Computed To-
mography (CT) imaging of the abdomen is the main source of
information, and the images are traditionally assessed manu-
ally by radiologists to detect and segment liver lesions. Al-
though deep learning methods have shown promising results
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Fig. 1. The distribution of Hounsfield Units (HU) and visual-
ization of a contrast-enhanced CT image. The liver is delin-
eated (pink), with darker cancer areas (yellow). During pre-
processing, a base viewing window is applied to enhance the
relevant regions in the scan. By randomly shifting the window
during training, we achieve a natural augmentation effect.

for medical image segmentation, they still face limitations and
challenges when applied to liver tumor segmentation [3, 4].
This is especially true when the contrast agent is not timed
correctly with the CT image, resulting in poor contrast be-
tween healthy liver tissue and the lesion, making it difficult
for DL-based methods to perform the task robustly [4].

Deep learning methods for CT imaging often rely on fixed
preprocessing schemes that make CT images appear more
like natural images, such that standard methodology can be
applied. However, this approach does not respect the phys-
ical properties of the CT modality and fails to leverage do-
main knowledge about how the signal-generating processes in
CT imaging, the contrast enhancement, and anatomy interact.
This may lead to a loss of information about semantics given
by the absolute and relative intensities of different tissues, and
naively adapting strategies from other computer vision (CV)
domains may thus harm performance.
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Fig. 2. Top: The global distribution of foreground intensities
in the LiTS dataset. The base window and ROI is determined
by the lower and upper HU thresholds marked by the vertical
bars. Bottom: Distribution of per volume median HU for liver
and tumor in the LiTS dataset, which is used to determine the
range to sample the window levels from during training.

Inspired by how radiologists apply different viewing set-
tings when examining CT images [5], we propose a dynamic
preprocessing and augmentation scheme for training that en-
ables DL models to learn robustness to poor contrast timing in
the CT scan. In this paper, we present window shifting (Fig-
ure 1), a new method that achieves a CT coherent pixel-wise
intensity augmentation by considering the distribution of the
region of interest (ROI) (Figure 2) and dynamically clip the
intensities during preprocessing. We demonstrate the effect of
our method in liver lesion segmentation of contrast-enhanced
CT images. We show that our clinically motivated augmenta-
tion method improves segmentation performance and robust-
ness, and provide analysis and simple heuristics for applying
the technique to specific regions.

2. BACKGROUND AND RELATED WORK

Signal-generating process in CT imaging. CT is an im-
portant tool when screening patients for cancer in the liver.
The signal measured in CT imaging is the radiodensity of a
volume generated by a rotating X-ray source and captured by
a detector. The amount of radiation absorbed throughout the
volume is given by the linear attenuation coefficient µ. In
medicine, this measurement is converted to Hounsfield units
(HU) by a linear transformation that considers the linear at-
tenuation coefficient of water µwater and air µair, such that the
values are scaled and shifted to be meaningful in a medical
context. For a given voxel with average linear attenuation,
the HU is given by

HU = 1000 · µ− µwater

µwater − µair
(1)

hence, HUair = −1000 and HUwater = 0. To enhance the
visibility of certain tissues or structures in the body, contrast

enhancement is typically used when acquiring CT scans. In
contrast-enhanced CT scans, a radio-opaque contrast agent
is injected into the patient’s vein and circulates through the
body, highlighting specific regions at different times during
the CT scan. For example, 50-70 seconds after injection in an
upper extremity vein, the contrast agent has reached the por-
tal venous phase, and contrast in the liver is increased. This
results in increased measurements of HU in the liver tissue
with at least 50 HU [6], and strong contrast enhancement in
the liver images. As many liver lesions respond differently to
contrast agents, they become more visible in this phase of the
CT image, due to the increased HU values in the healthy liver
tissue around them (Figure 1).

CT preprocessing. To optimize CT images for visual
evaluation, the recorded HU in the CT scan are preprocessed
by applying a viewing window. The viewing window limits
the range of HU by clipping them to a narrower range that
covers the ROI. In medical DL applications the viewing win-
dow is usually fixed during preprocessing to a suitable range
[4, 7, 8] for the ROI. However, in the case of CT liver and
tumor segmentation, there is great variation in the clipping
ranges used in preprocessing, which suggests that a subopti-
mal clipping range may be common [4]. To avoid arbitrarily
chosen viewing windows, one popular approach is to inspect
the foreground intensity distribution of the dataset and set the
lower and upper HU boundaries to given percentiles of the
distribution [8].

Due to differences in timing and tissue response in
contrast-enhanced CT images, the liver and tumor intensities
vary across different images. Applying a fixed preprocessing
strategy to images of varying quality may therefore cause
images to look brighter or darker after intensity clipping.
A clinician could easily correct this by shifting the viewing
window center towards the region of interest. To address this
issue in deep learning, models that utilize multiple viewing
windows for preprocessing have been proposed for segmen-
tation [9], as well as self-supervised representation learning
[10]. Choosing a sufficiently large viewing window would
also address the issue but may lead to images with lower
contrast as many HU values are mapped to similar grayscale
levels [11]. Regardless of the clipping range, after prepro-
cessing CT images are usually treated as non-medical images
in common CV applications.

Intensity augmentation. Data augmentations are ran-
dom transformations that are applied to the model’s inputs
during training to prevent it from overfitting to the training
set by increasing the data variation and diversity [12]. Many
intensity augmentations developed for RGB images are not
applicable for medical images. Color-jittering like changing
the hue and saturation requires three input channels (RGB),
while CT have only one (grayscale). Many therefore resort
to contrast and brightness adjustments as well as gamma cor-
rection (Figure 3), which are linear or non-linear operations
that are performed directly on the preprocessed CT intensity
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Fig. 3. Images where the liver responds more than usual to the contrast agent may look overexposed after standard prepro-
cessing. Standard augmentation techniques fail to reintroduce useful variation into such images because much of the original
distribution is removed during preprocessing. Our proposed method address this by leveraging more of the original data.

values [8, 13, 14]. For natural images, where only the pixels’
relative intensities are important, intensity augmentations will
teach the model to focus on shapes and textures, rather than
absolute intensities, when performing the task. However, in
modalities with meaningful pixel intensities the absolute in-
tensities in an image can distinguish between important se-
mantics and should thus be kept intact.

The meaningful signal and the relationship between dis-
tinct intensities in the important parts of a CT image may be
disrupted by the combination of static preprocessing and clas-
sical intensity augmentations (Figure 3). Consequently, a DL
model could be prevented from learning representations of
shape and texture in combination with meaningful pixel val-
ues. A CT specific intensity augmentation has been proposed
[15] but does not address these issues, and does not provide
the variation and smoothness comparable with standard aug-
mentations.

We propose to address the above challenges with a novel
preprocessing and augmentation scheme that respects the
signal-generating process in CT imaging. Our method dy-
namically change the preprocessing viewing window during
training to achieve a relevant augmentation effect that teaches
the model robustness to contrast timing and tissue response.

3. METHODOLOGY

In this paper, we propose window shifting, an augmentation
scheme that integrates into the preprocessing pipeline of the
deep learning model and exposes the model to a continuous
range of variations that are relevant for the ROI. We stochasti-
cally apply shifted viewing windows around the relevant parts
of the intensity distribution, to increase the diversity of train-
ing images. This allows us to alleviate standard pixel dis-
tortions such as brightness and contrast augmentations com-
pletely during training, and learn more robust and clinically
relevant features, that further improves segmentation results.

Window shifting is intuitively simple and can be tailored
to the given task hand by analyzing the data at hand. The

implementation is efficient and reduces the number of opera-
tions needed. This is possible due to the joint preprocessing
and augmentation step.

3.1. Window shifting for CT intensity augmentations

Window shifting use a base viewing window that covers 99
% of the dataset’s foreground distribution. The lower and up-
per bounds of the base window are determined by the 0.5 and
99.5 percentile of the foreground intensities [8]. We define the
viewing window that covers the clipping range by a window
width W and a centered window level L. During preprocess-
ing the HU intensities are clipped such that

HU ∈ [L− W

2
, L+

W

2
]. (2)

For illustration, Figure 2 displays the distribution of fore-
ground tumor and liver pixels, as well as the boundaries, in
the Liver tumor segmentation (LiTS) dataset [4].

During training, pixel-wise preprocessing of the HU in-
tensities is postponed until augmentation. To achieve the aug-
mentation effect, a substitute window level is sampled with a
probability p from a uniform distribution

L ∼ Uniform(Llow, Lhigh), (3)

where Llow and Lhigh are the lower and upper bound. Llow and
Lhigh are defined from the distribution of median foreground
pixels per case in the dataset, and Llow < L < Lhigh As auxil-
iary viewing windows used during augmentation are sampled
around the level L, and we sample windows with p < 1, the
most common window the model is exposed to will be the
base window. This enables us to simplify preprocessing dur-
ing model inference, and resort to the base viewing window.

3.2. Determining window shifting boundaries

As the global intensity distribution is used to determine the
base window, standard preprocessing might be biased to
favour good visualization of cases with large tumors. To

Code at https://github.com/agnalt/window-shifting.

https://github.com/agnalt/window-shifting


Intensity augmentation LiTS tumor dice Hepatic tumor dice UNN tumor dice Mean tumor dice
None (geometric only) 0.574 ± 0.202 0.402 ± 0.127 0.366 ± 0.133 0.447 ± 0.154

Mult. brightness 0.639 ± 0.087 0.419 ± 0.036 0.452 ± 0.048 0.503 ± 0.057
Contrast 0.634 ± 0.086 0.445 ± 0.044 0.451 ± 0.072 0.510 ± 0.067
Gamma 0.630 ± 0.078 0.472 ± 0.041 0.459 ± 0.050 0.520 ± 0.056

Add. brightness 0.636 ± 0.106 0.474 ± 0.030 0.519 ± 0.050 0.543 ± 0.062
Gamma inverse 0.650 ± 0.089 0.494 ± 0.030 0.521 ± 0.048 0.555 ± 0.056

nn-UNet (baseline) 0.638 ± 0.088 0.483 ± 0.035 0.522 ± 0.052 0.548 ± 0.058
Window shifting (proposed) 0.650 ± 0.086 0.513 ± 0.030 0.532 ± 0.026 0.565 ± 0.047

Table 1. The effect of individual intensity augmentations measured by the dice coefficient on the validation split of the LiTS
dataset, as well as the transfer performance of tumor segmentation to the Hepatic vessels and the UNN dataset.

counteract this, we use the per-volume median HU to deter-
mine how much it is beneficial to shift the window level in
augmentation. Figure 2 illustrates how much the HU values
for tumor and liver tissue vary between different CT scans in
the LiTS dataset, and thus how much the window should be
adjusted during training. Based on the per-volume median
intensity distribution we set the lower and upper bounds of
the range [Llow, Lhigh] that are used during augmentation to
the 0.5 and 99.5 percentile.

3.3. Effect of window shifting

When applying the viewing window during preprocessing,
much of the image’s original intensity distribution is removed.
For most preprocessed CT images, this results in better con-
trast in the relevant regions of the intensity distribution, which
improves the model’s capability to identify important nuances
for the segmentation task. However, for images where the tis-
sue responds more or less than usual, or if the timing is off, the
preprocessed images might come out looking over- or under-
exposed (Figure 3). In such cases, the model may have trou-
ble extracting useful information and learn from the given im-
age. Traditional intensity augmentations applied during train-
ing often have trouble with introducing sufficient and relevant
variations to such corrupted images, as they are applied on
the preprocessed image. Figure 3 displays how standard aug-
mentation schemes alter the intensity distribution, but fails to
introduce relevant variations and separate the tumor and liver
distribution. We measure the mean HU difference between
liver and tumor tissue to evaluate if relevant contrast is in-
troduced. The improved visualized results of the proposed
method is due to its ability to leverage more of the intensity
distribution, that would otherwise be removed during prepro-
cessing.

4. EXPERIMENTS AND RESULTS

We hypothesize that our proposed preprocessing and aug-
mentation scheme lead to models with better generalization
performance to cases that are difficult. We evaluate our win-
dow shifting method against common individual intensity
augmentations, as well as the strong nn-UNet intensity aug-

mentation baseline [8] by training a DL segmentation model
to segment liver lesions in contrast-enhanced CT images.

4.1. Experimental setup

As the baseline augmentation techniques require prepro-
cessed images, we apply the base viewing window and clip
the HU intensities to the 0.5 and 99.5 percentiles of fore-
ground pixels of the dataset. The preprocessed images x are
then scaled and shifted such that x ∈ [0, 1]. In all experi-
ments we apply basic geometric augmentations, like flipping
and crop-and-resize, as they are crucial for good performance.

When we compare with baseline intensity augmentations
like additive brightness, xnew = x + α, gamma, xnew = xγ ,
and inverse gamma correction, (1 − xnew) = (1 − x)γ , they
are applied before the images are z-score normalized using
the global dataset foreground mean and standard deviations.
Multiplicative brightness and contrast augmentation, where
the pixel intensities are scaled xnew = x · β, require normal-
ized values and are thus applied after normalization. For con-
trast augmentation, the scaled pixel values are clipped to their
original range after scaling. Window shifting is applied as de-
scribed in Section 3.1 and 3.2 before the HU units are scaled
to the range [0, 1] and normalized.

To perform the segmentation task, we use the DeepLabv3+
segmentation model with a Resnet50 backbone [16]. This
model is similar to the U-net [17], popular in medical imag-
ing, but uses more aggressive upsampling between skip con-
nections, has multiple dilated convolutions to capture multi-
scale information, and achieve similar performance to the
U-net on multiple datasets [18, 19].

The training and validation data are from the LiTS [4]
benchmark, which was also used in the Medical Segmentation
Decathlon (MSD) [3]. The dataset consists of 131 contrast-
enhanced CT images of the abdomen gathered from IRCAD
Hôpitaux Universitaires, Strasbourg, France. Most images
have liver cancers that are either primary or secondary liver
tumors. For testing we leverage the Hepatic Vessels dataset
from MSD [3], which is a completely disjoint dataset with
303 contrast-enhanced abdomen CT images from Memorial
Sloan Kettering Cancer Center, New York, US. The tumors in
this dataset are also both primary and secondary liver cancers.
Complementary to these datasets, we test the transfer perfor-



mance on the UNN liver tumor dataset, which is under devel-
opment as a collaboration between UiT The Arctic Univser-
ity of Norway and the University Hospital of North-Norway
(UNN). It consists of 27 contrast-enhanced CT volumes of the
abdomen from different patients with liver metastasis.

We perform 3 times repeated 4-fold cross-validation on
the LiTS dataset, where each split consists of 98/99 training
volumes and 33/32 validation volumes. As the aim is to test
the effect of different augmentation schemes all models are
trained from randomly initialized weights, i.e. without any
pretraining, to not bias the results towards pretraining aug-
mentations. We measure the overlap between the predicted
segmentation mask and the ground truth label using the dice
coefficient, given by equation

Dice coefficient =
2TP

2TP + FP + FN
(3)

where TP , FP and FN are the true positive, false positive,
and false negative pixel predictions respectively. We report
the mean over all 12 folds as well as the standard deviation.

The segmentation network takes as input the 256 × 256
downsized single channel axial slices of the 3D volumes in the
training and validation split. For simplicity, and because we
only aim to segment the lesion class, only axial slices contain-
ing the liver are used. We train with a batch size of 128 for 100
training steps × 50 epochs. We use an initial learning rate of
0.01, Adam optimizer, 5 warm-up epochs and cosine decay of
the learning rate. For all experiments, the geometric augmen-
tations are identical, that is crop-and-resize with probability
p = 0.2 and flipping with p = 0.5. All intensity augmenta-
tions, including window shifting are applied with probability
p = 0.3. The nn-UNet intensity augmentation baseline con-
sists of multiplicative brightness, contrast, gamma correction
and inverse gamma applied each with p = 0.15 [8]. We adopt
the strengths of the strong nn-UNet baseline for the augmen-
tations present in its augmentation pipeline. For comparable
results, additive brightness is applied with an equivalent dis-
tribution shift as our proposed method.

4.2. Intensity augmentations in CT images

Many DL algorithms that use augmentations apply multiple
intensity augmentations in sequence. To understand and test
the relevance and effect of each intensity augmentation, we
isolate the individual augmentations and evaluate the results
after training with each one. We compare and evaluate the
performance with two common scaling augmentations, mul-
tiplicative brightness and contrast correction, and two non-
linear augmentations, gamma and inverse gamma transforma-
tion. In addition, we evaluate the closest standard alternative
to window shifting, namely additive brightness, which shifts
the distribution of preprocessed pixel values similarly as our
method. As a baseline we also evaluate the performance of
not applying any intensity augmentations.

We present the results in Table 1, and verify that any in-

Intensity augmentation LiTS difficult UNN difficult
None (geometric only) 0.231 ± 0.203 0.219 ± 0.148

Contrast 0.280 ± 0.168 0.355 ± 0.113
Mult. brightness 0.271 ± 0.184 0.363 ± 0.087

Gamma 0.229 ± 0.162 0.383 ± 0.075
Gamma inverse 0.248 ± 0.155 0.478 ± 0.065
Add. brightness 0.293 ± 0.184 0.485 ± 0.080

nn-UNet 0.272 ± 0.188 0.501 ± 0.059
Window shifting 0.303 ± 0.188 0.520 ± 0.027

Table 2. The segmentation dice scores on difficult volumes
with low contrast (< 20 HU) between tumor and healthy tis-
sue in the LiTS validation set and the UNN dataset.

tensity augmentation improve segmentation results over the
baseline of not applying any. The proposed method of apply-
ing shifted viewing windows during preprocessing increase
the segmentation performance more than any of the alterna-
tives. Non-linear gamma transformations, have a more posi-
tive effect on segmentation results than the scaling augmen-
tations. This might be due to their ability to stretch out cer-
tain parts of the distribution and increase contrast in the more
relevant areas yielding more diverse and informative training
images, as seen in Figure 3.

4.3. Identifying difficult cases of tumor segmentation

Small liver tumors and images with low contrast between tu-
mor and healthy liver tissue are identified as especially diffi-
cult for liver lesion segmentation models [4]. Specifically, im-
ages where the absolute HU difference between healthy and
tumor tissue is below 20 HU are considered hard to segment.
As low contrast within the liver often is due to poor timing
in the contrast-enhanced CT image, we hypothesize that our
clinically motivated window shifting augmentation will allow
the model to generalize better to such difficult cases.

We identify the difficult volumes in each validation split,
where the difference between mean HU intensity in the liver
and tumor tissue is < 20 HU. We consider these images as
difficult cases and evaluate the trained model from each fold
on these images, and similarly for the UNN dataset, and eval-
uate the models from all folds on these images to test if this
effect generalizes to another dataset.

We report the results of this experiment in Table 2. As the
model is tested on only the most difficult cases in each dataset,
the overall performance drops as expected. However, the per-
formance of our proposed window shifting is better than its
baseline alternatives, which strengthens the main hypothesis.
Table 2 also suggests that intensity shifting in general is ben-
eficial to simulate the difficult images, as shifting, performed
also in additive brightness, does better than in Table 1.

5. CONCLUSION AND FUTURE WORK

In this paper we have proposed a new combined preprocess-
ing and intensity augmentation technique, called window



shifting, for DL-based segmentation of contrast-enhanced CT
images. Our method respects the physical properties of CT
images and improves model segmentation performance and
robustness to images with poorly timed contrast agent. We
have demonstrated the effectiveness of our proposed method
and compared it with classical intensity augmentations as
well as nn-UNet’s augmentation pipeline. Our method out-
performs them and yields better transfer performance when
tested on multiple other CT liver tumor datasets. This clin-
ically motivated augmentation method integrates into the
preprocessing pipeline of the DL training framework. Also,
we provided an analysis on the choice of hyperparameters for
region-specific augmentations. Overall, our proposed win-
dow shifting technique is a powerful approach to improve the
accuracy and robustness of DL-based segmentation of liver
tumors in contrast-enhaced images. We envision that further
development of preprocessing and augmentation schemes for
DL that respect the underlying signal-generating process may
be fruitful arenas for future research with respect to medical
images beyond CT, or for images from vastly different areas
such as e.g. remote sensing.
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