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Abstract
Continuous authentication modalities collect and utilize users’ sensitive data to authenticate them continuously. Such data
contain information about user activities, behaviors, and other demographic information, which causes privacy concerns. In
this paper, we propose two privacy-preserving protocols that enable continuous authentication while preventing the disclosure
of user-sensitive information to an authentication server. We utilize homomorphic cryptographic primitives that protect the
privacy of biometric features with an oblivious transfer protocol that enables privacy-preserving information retrieval. We
performed the biometric evaluation of the proposed protocols on two datasets, a swipe gesture dataset and a keystroke dynamics
dataset. The biometric evaluation shows that the protocols have very good performance. The execution time of the protocols
is measured by considering continuous authentication using: only swipe gestures, keystroke dynamics, and hybrid modalities.
The execution time proves the protocols are very efficient, even on high-security levels.

Keywords Privacy · Homomorphic encryption · Continuous authentication · Behavioral biometrics · Oblivious transfer
protocol

1 Introduction

User authentication plays an important role in technology. In
traditional settings, authentication is accomplished by PINs,
passwords, or using biometry such as face-, fingerprint-, iris
recognition, etc. These techniques authenticate users once at
the beginning of a session. Traditional authentication tech-
niquesmay have potential security problems,whichmay lead
to security breaches such as session hijacking, etc. Such prob-
lems appear when accounts get compromised, for instance,
passwords get stolen, presentation attacks on biometrics, or
when a device remains unlocked and somebody maliciously
uses it during the absence of the user.
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Continuous authentication as a second-factor authentica-
tion mechanism may mitigate such security problems and
it strengthens security by re-authenticating users during the
active session. Continuous authentication is different from
traditional authentication, where the user is restricted to per-
form certain actions for authentication. Restricting a user
to perform only certain predefined actions for continuous
authentication requires the use attention and reduces the
usability [1]. Continuous authentication is passively achieved
either by behavioral biometrics (motion dynamics, keystroke
dynamics, touch gestures, etc.) or by context-aware modal-
ities such as continuously monitoring user location data by
GPS, IP addresses, number of installed applications, brows-
ing histories, etc.

Behavioral biometric-based modalities offer advantages
over context-aware modalities due to certain limitations of
context-aware modalities. Using behavioral data to authen-
ticate user may strengthen security based on their actions
while using a device. Context-aware modalities authenticate
the user by monitoring device information, such as, when
a user changes specific locations, devices, etc. They can-
not deal with the problem when devices remain unlocked, or
when the first-factor authenticationmechanism gets compro-
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mised and no change occurs in logical or physical locations
of the user.

Choosing a proper modality for continuous authentica-
tion is very crucial. Even using a single behavioral biometric
modality faces certain limitations, for instance, utilizing only
keystroke dynamics does not work when the user does not
type. Such limitations can be overcome by combining dif-
ferent modalities of behavioral biometrics (for example,
keystroke dynamics in combinationwith swipe-gestures, gait
dynamics, GPS data, etc.); this term is referred to as mul-
timodal authentication. In case, if an imposter gets access
to a device, he has to use it by performing some actions;
either he types, monitors screen by performing scrolling with
mouse, or performs swipe gestures on the touch screen, etc.
Such actions are utilized for continuous authentication and
the imposter is detected.

1.1 Problem definition

User privacy is crucial in the domain of continuous authen-
tication. The potential problem with the modalities of con-
tinuous authentication is that they utilize user personal data.
Adding more modalities may strengthen more security but
also become more privacy invasive. These modalities dis-
close the data about daily life activities, physical and logical
locations, other personal and demographic information, etc.
Emotional states may also be identified from such data [2]
and based on such information a user profiling can be done
maliciously.

Therefore, it is important to protect the privacy of user
activities as well as other additional information that can
be induced from such data. The term “activity” refers to
an action that user performs such as a swipe-gesture, a
keystroke, a location activity, browsing activities, gait activi-
ties (sitting, running, jogging), etc. Revealing an activity to an
authentication server implies that the authentication knows
what exactly the user is typing, walking, jogging, running,
location information etc., even the features are encrypted. In
this paper, we focus on two problems: P1) privacy of behav-
ioral features, e.g., demographic information which could be
induced from the behavioral features and P2) privacy of user
activity, e.g., the index of particular action that user performs
to get authenticated.

1.2 Our contribution

To protect the privacy of user demographic information and
user activities. We propose privacy-preserving protocols that
enable continuous authentication and static authentication
in the encrypted domain. We use two different crypto-
graphic approaches to protect user privacy: (1)Using additive
homomorphic encryption, the authentication server sends
the encrypted reference feature vectors back to user at the

beginning of a session. This protocol solves P1 and P2. The
authentication server does not have the access to unencrypted
features and cannot knowwhich activity is performed, but the
user can see the indices of all activities. (2) Using additive
homomorphic encryptionwith an oblivious transfer protocol.
This protocol also solve both problem P1 and P2, in distinc-
tion to above-mentioned solution, the authentication server
does not send features vectors back to the user in the begin-
ning of a session. But the user performs k activities and the
user and the authentication server invoke oblivious transfer
protocol to retrieve k feature vectors. This solution protects
the indices of the activities that user did not performed such
as the sender does not knowwhich elements are retrieved and
the user does not know anythingmore thanwhat he has asked
for. Note that the homomorphic encryption preserves the pri-
vacy of features and oblivious transfer protocol preserves the
privacy of indices.

This article makes the following contributions:

– Three efficient authentication protocols for protecting
user privacy w.r.t. biometric features and user activities.

– We prove that our protocols can be utilized for a single
modality as well as for multiple modalities (hybrid) of
continuous authentication without making any modifica-
tions.

– We show that with a minor modification, the proposed
protocol 1 can be utilized for static authentication.

The rest of the paper is organized as follows, Sect. 2 discusses
a literature review; the adversarial model and preliminar-
ies are discussed in Sect. 3; privacy-preserving continuous
authentication protocol 1 is proposed in Sect. 5; and privacy-
preserving continuous authentication protocol 2 is proposed
in Sect. 6; computation cost analysis is discussed in Sect. 7,
biometric evaluation is presented in Sect. 8. Finally, Sect. 10
concludes the paper and discusses the future work.

2 Related work

This section presents the literature review of privacy preserv-
ing continuous authentication schemes.

Govindarajan et al. [3] proposed a privacy-preserving pro-
tocol for touch dynamics-based continuous authentication.
The additive homomorphic encryption is used to propose
a privacy-preserving authentication protocol. They used the
Scaled Manhattan Distance (SMD) and Scaled Euclidean
Distance (SED) to determine the distance between a refer-
ence feature vector and a probe vector. The ScaledManhattan
Distance is computed by utilizing a private comparison pro-
tocol proposed by Erkin et al. [4] and the homomorphic
DGK encryption algorithm proposed by Damgård et al. [5].

123



Privacy-preserving continuous authentication... 1835

Their schemes are not efficient for continuous authentication
mainly due to the inefficiency of the subprotocol.

Sitová et al. [6] proposed a dataset by collecting features
related to user hand movement, device orientation, and grasp
(HMOG). They proposed an authentication scheme utiliz-
ing biometric key generation (BKG). The construction of
their proposed work is based on fuzzy commitment scheme
of Juels and Wattenberg [7]. However, such techniques face
certain limitations related to data reversibility, and data dis-
tinguishability and do not achieve privacy [8].

Balagani et al. [9] extended Govindarajan et al. idea and
proposed a keystroke dynamics-based privacy-preserving for
the periodic authentication. They also utilized the Erkin et
al. [4] protocol and the homomorphic DGK encryption algo-
rithm proposed by Damgård et al. [5].

A privacy-preserving implicit authentication scheme pro-
posed by Wei et al. [10] used homomorphic encryption
properties for touch dynamics-based periodic authentication.
They compute a cosine similarity between encrypted ref-
erence template and the probe. The authentication server
decrypts and compares the final similarity scores between the
encrypted template and probes and compares the outcome
against a threshold. The Wei et al. scheme cannot provide
privacy against honest-but-curious authentication server and
also vulnerable to active adversary attack [11].

Safa et al. [12] proposed a privacy-preserving generic
protocol for context-aware authentication modalities. They
utilized the data about users location data, browsing histo-
ries, etc. The privacy is achieved by additive homomorphic
encryption properties and they used order-preserving sym-
metric encryption (OPSE) to preserve numerical order of the
features. The authentication decision is based on the dissim-
ilarity scores determined by the average absolute deviation
(AAD) between fresh generated features and prestored ref-
erence features.

Shahandashti et al. [13] proposed a privacy-preserving
implicit authentication protocol. They also utilized OPSE
and a generic additive homomorphic encryption to propose
a privacy-preserving scheme. Their implicit authentication
protocol considers different features for implicit authenti-
cation such as user location, visited websites, etc. Average
absolute deviation (AAD) is utilized to determine the close-
ness between input and reference templates.

Another privacy-preserving implicit authentication pro-
tocol is proposed by Domingo-Ferrer et al. [14]. They also
used the data about the contextual features such as informa-
tion about carrier data, location data, and other information
about device such as installed applications, etc. They utilize
private set intersection to determine the intersection between
fresh generated features and prestored reference features.
They used Paillier cryptosystem as cryptographic primitives
to propose a private set intersection protocol.

3 Preliminaries

This sectiondiscusses the adversarialmodel, security require-
ments, and the building blocks.

3.1 Adversarial model

Honest-but-curious server. We assume that communication
between user and server is secure, and that external threats
such as replay attacks and other similar attack are mitigated
by applying other security techniques. The authentication
server is not trusted, but is considered an honest-but-curious
adversary, who will not deviate from the defined protocol
but will attempt to learn all possible information from legit-
imately received messages.

3.1.1 Security requirements.

A privacy-preserving protocol must fulfill the following pri-
vacy requirements:

– R1) The authentication server must not learn prestored
reference features and probes.

– R2) The identity claimer must not get unencrypted refer-
ence features.

– R3) The authentication server should only learn the out-
come, but must not learn which activities are performed
to authenticate users continuously.

3.2 Building blocks

Our privacy-preserving continuous authentication protocols
use the following building blocks:
Additive homomorphic encryption properties. Homomor-
phic encryption schemes enable the computations in the
encrypted domain. Paillier cryptosystem [15] supports the
following homomorphic properties: [[m1]] · [[m2]] = (1 +
m1 · n)(1 + m2 · n)rn mod n2 = (

1 + (m1 + m2)n
)
rn mod

n2 = [[m1 + m2]] and scalar multiplication: [[m]]k =
(1+m ·n)krnk mod n2 = (1+k ·m ·n)rnk̇ mod n2 = [[k ·m]].
A joint public key Kjoint and decryption key shares (sks , sku)
are created and securely distributed by a trusted third party
(TTP), where [[.]] presents the encryption by a joint pub-
lic key. The user holds sku and the server holds sks , where
λ = sku +sks . This can also be accomplished without a TTP
in a distributed manner [16]. The notations are presented in
Table 1.

3.2.1 Cosine similarity

Cosine similarity measures the similarity between sequences
of elements in the vectors. It computes the inner dot product
of sequence of elements in vectors and the dot product is
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Table 1 Notation [[x]] Encryption of x [x]1 First Partial decryption

sks Server secret key share [x]2 Second Partial decryption

sku User secret key share

N Total activities k k elements-out of N

m Total elements of feature vector i index of i th activity

�pi Probe vector of i th activity �bi Reference feature vector of i th activity

divided by the product of the lengths of vectors. Assume
�b = (b1, ..., bm) and �p = (p1, ..., pm) are two vectors, the
cosine similarity between (�b, �p) is defined as

cos(�b, �p) =
∑m

i=1 bi pi√∑m
i=1 b

2
i

√∑m
i=1 p

2
i

(1)

A cosine similarity of 1 indicates that vector b and vector p
are exactly similar, where 0 indicates complete dissimilarity
between two vectors.

3.2.2 Oblivious transfer (OT)

OT is a cryptographic primitive between two parties, a sender
and a receiver. The sender holds N elements in the database,
and the receiver wants to retrieve an index. Assume the server
has X = (X1, ..., XN ) elements, and the receiver wants to
learn Xk . 1-out-of-N OT protocol enables the receiver to
retrieve i th index from the database without revealing i to
the sender, while it also ensures the sender that the receiver
can only decrypt one element but other N−1 elements remain
oblivious to the receiver.

The k-out-of-N OTprotocol allows the receiver to retrieve
any k elements out of N elements without revealing them to
the sender. Any efficient OT extension can be utilized such
as [17–19], etc.

4 Generic continuous authentication scheme

This phase extracts features, samples the feature vectors, and
enrolls a user to the AS by creating reference feature vec-
tors (templates). We assume that continuous authentication
is implemented as the second factor; therefore, the user is
already authenticated by the first-factor authenticationmech-
anism, such as through a password or biometrics, and the AS
trusts that the user is legitimate.

In order to enroll a user to the authentication server, the
features are extracted from the keystroke patterns [20].

An authentication scheme consists of an enrollment phase
and an authentication phase. Note that, in Eq.1, �bi represents
the reference feature vectors (sampled during the enrollment
phase), and �pi represents the vectors of probe (sampled dur-

ing the authentication phase). During the enrollment phase,
features are extracted and reference feature vectors are cre-
ated. The feature vectors are sampled according to each user
activity �bi = (bi1, ..., bim) , 1 ≤ i ≤ N , where i represents
an activity and N is the total number of activities. Each activ-
ity i consists of a vector of m samples, where m is the total
numbers of samples in a vector. For instance, one keystroke
pattern or one swipe gesture is considered as a single activ-
ity. During the enrollment phase, one reference feature vector
�bi , 1 ≤ i ≤ N is created for each activity.

During the authentication phase, a probe vector is sam-
pled �pi = (pi1, ..., pim), 1 ≤ i ≤ N , on each activity
that the user performs. Similarity between prestored refer-
ence vector �bi and probe vector �pi is computed. We compute
the numerator and denumerator of the Eq.1 separately. There
are two reasons for doing this: Computing the numerator and
denumerator separately gives very goodperformance and this
allows us to sum results of k activities in the numerator and
denumerator. The numerator of Eq.1 is computed as follows

V ′
i = ∑m

j=1 bi, j · pi, j

An authentication decision cannot be made on the basis of
a single activity. For each activity i , similarity scores in the
numerator are summed to S1 as S1 = ∑k

i=1 V
′
i for k activities

which is a little deviation from the original cosine similarity,
and denumerator of Eq.1 is computed as follows:

V ′′
i =

√∑m
j=1 b

2
i, j ·

√∑m
j=1 p

2
i, j

and the scores are summed as S2 = ∑k
i=1 V

′′
i for k activities.

The authentication is performedon the basis of k activities,
so the cosine similarity is computed between the activities
of k probe and reference vectors. Finally, the authentication
decision is made as S = S1/S2 which is computed over k
activities. A complete algorithm is presented in Fig. 1. Note
that each activity is just an action performed by a user, in case
of continuous authentication, we do not know in advance that
which action user could perform, that is why we create and
store reference feature vectors of N activities. However, in
case of static authentication, user is restricted to performfixed
actions and only one reference feature vector is created and
stored.

123



Privacy-preserving continuous authentication... 1837

Algorithm 1 Generic continuous authentication scheme
Enrollment phase
�bi = (bi1, ..., bim), 1 ≤ i ≤ N

Authentication phase
�pi = (pi1, ..., pim)

V ′
i = ∑m

j=1 bi, j · pi, j , 1 ≤ i ≤ k

S1 = ∑k
i=1 V

′
i

V ′′
i =

√∑m
j=1 b

2
i, j ·

√∑m
j=1 p2i, j , 1 ≤ i ≤ k

S2 = ∑k
i=1 V

′′
i

S = S1/S2
if (S > T ) then
Accept

end if

5 Privacy-preserving protocol 1

Privacy-preserving protocol 1 consists of two phases the
enrollment and the authentication phase.

5.1 Enrollment phase

The features are sampled in accordance with cosine simi-
larity. In the first step, the keystroke features are sampled
�bi = (bi1, ..., bim) and for each keystroke pattern Bi is com-

puted as Bi =
√∑m

j=1 b
2
i, j , as stated in the previous section.

The reference templates contain the vectors �bi and corre-
sponding Bi of each keystroke pattern. A unique index is
assigned to each keystroke, such as ASCII code of each key.

In the case of swipe-gesture, each swipe gesture generates
time-series features. The features are sampled and classified
into a specified category, such as horizontal, vertical, etc., and
a unique index is assigned to horizontal and vertical swipe
gestures according to [21]. Bi is computed in a similar way as
stated in above. Note that, in distinction to keystroke dynam-
ics, the reference vectors of swipe gestures contain only two
activities; a vertical swipe-gesture activity with m elements
and a horizontal swipe gesture with m elements, and their
corresponding Bi which is computed over the order of each
swipe gesture.

Each element of each vector �bi is encrypted by Paillier
cryptosystem [[bi ]] = (1+bi, j ·n)rni, j mod n2, 1 ≤ j ≤ m,
1 ≤ i ≤ N and their corresponding [[Bi ]] = (1 + Bi · n)rni
mod n2, 1 ≤ i ≤ N , for each activity are encrypted by joint
public key. The private key is split into two shares sku and
sks . The user holds one share of the secret share sku , and
the server holds the other part of the secret key sks . The
decryption of any element is only possible when both parties
collaborate. The reason for using the split private key is to
enhance security, both parties have to participate to decrypt
a ciphertext, if one party gets compromised still the features
remain protected. The encrypted reference feature vectors

([[�bi ]], [[Bi ]])i , 1 ≤ i ≤ N

are transmitted to the AS for the user enrollment,which stores
it for the later use. Figure1 presents the enrollment phase of
protocol 1.

5.2 Authentication phase

The authentication phase takes probe and reference features
as input and computes a function that determines the simi-
larity between the probes and reference features. Proposed
Protocol 1 is presented in Fig. 2.During this phase, the probes
are sampled �pi = (pi1, ..., pim) and corresponding

Pi =
√√√
√

m∑

j=1

p2i, j

is computed for each activity. At the beginning of this phase,
AS sends the encrypted reference vectors [[�bi ]], [[Bi ]], 1 ≤
i ≤ N , consisting of all activities back to the user. For each
activity, the inner product of probe and reference features in
the numerator of Eq.1 under encryption is computed by the
following equation:

[[Vi ]] =
m∏

j=1

[[bi, j ]]pi, j = [[
m∑

j=1

bi, j · pi, j ]] (2)

The denumerator of Eq.1 under encryption is computed
as

[[V ′′
i ]] = [[Bi ]]Pi = [[Bi · Pi ]] (3)

[[Vi ]] and [[V ′′
i ]] are computed for k activities, such as

after each activity [[Vi ]] and [[V ′′
i ]] are homomorphically

summed as [[S1]] = ∏k
i=1[[Vi ]] = [[∑k

i=1 Vi ]] and [[S2]] =
∏k

i=1[[V ′′
i ]] = [[∑k

i=1 V
′′
i ]], which is a little deviation from

the Cosine similarity. To determine the similarity between
the encrypted reference features and the probes, one has to
compute the fraction between [[S1]] and [[S2]]. This divi-
sion cannot be performed on both encrypted values [[S1]]
and [[S2]]. The user sends [[S1]], [[S2]] to the AS, which
partially decrypts for the collaborated decryption.

Before partial decryption, the AS selects a randomnumber
x ∈ Zn and blinds [[S1]] and [[S2]] as [[S3]] = [[S1]]x =
[[S1 · x]] and [[S4]] is computed as [[S4]] = [[S2]]x = [[S2 ·
x]]. AS partially decrypts [S4]1 = [[S4]]sks and sends [[S3]],
[[S4]], [S4]1 back to the user. The user computes [S4]2 =
[[S4]]sku and fully decrypts S4 = ([S4]1 · [S4]2), note that
due to the blindness x the user cannot see S4, as Paillier
cryptosystem is built on bijective mapping an inverse can
be computed in modulo n as S−1

4 = 1/S4 mod n. By using
homomorphic property, similarity [[S]] is computed as
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Fig. 1 Enrollment phase of protocol 1

[[S]] =[[S3]]S−1
4 = [[S3 · S−1

4 ]] (4)

The user partially decrypts [S]1 = [[S]]sku and sends
[[S]], [S]1 to the authentication server. The authentication
server reveals his shares [S]2 = [[S]]sks and decrypts S
by combining the shares using homomorphic property S =
([S]1 · [S]2) and checks whether (S > T ), if no then authen-
tication is denied and the user has be re-authenticated by first
factor authentication mechanism.

5.3 Correctness

The correctness of the proposed protocol can be verified as
follows:

The numerator of Eq. 1 is computed as

[[Vi ]] =
m∏

j=1

[[bi, j ]]pi, j =
m∏

j=1

(1 + bi, j · n)pi, j r
n·pi, j
i, j mod n2

=
m∏

j=1

(1 + bi, j · pi, j · n)r
n·pi, j
i, j mod n2

and homomorphically summed as

[[S1]] =
k∏

i=1

[[Vi ]] =
k∏

i=1

(

m∏

j=1

(1 + bi, j · pi, j · n)r
n·pi, j
i, j )

and

[[S3]] =[[S1]]x = ( k∏

i=1

m∏

j=1

(1 + bi, j · pi, j · n)r
n·pi, j
i, j

)x

=
k∏

i=1

m∏

j=1

(1 + bi, j · pi, j · x · n)r
n·pi, j ·x
i, j

The denumerator of Eq. 1 is computed as

[[V ′′
i ]] =[[Bi ]]Pi = (1 + Bi · Pi · n)rn·Pi

i mod n2

and homomorphically summed as

[[S2]] =
k∏

i=1

[[V ′′
i ]] =

k∏

i=1

(1 + Bi · Pi · n)
rn·Pi
i

and

[[S4]] =[[S2]]x = ( k∏

i=1

(1 + Bi · Pi · n)rn·Pi
i

)x

=
k∏

i=1

(1 + Bi · Pi · x · n)rn·Pi ·x
i

The authentication server partially decrypts as follows:

[S4]1 =[[S4]]sks

=( k∏

i=1

(1 + Bi · Pi · x · n)rn·Pi ·x
i

)sks

=
k∏

i=1

(1 + Bi · Pi · x · sks · n)rsks ·n·Pi ·x
i

The user performs the partial decryption as

[S4]2 =[[S4]]sku

=( k∏

i=1

(1 + Bi · Pi xn)rn·Pi ·x
i

)sku

=
k∏

i=1

(1 + Bi · Pi · x · sku · n)rsku ·n·Pi ·x
i

The user combines the shares as

A1 = [S4]1 · [S4]2
= (

k∏

i=1

(1+Bi ·Pi ·x ·sks ·n)rsks·Pi·x·ni )(

k∏

i=1

(1 + Bi ·Pi ·x ·

sku · n)rsku ·n·Pi ·x
i ) mod n2
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Fig. 2 Authentication phase protocol 1

=
k∏

i=1

(1 + Bi · Pi · x · n(sku + sks))r
Pi ·x ·n(sku+sks )
i

=
k∏

i=1

(1 + Bi · Pi · x · λ · n)r Pi ·x ·n·λ
i mod n2

=
k∏

i=1

(1 + Bi · Pi · x · λ · n) = 1 + x · λn
k∑

i=1

Bi · Pi

since r Pi ·x ·n·λ
i mod n2 ≡ 1 mod n2.

S4 = L(A1) = (1 + x · λn
k∑

i=1

Bi · Pi )

= 1 + ·x · λ · n · ∑k
i=1 Bi · Pi − 1

λ · n

= x
k∑

i=1

Bi · Pi

S−1
4 can be computed as S−1

4 = 1
S4

mod n.

[[S]] = [[S3]]S−1
4

= ( k∏

i=1

m∏

j=1

(1 + bi, j · pi, j ) · x · n · rn·pi, j ·x
i, j

)S−1
4

r
n·pi, j ·x ·S′

4
i, j

=
k∏

i=1

m∏

j=1

(1 + bi, j · pi, j · S−1
4 · x · n)r

n·pi, j ·x ·S−1
4

i, j

The partial decryptions by the user and the authentication
server are done as

[S]1 =[[S]]sku

=( k∏

i=1

m∏

j=1

(1 + bi, j · pi, j · S−1
4 · x · n)r

n·pi, j ·x ·S−1
4

i, j

)sku

=
k∏

i=1

m∏

j=1

(1+bi, j · pi, j ·S−1
4 ·sku ·x ·n)r

n·pi, j ·x ·S−1
4 ·sku

i, j

[S]2 =[[S]]sks =( k∏

i=1

m∏

j=1

(1+bi, j · pi, j ·S−1
4 xn)r

n·pi, j ·x ·S−1
4

i, j

)sks

=(

k∏

i=1

m∏

j=1

(1+bi, j · pi, j ·S−1
4 ·sks ·x ·n)r

n·pi, j ·x ·S−1
4 ·sks

i, j
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The authentication server combines the shares as

A2 =[S]1 · [S]2

=
k∏

i=1

m∏

j=1

(1 + bi, j · pi, j · S−1
4 · sku · x · n)r

n·pi, j ·x ·S−1
4 ·sku

i, j

k∏

i=1

m∏

j=1

(1 + bi, j · pi, j · S−1
4 · sks · x · n)r

n·pi, j ·x ·S−1
4 ·sks

i, j mod n2

=
k∏

i=1

m∏

j=1

(1 + bi, j · pi, j · S−1
4 (sku + sks) · x · n)

r
n·pi, j ·x ·S−1

4 (sku+sks )
i, j mod n2

=
k∏

i=1

m∏

j=1

(1 + bi, j · pi, j · S−1
4 · λ · x · n)r

n·pi, j ·x ·S−1
4 ·λ

i, j mod n2

=
k∏

i=1

(1 +
m∑

j=1

bi, j · pi, j · S−1
4 λ · x · n) mod n2

=1 + n · λ · x ·
k∑

i=1

m∑

j=1

bi, j · pi, j · S−1
4

where λ = sku + sks ,

S = L(A2) = (
1 + n · λ · x ·

k∑

i=1

m∑

j=1

bi, j · pi, j · S−1
4

)

= 1 + n · λ(x · ∑k
i=1

∑m
j=1 bi, j · pi, j · S−1

4 ) − 1

n · λ

= x
∑k

i=1
∑m

j=1 bi, j · pi, j
x

∑k
i=1

√∑m
j=1 b

2
i, j ·

√∑m
j=1 p

2
i, j

since S−1
4 = 1

x
∑k

i=1 Bi ·Pi
, by substituting 1

x
∑k

i=1 Bi ·Pi
, as

Bi =
√∑m

j=1 b
2
i, j , Pi =

√∑m
j=1 p

2
i, j , S is the final out-

come which is based on k activities.

5.4 Security analysis

The privacy of biometric features depends on the secu-
rity properties of additive homomorphic encryption such as
Paillier cryptosystem [15]. Proposed protocol achieves the
privacy under the security requirements stated in Sect. 3.1.1:
R1. The authentication server and the identity claimer must
not learn prestored reference features.

During the enrollment phase, the AS stores encrypted fea-
ture vectors, hence the AS cannot learn anything from the
stored features. During the authentication phase, similarity
is computed over encrypted reference features, so the identity
claimer cannot get unencrypted reference features.
R2. The identity claimer should not get unencrypted reference
features.

If the device gets compromised or anymalicious partymay
pretend as legitimate identity claimer and sends an authenti-
cation request to the server. During the authentication phase,
an identity claimer receives reference features encrypted by
joint public key, the identity claimer computes cosine simi-
larity on encrypted features and cannot decrypt the features.
Although, the identity claimer decrypts S4 since, the AS
blinds S4 with a random number x ∈ Zn , [[S4]] is computed
as [[S4]] = [[S2]]x = (1 + S2 · n)x = [[S2 · x]]; therefore,
the identity claimer cannot see S4. As the identity claimer
cannot fully decrypt the final scores [S]. Since, he cannot see
S in plaintext so, cannot be successful.
R3. The authentication server should only learn the outcome
but, must not learn which activity is performed to authenti-
cate users continuously

The reference feature vectors are sent back to the user and
the user performs similarity of k activities. The final outcome
S is based on k activities. This implies that AS does not know
which activities are performed.

6 Privacy-preserving authentication
Protocol 2

The Protocol 1 presented in the above section requires AS to
transmit encrypted vectors of all activities back to the user,
where the user performs an index i look-up and computes the
similarity between performed activity and the corresponding
prestored encrypted reference feature vector. The authenti-
cation is performed on the basis of only k activities; the user
only performs few activities during a session. The feature
vectors remain encrypted but the user can see the index of
all activities in the proposed Protocol 1. Considering the fact
that device may get compromised and revealing the indices
of all vectors reveals the information about user activities
and other relevant information. To solve this problem, we
propose protocol 2 that protects the privacy of all activities
from the authentication server and as well as also protects the
privacy of indices from the user. This protocol continuously
retrieves the encrypted reference vectors of the only activities
that user performs. This is accomplished by oblivious trans-
fer protocol, which allows the retrieval of k − out − of − N
elements without revealing k elements to the sender and it
also ensures the receiver can only decrypt k indices but other
N − kindices will remain oblivious from the user.

6.1 Enrollment phase

During the enrollment phase, the features are sampled and
corresponding indices are assigned in the same way as stated
in previously. Note that in both protocols the feature vec-
tors are encrypted using joint public key and they remain
encrypted during both enrollment and authentication phase.

123



Privacy-preserving continuous authentication... 1841

6.2 Authentication phase

The user samples k probes activities �pi = (pi1, ..., pim), 1 ≤
i ≤ k, and the user and server invoke an oblivious transfer
protocol as sub-protocol to retrieve k−out−o f −N elements
in a privacy-preservingmanner1. Note that the user processes
only k activities, the remaining activities are remain oblivi-
ous. This mechanism protects the privacy of user activities;
therefore, the authentication server does not know which
activity is retrieved and the user does not know anything
about other activities. Note that the authentication is per-
formed on encrypted features. The user sends Query(OT k

1 )

to retrieve k encrypted features [[�bi ]], [[Bi ]] against index
from AS. The rest of working computing the similar-
ity between encrypted reference features and probes using
homomorphic encryption is exactly same as done in Proto-
col 1. The privacy-preserving protocol 2 is presented inFig. 3.
Security analysis and correctness. This protocol protects the
indices from themalicious user and the authentication server.
The rest of the security analysis and correctness proof is the
same as stated in the above section.

7 Computation cost analysis and comparison

To determine the efficiency of the proposed protocols, we
analyze the computation cost of protocols and compare it
with the existing literature proposed in the domain of contin-
uous authentication. We determine the computation cost by
analyzing the number of rounds used to complete an authen-
tication decision, number of cryptosytems utilized to achieve
privacy, and the number of transmitted encryptions in each
round.

The [3] protocol transmits N encryption in first round and
one encryption in the second round. To compute euclidean
distance for N activities the user and the server perform N
communications. The authentication decision is completed
by four times invoking the privacy-preserving comparison
protocol. Each time the sub-protocol compares the series of
N encrypted elements of a feature vector. They compute the
euclidean distance are based on the [4] protocol, for n activ-
ities the server and user perform N interaction to compute
euclidean distance. This requires high communication cost.
Moreover, [3] protocol invokes privacy-preserving compar-
ison protocol as sub-protocol proposed by Damgård et al.
[23, 24], four times for N samples, where one comparison is
completed in three rounds. Their protocol takes total 12× N
rounds to complete an authentication decision.

The [10] protocol completes an authentication decision in
three rounds. In each round, they transmit an encrypted vec-

1 1-out-of- N may also be utilized but it causes high communication
cost.

tor of N elements. The N scalar multiplication is computed
to blind the features with a secret random number in first
round, then server also performs N scalar multiplications to
blind the reference feature vector. AS transmits a reference
vector of N encrypted elements back to the user. In the sec-
ond round, the user performs N scalar multiplications on
encrypted reference vector and probe vector and transmits N
encrypted elements to the server in the third round, the server
computes N modular inverses to remove the blindness and
computes the result. In total, they transmit 3×N encryption,
which is very costly.

Context-aware authentication modalities, such as authen-
tication based on GPS data, web-histories, IP addresses, e.g.,
are proposed by [13, 14]. [14] protocol completes authenti-
cation in three rounds and each round transmits N encrypted
elements. The similar case is with [13], it also completes
authentication in three rounds and each round transmits N
encrypted elements.

In comparison to [3, 9, 10, 13, 14, 22], our proposed proto-
col 1 presented in 2 is very efficient in terms of computation
cost, other protocols compute and transmit N the encrypted
elements in each round, whereas our protocol transmits N
encrypted elements in the first round and two encrypted ele-
ments in second and only one encrypted element in the third
round. The client performs k scalar multiplications, where
k < N and server performs only two scalar multiplications
to blind two elements.

Furthermore, in terms of privacy, the protocols in the lit-
erature [3, 10, 13, 14, 22] are limited to only one modality.
In case of multimodal authentication scenario, they cannot
preserve privacy of user activities. During the authentication
phase, the server and the user perform look-up functions for
specific activity and then the computation is performed; this
mechanism reveals the privacy of user activities; therefore,
they cannot provide full privacy.

The protocol 2 presented in Fig. 3 uses k-out-N oblivious
transfer protocol that provides the privacy of user activities.
The user sends k elements to the server, where the authen-
tication server sends N elements back to user, which has a
high cost comparing to protocol 1 presented in the Fig. 3. The
comparison is presented in Table 2.

8 Biometric evaluation

The biometric evaluation of all three proposed protocols is
similar.All protocols compute the cosine similarity in exactly
same ways; the only difference is that the second proto-
col 2 utilizes oblivious transfer protocol-based information
retrieval, which is not relevant in this section. This section
provides biometric evaluation on two different datasets.

We use differentmechanisms to evaluate the performance:
first, we evaluated the protocols for swipe gestures; secondly,
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Fig. 3 Authentication phase of protocol 2

Table 2 Complexity comparison

Protocol Rounds Transmitted encryptions Cryptosystem (s) Classification

[3] 4 2N + 2 DGK + SE20 MD,21ED22 Touch dynamics

[10] 3 3N Paillier+SE CS23 Touch dynamics

[14] 3 3N Paillier PSI24 Contextual data

[13] 3 3N Paillier + OPE25 AAD26 Contextual data

[22] 4 2N + 2 GC27 + DGK-HE MD, ED 1-prob Touch dynamics

Proposed protocol 1 3 N + 7 Paillier CS Single + multiple modalities

Proposed protocol 2 5 N + k + 7 Paillier + OT28 CS Single + multiple modalities

Symmetric encryption2 ,Manhattan distance3, Euclidean distance4, Cosine similarity5,
Set intersection6 Order preserving encryption7, Absolute average deviation8,
Garbled circuits9, Oblivious transfer10

for keystroke dynamics; and finally, we just combine swipe-
gestures with keystrokes (hybrid approach) which is more
relevant to the authentication. For swipe gestures, we used
publicly available dataset [2].29 For keystroke dynamics, we
used a publicly available dataset [25] available at.30

29 Available at. https://www.ms.sapientia.ro/manyi/bioident.html.
30 http://www.cs.cmu.edu/~keystroke/laser-2012/

To determine the performance, we compute encrypted
cosine similarity by using partial homomorphic encryption
library [26]. Note that, on the basis of the orientation of a
gesture, it is classified into a vertical or horizontal gesture.
Each swipe gesture (vertical/horizontal) and each keystroke
has vectors of features with m length. In order to determine
the biometric performance, we compute the cosine similarity
between the encrypted reference features and the probes.
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In the case of gesture recognition, the dataset contains
touch gestures of different participants. Each participant pro-
vided a total of l data samples. For each user, one horizontal
and one vertical swipe gesture samples are used to as ref-
erence feature vectors (templates) for training, and the rest
of the samples (l − 2) is used for the testing. In the case
of keystroke dynamics, the dataset contains l samples of N
keystroke activities. Out of l samples, one sample from each
keystroke is used as a reference vector (template), and the rest
(l − 1) are utilized for testing. One sample of each keystroke
is utilized as reference feature vectors, and the rest is used
for testing. A distinction between both modalities is that: the
swipe-gesture has only two reference vectors (templates):
whereas the keystroke dynamics has k reference vectors.

The biometric performance is analyzed by determining
the equal error rate (EER), false match rate (FMR), false
non-match rate (FNMR) of the proposed protocols on both
datasets [2, 25].31 The FNMR is determined by testing the
similarity between the encrypted reference template against
l − 1 other samples of each genuine user. In case of swipe
gestures, we created two encrypted samples as templates and
rest samples used for testing.

To determine FMR, we choose l samples from imposters
(other than genuine a user) and test the similarity between
the templates and l imposter samples. Table 3 presents the
performance of proposed protocols on a keystroke dynam-
ics dataset [25], and Table 3 presents the performance of
proposed protocols on swipe-gesture and keystroke datasets.
We tested the performance against different threshold (T).

We determined the biometric performance of proposed
protocols by considering different authentication scenarios
using different activities, such as single activity (k = 1), five
activities (k = 5), and nine activities (k = 9). In the case
of k = 1, a single swipe gesture or single keystroke pattern
is considered, which is exactly according to the cosine simi-
larity. Computing the numerator and denumerator separately
allows us to combine the dot products k activities and per-
form only one decryption. We summed the dot products of k
activities in the numerator and the denumerator and then per-
formed a fraction. Such as, in case of k = 5, the final fraction
is based on five activities, similarly, in the case of k = 9, the
final fraction is based on nine activities. By doing this, we
achieved very good performance as shown in Table 3. The
achieved EER on encrypted features is exactly equal to the
achieved EER on plaintext domain (unencrypted features) of
Algorithm 1, presented in Fig. 1.

Besides the performance in EER, we compute the execu-
tion time of the proposed protocols on Intel(R) Core(TM)
i5-7440 HQ CPU @ 2.80GHz, 32 GB RAM in Python
3.10. To evaluate the computation cost, we measured exe-

31 we selected the samples of 20 users from swipe-gesture dataset and
samples of 15 users from the keystroke dynamics dataset.

cution time to complete homomorphic operations performed
in the proposed protocols. The execution time is mea-
sured in milliseconds (ms). We tested the execution time
of proposed protocols by choosing different security lev-
els (80 , 112 , 128 , 192). We measured the execution time
in three different scenarios: (1) only utilized swipe-gestures
for continuous authentication, (2) only keystroke-dynamics-
based continuous authentication, and (3) in a hybrid way (by
combining both the swipe-gestures and the keystrokes). In
the case of swipe-gestures, each activity has a vector of 14
elements, and the authentication decision made on the basis
of k gesture activities. We made the authentication decision
based on nine activities such as k = 9 (nine swipe gestures for
continuous authentication). In case of keystroke-dynamics,
the authentication decision is based on the vectors of nine
keystrokes k = 9, it contains 31 feature elements including
digraphs. In case of the hybrid approach, we combined five
activities of swipe-gestures and nine activities of keystroke
dynamics; total k = 14 utilized for continuous authentica-
tion.

The execution time of authentication of Protocol 1 using
swipe gesture data has been 37ms, 107ms, 224ms, 990ms,
on security levels 80, 112, 128, 192, respectively. In the case
of keystroke dynamics, the execution time of protocol 1 has
been 20ms, 53ms, 120ms, 367ms. The execution time of pro-
tocol 1 using hybrid data (combining keystroke data with
swipe gesture data) has been 26ms, 77ms, 157ms, 743ms,
respectively. The execution time of Protocol 2 using RSA-
based generic oblivious transfer protocol has been 524ms,
594ms, 711ms, 1477ms, on swipe gesture data. For keystroke
data, it has been 407ms, 540ms, 607ms, 854ms, and onhybrid
data it has been 497ms, 516ms, 553ms, 1350ms. Note that
the for security level for oblivious transfer protocol is 112
for all three authentication scenarios.

The execution times of proposed protocol 1 are presented
in Fig. 4a and b and c. The execution times of proposed pro-
tocol 2 are presented in Fig. 5a, b and c. The activity of a
single swipe-gesture contains more elements in a vector than
an activity of a single keystroke vector; due to this reason,
the execution time of keystroke-dynamics ismuch lower than
swipe-gestures. Similarly, the hybrid authentication scenario
contains five gesture and nine keystroke activities, due to
that it has less execution time than swipe-gestures only 4a.
In the plaintext domain, the running of Algorithm presented
in Fig. 1, takes between 0.65 − 3ms in all three scenarios
(swipe gestures, keystrokes, and hybrid). Considering the
fact of continuous authentication, proposed protocols work
efficiently even on very high security level (e.g., security
level 192 − 7680). To determine the execution time of pro-
tocol 2, we used generic oblivious transfer protocol library
that is based and set fixed key-length with security level 112
for all cases. Due to the oblivious transfer protocol as sub-
protocol, the proposed protocol 2 has higher execution time
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Table 3 Performance analysis of proposed protocols

k = 1 k = 5 k = 9

a) Swipe gesture

T FNMR FMR EER FNMR FMR EER FNMR FMR EER

0.85 0.120 0.277 0.199 0.064 0.229 0.147 0.073 0.231 0.152

0.86 0.140 0.256 0.198 0.081 0.186 0.134 0.083 0.167 0.125

0.87 0.153 0.231 0.192 0.099 0.157 0.128 0.094 0.128 0.111

0.88 0.171 0.217 0.194 0.110 0.136 0.123 0.104 0.064 0.168

0.89 0.186 0.204 0.195 0.144 0.121 0.133 0.135 0.051 0.093

0.90 0.190 0.183 0.187 0.185 0.114 0.150 0.135 0.051 0.093

0.91 0.205 0.165 0.185 0.212 0.093 0.153 0.186 0.026 0.016

0.92 0.225 0.141 0.183 0.225 0.086 0.156 0.230 0.013 0.122

b) Keystroke dynamics

0.85 0.111 0.486 0.298 0.076 0.473 0.275 0.033 0.328 0.180

0.86 0.130 0.437 0.283 0.114 0.384 0.249 0.033 0.297 0.165

0.87 0.158 0.406 0.282 0.171 0.330 0.250 0.066 0.156 0.111

0.88 0.165 0.364 0.265 0.180 0.250 0.215 0.200 0.094 0.147

0.89 0.191 0.322 0.257 0.219 0.179 0.214 0.266 0.078 0.172

0.90 0.226 0.270 0.248 0.295 0.134 0.200 0.300 0.078 0.189

0.91 0.276 0.234 0.255 0.362 0.089 0.220 0.300 0.015 0.158

0.92 0.345 0.196 0.270 0.448 0.089 0.267 0.483 0.015 0.248

Fig. 4 a Execution time of Protocol 1 for swipe gesture, b Execution time of Protocol 1 for keystroke-dynamics, c Execution time of Protocol 1
for hybrid modalities

Fig. 5 a Execution time of Protocol 2 for swipe gesture, b Execution time of Protocol 2 for keystrokedynamics, c Execution time of Protocol 2 for
hybrid modalities
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than the proposed protocol 1. The execution time doe not
include communication cost.

9 Discussion

Continuous authentication can be accomplished in differ-
ent ways. Preferably, continuous authentication by combing
multiple modalities makes the security more stronger. The
more modalities we add, more we strengthen the security,
and more it gets privacy-invasive. Privacy of biometric fea-
tures can be achieved by homomorphic encryption, but such
data are index-sensitive. When an index is retrieved from the
authentication server, it reveals the privacy of that particular
activity; consequently, the authentication server may know
the user activities as stated in Sect. 1.1.

There are different ways to achieve the privacy of indices.
One possible way could be using a hash function, where
indices are hashed-salted with a secret key, but due to the
deterministic nature of a hash function, one cannot guarantee
the security of the hash function. The second way is utilizing
the private information retrieval (PIR)-based solution, where
the authentication server transmits all features back to the
user. In order to achieve good privacy, we adopt a PIR-based
solution in Protocol 1, but all features are sent back to the user
at the beginning of the session without revealing any activ-
ity to the server. Another way is utilizing oblivious transfer
protocol to retrieve only k elements without letting know
the authentication server that which k elements are retrieved.
As the session gets longer, less elements are retrieved; for
instance, if continuous authentication consists of 10 activ-
ities, e.g., five swipe gestures and five keystrokes patterns,
then instead of sending k = 10 indices, only k = 6 − 7
are sent and retrieved, because the query contains the indices
of five keystrokes patterns and one-two swipe gestures (hor-
izontal or vertical). Further, if same keystroke patterns are
pressed repeated then only one index is retrieved for the same
keystroke pattern. So, the communication cost of the user to
the server always remains ≤ k.

The proposed protocols 1 and 2 fulfill the requirements
of privacy. Moreover, we modified protocol 1 and proposed
protocol 3 for static authentication in Appendix 1. In the case
of static authentication, only one feature vector is utilized.
Usually, a feature vector of usernames and passwords is used
for the authentication.

In terms of computation cost, Squared Euclidean and
Scaled Manhattan distances are normally utilized to deter-
mine the dissimilarity between reference features and probes.
Computing the above-mentioned distances have a very high
communication cost. SquaredEuclideanDistance for k activ-
ities requires k decryptions and k rounds transmissions
between the user and AS. In the proposed protocols, tak-
ing advantage of cosine similarity, for k activities, protocols

require only one round transmission.We note that computing
numerator and denumerator of cosine similarity separately
and aggregating numerator and denumerator of k activities
improves the biometric performance in terms of ERR and
also reduce communication cost.

The proposed privacy-preserving protocols do not degrade
performance in terms of accuracy. However, they take more
execution time than the plaintext domain, but still, the exe-
cution time is efficient enough to adopt them in real-time
applications. One challenge we face while creating the refer-
ence feature vector from l samples, choosing a right reference
feature vector (template) is always critical, in this regard
we machine learning could be very helpful. The focus of
this paper has been toward providing good privacy without
degrading any performance in terms of accuracy.

10 Conclusions and future work

In this paper, we have proposed privacy-preserving contin-
uous authentication protocols. Proposed protocol 1 is very
efficient in terms of communication and computation costs.
Utilizing oblivious transfer protocol as a building block, we
have proposed protocol 2 that fulfills privacy requirements.
Protocol 2 reveals only relevant indices to the user. The bio-
metric evaluation of the proposed protocol is done on two
publicly available datasets. We have achieved very good per-
formance in terms of an EER of on swipe gestures data and
keystroke dynamics data. Moreover, we modified protocol 1
and proposed protocol 3, which can be utilized for static
authentication.

Furthermore, we have tested the execution time of pro-
posed protocol on different security levels 80, 112, 128,
192. Considering continuous authentication scenario based
on k activities of swipe gesture, keystroke dynamics, and
combined (hybrid) modalities, the proposed protocols have
proven very efficient.

We have proved that the proposed protocols can be uti-
lized for a single modality as well as for multiple modalities
of continuous authentication. This includes multiple behav-
ioral modalities, contextual modalities, or in combination of
behavioral biometrics with the contextual modalities.

A minor disadvantage of protocol 2 is its high commu-
nication cost. Our future work will focus on reducing the
communication cost of protocol 2. Furthermore, we will
focus on malicious parties, where any party can deviate from
the protocol, such as stolen device and compromised server
for our future work.
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Appendix

Static authentication protocol

With a minor modification, proposed protocol 1 can be mod-
ified for static authentication. The enrollment phase is done
in the similar way as stated in Sect. 5.1. The static authentica-
tion requires predefined actions at the beginning of a session,
such as fixed-text input, such as a user typing his usernames
or passwords. In distinction to continuous authentication,
the static authentication utilizes only one reference vector
instead of multiple vectors. The static authentication [[V ′

i ]]
and [[V ′′

i ]] are computed in same way as computed in con-
tinuous authentication scenario 5.2, as static authentication
utilized only one vector, so [[S1]] and [[S2]] are not needed
for static authentication. Proposed privacy-preserving static
authentication protocol is presented in Fig. 6.

Fig. 6 Privacy-preserving static authentication protocol
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