
1. Introduction
Global mean temperature is a common indicator of climate change (Williams & Eggleston,  2017). Recently 
several of the global temperature series (Morice et al., 2020; Lenssen et al., 2019; Huang et al., 2019; Rohde & 
Hausfather, 2020) have been updated with estimates of uncertainty. Craigmile and Guttorp (2022) used statistical 
methods to combine such estimates into a single one with attendant uncertainty. Together with the recent histor-
ical simulations that are part of the sixth Climate Model Intercomparison Project (CMIP6; Eyring et al. (2016)) 
this allows a new approach to assessing how well the climate model runs compare to the data series of historical 
development of global mean temperature.

Fan et al. (2020) compares a smaller group of the CMIP6 models than ours to two data sets: an earlier HadCRU 
set than ours, and a data set due to Willmott and Robeson  (1995), finding relatively high pattern correlation 
between models and data but with substantial regional variability between models. They also find that the ensem-
ble mean follows the data trend in global mean temperature over different time periods. There has long been a 
discussion about whether all climate model runs should be weighted equally in ensemble analysis, or one should 
weight them with regard to how well they reproduce historical data when forced by historical greenhouse gas 
emissions. It appears that the CMIP6 runs have forced this issue, in that models with very high climate sensitivity 
tend to do a poor job describing historical data (Hausfather et al., 2022; Zelinka et al., 2020). Several researchers 
(e.g., Ribes et al. (2021); Liang et al. (2020)) now argue for various kinds of weighting of climate model ensem-
bles relative to each model's historical performance.

In this work we produce a joint data product from five major observational products using a Bayesian hierarchi-
cal modeling framework. This modeling approach, first introduced in Craigmile and Guttorp (2022), accounts 
for inherent uncertainties in each observational product but also allows us to identify discrepancies between the 
different products. The posterior samples produced provide possible reconstructions of observed global tempera-
ture anomalies for the years 1880–2014, which we use to compare to global temperature anomalies for the same 
years calculated for different CMIP6 model runs in a number of ways. First, we compare changes in the global 
mean temperature anomalies over the period 1880–2014 by calculating nonlinear trends for both the joint data 
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product and the CMIP6 model runs. Second, we look for possible warming by calculating the difference in the 
mean temperatures from 1995–2014 relative to 1880–1899. Third, we compare the dependence structure of the 
residuals from the trend for the joint data product with the CMIP6 runs using plots of the spectrum density func-
tion. Finally, we compare the distributions of the time series residuals (the so-called innovations) after detrending 
using a shift plot.

It is important to note that our statistical modeling approach is not intended to emulate all features present in 
global temperature anomalies, such as decomposing the effect of the naturally variability from the various forcing 
effects (e.g., Sundberg et al. (2012); Hind et al. (2012); Moberg et al. (2015); Tingley et al. (2015)). Instead, our 
intention is to compare useful statistical summaries of trend, warming, and dependence and to point to CMIP6 
models and runs that agree or disagree with the distributions of these summaries inferred from the observational 
data products. This is a necessary first step to learning about the inherent time series structure of global temper-
ature anomalies expressed by different CMIP6 models.

In Section 2, we describe the data used: CMIP6 model runs and five observational global annual mean temper-
ature series. We then describe the hierarchical statistical methods used in Craigmile and Guttorp  (2022) that 
produces a reconstruction of the observed annual global temperature anomaly. In Section 3 we use this recon-
struction to build various simultaneous credible bands for the observed trend, the spectral density function (a 
summary of the dependence in the observed series), and the warming that we observe. We use these bands to 
compare the CMIP6 model runs to our observation product on an annual global scale. We close with a discussion 
and point to further work in Section 4.

2. Material and Methods
2.1. Climate Model Simulations

We use 318 runs from 58 models using the CMIP6 historical forcings (see Text S1 in Supporting Information S1 
for a complete list, with references). For each of the models we use all runs available with standard initialization, 
physics and forcing (typically called i1p1f1). The gray curves in Figure 1 shows the ensemble of global annual 
mean temperature, anomalized relative to the entire period. The anomalization is done by month and grid square. 
For each month/grid square combination we subtract off the mean temperature for that grid square and month 
over all years. We then calculate a mean global anomaly by area weighted averaging over grid squares. Finally a 
yearly anomaly is obtained by averaging monthly anomalies for each month in the year. The main reason for our 
approach to computing anomalies is that we are trying to mimic as much as possible the calculation of anomalies 
from land stations series. Among the advantages with our approach is that we take out seasonal variability and 
that we can deal with varying grid sizes in a consistent matter.

2.2. Temperature Data Products

Data products are obtained from Berkeley Earth (Rohde & Hausfather,  2020), GISS (Lenssen et  al.,  2019), 
Hadley Center (Morice et al., 2020), NOAA (Huang et al., 2019) and the Cowtan and Way (2014) global annual 
mean temperature series. We use data from 1880 through 2014, anomalizing each series with respect to the entire 
time period. We omit the Tokyo Climate Center series (Ishihara, 2007), as it only goes back to 1890, and appears 
to be biased downwards due to lack of Arctic information (McKinnon, 2022), and are unaware of any other data 
series that have reliable uncertainty estimates.

The five global annual mean series used are shown in black in Figure 1. In order to combine the five series we use 
a hierarchical Bayesian model. There is a fairly substantial literature that uses hierarchical statistical models in 
climate science. An early example is the prediction of ENSO-events (Berliner et al., 2000). Some other examples 
include paleoclimatology analysis (Tingley et al., 2015), the assessment of climate model bias and dependence 
(Jun et al., 2008), and climate projection uncertainty (Carvalho & Rickershauser, 2013). In this work, we extend 
the ideas of Craigmile and Guttorp (2022), who summarized global temperature anomalies.

2.3. Hierarchical Modeling

The basic idea behind the hierarchical approach to statistical modeling in this context is that the measurements 
correspond to a latent quantity, one interpretation of which may be the actual annual global temperature anomaly, 
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observed with error. The latent temperature anomaly is represented as a smooth trend with (residual) time series 
structure. In climate science, the term trend is commonly used to denote a linear trend. As we and others have 
pointed out elsewhere (e.g., Craigmile and Guttorp (2011); Stocker et al. (2013) [Box 2.2]), when looking at long-
term changes in global mean temperature, the trend is clearly not linear. We will therefore, in this paper, use the 
term trend to denote a smooth, nonlinear trend function. Letting {Yt : t = 1, …, N} denote the latent annual global 
mean temperature anomaly that we wish to infer upon, we assume that

𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜈𝜈𝑡𝑡, 𝑡𝑡 = 1, . . . , 𝑁𝑁𝑁 (1)

The trend component {μt} is modeled by a linear combination of b cubic b-spline basis functions {x T(t)} (de 
Boor, 1978):

𝜇𝜇𝑡𝑡 = 𝒙𝒙𝑇𝑇
(𝑡𝑡) 𝜷𝜷, 𝑡𝑡 = 1, . . . , 𝑁𝑁𝑁 (2)

We choose b  =  8 basis functions which corresponds to using a varying bandwidth kernel on the order of 
15–30 years to estimate a smooth temperature trend. The serial dependence about the trend, {νt}, is modeled 
using a stationary Gaussian autoregressive process of order p = 4 (AR(4)). (We discuss the robustness to other 
choices of basis functions, b, and autoregressive orders, p in Text S3 of Supporting Information S1).

We assume a model for the annual global temperature anomalies for the five data products {Dj,t}, j = 1, …, 
5 that depends on the latent annual global mean temperature anomaly {Yt} but also contains extra processes. 
Mathematically,

𝐷𝐷𝑗𝑗𝑗𝑗𝑗 = 𝑌𝑌𝑗𝑗 + 𝛿𝛿𝑗𝑗𝑗𝑗𝑗 + 𝜖𝜖𝑗𝑗𝑗𝑗𝑗𝑗 𝑗𝑗 = 1𝑗 . . . 𝑗 𝑁𝑁𝑁 (3)

The process {ϵj,t} captures the variability of each data product. A priori we assume that this process is independ-
ent over time and centered around zero, but with a variance that is equal to vj,t, a measure of uncertainty that is 
given by each group that produce the data product j at each time t. In addition since there is overlap in the meas-
urements used to compute the global mean temperature we assume correlation between different data products; 
corr(ϵj,t, ϵj′,t) = ρj,j′. The process {δj,t} captures an additional discrepancy for each data product j, that apriori is 
assumed to be independent over data products and time t, with a normal distribution centered around zero with a 
constant variance that must be estimated.

For further details of the model and a full discussion of the priors and computational details see Craigmile and 
Guttorp (2022). All computations were carried out in the R software package (R Core Team, 2023). We generate 
samples from the posterior distribution of the latent processes {Yt}, {δj,t}, {ϵj,t} and other model parameters given 
the data products using Markov chain Monte Carlo (MCMC). The samples of latent processes can also be consid-
ered an ensemble from the distribution; that is, the possible observed annual global temperature anomaly paths 
for the years 1800–2014 in the case of the {Yt} process. Figure 2 shows summaries of these latent observed annual 
global anomalies {Yt} for these years. In panel (a), the black line denotes the posterior mean latent observed 
annual global temperature anomalies and the gray band is a simultaneous 95% credible band, whereas in (b) the 
uncertainties are summarized by calculating posterior standard deviations of the anomalies by year. As expected, 
we see evidence of substantial warming on a global annual scales, especially since 1980. Except for during the 

Figure 1. Time series plots of the annual global temperature anomalies for 318 CMIP6 historical model runs (in gray) as 
well as annual global temperature anomalies for the five data products (in black).
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two world wars, the posterior standard deviation decreases from 1880 to 1980. The posterior standard deviation is 
more stable after 1980. In what follows we may also refer to the posterior latent observed annual global temper-
ature anomalies {Yt} as our data reconstruction.

The methodology designed for computing simultaneous credible bands for latent Gaussian processes can be 
found in Bolin and Lindgren (2015), with a description of the R software package excursions given in Bolin 
and Lindgren (2018). A simultaneous (1 − α)-credible band for a process X(t) is a region {(t, x): t = 1, …, T, 
qρ(t) ≤ x ≤ q1−ρ(t)}, where qρ(t) is obtained from the distribution of X(s) by choosing ρ so that the joint prob-
ability P(qρ(t) ≤ x ≤ q1−ρ(t), 1 ≤ t ≤ T) ≥ 1 − α. To determine the quantiles qρ(t) and q1−ρ(t) we must integrate 
the posterior distribution of X(t). The papers cited, as well as the excursions package, contain algorithms for fast 
computation of such integrals.

Figure 3a displays the trend estimate based on fitting the hierarchical statistical model to the five data prod-
uct series (we summarize the posterior distribution of the nonlinear trend component {μt}.) The gray area is a 
95% simultaneous credible band for the trend. The band being simultaneous means that it is valid for all years 
1880–2014 at the same time. One can for example, fit horizontal lines to see when the trend went above previous 
highs. We see that the global mean temperature anomaly trend since around 1990 is higher than at any previous 
time in the record.

A spectral analysis is a insightful summary of the dependence of a stationary time series in terms of a decomposi-
tion of sinusoids at different frequencies. The spectral density function expresses the variability of these sinusoids 
as a function of frequency (see, e.g., Brillinger (1981) and Percival and Walden (1993)). For an autoregressive 
process of order p the spectral density function S(f) at frequency f is (Percival & Walden, 1993, Equation 488b)

𝑆𝑆(𝑓𝑓 ) =
𝜎𝜎2

|1 −
∑𝑝𝑝

𝑗𝑗=1
𝜙𝜙𝑗𝑗𝑒𝑒−𝑖𝑖2𝜋𝜋𝑓𝑓𝑗𝑗|2

, 𝑓𝑓 ∈

[
−
1

2
,
1

2

]
, 

Figure 3. (a) Time series plots of the posterior mean trend for 1880–2014 (black lines), along with simultaneous 95% 
credible intervals (gray regions); (b) Posterior mean spectral density function (SDF) by frequency, of the AR(4) time series 
component {νt} (black lines), along with simultaneous 95% credible intervals (gray regions).

Figure 2. (a) Time series plots of the posterior mean global temperature anomalies for 1880–2014 (black lines), along with 
simultaneous 95% credible intervals (gray regions). (b) A plot of the posterior standard deviation of the anomalies by year.
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where ϕ1, …, ϕp are the coefficients of the autoregressive process and the innovation variance is σ 2. By evalu-
ating the spectral density function over posterior draws of the model parameters characterizing the time series 
component {νt}, we obtain the posterior distribution of the spectral density function. For each draw, we transform 
the spectral density function to the decibel (10 log10) scale. After verifying at each frequency that a Gaussian 
approximation for the log spectral density function draws was good using normal quantile-quantile plots, we 
calculate simultaneous 95% bands for the spectral density function on the decibel scale using the method of Bolin 
and Lindgren  (2015). Figure 3b summarizes the posterior distribution of the spectral density function on the 
decibel scale for the latent observed annual global anomaly process. In this figure, a straight horizontal line would 
correspond to a white noise process, and we see that no such line fits inside the credible band, indicating that the 
time series is correlated over time. The peak at low frequency is confounded with the trend, and the spectral peak 
between frequencies 0.15 and 0.25 indicates increased time series dependence in the global observed temperature 
anomaly on a scale of 4–7 years.

(In Supporting Information S1 see Table S1 for a discussion of the correlations in the time series errors over data 
products, and Figure S1 in Supporting Information S1 for a summary of the discrepancies attributable to each of 
the five original data products.)

3. Results
On the basis of the posterior summaries of the latent observed annual global temperature anomaly obtained 
by fitting the hierarchical model to the five data products, we now investigate how well the CMIP6 historical 
model runs, calculating annual global temperature anomalies, mimic these data products over the time period 
1880–2014. We will look at four different comparisons: comparing the nonlinear trends over 1880–2014; compar-
ing the difference in the mean temperatures from 1995 to 2014 relative to 1880–1899; comparing the temporal 
dependence as measured by the spectral density function of the time series error component; and comparing the 
overall distribution of the time series innovations (i.e., the estimated independent errors making up the time series 
process {νt}).

3.1. Comparing Trends

For each annual global anomaly calculated from each CMIP6 historical model run, we fit the time series model 
given by Equations 1 and 2. We choose b = 8 basis functions and an autoregressive order of p = 4 to match 
the model assumed for the latent observed annual global temperature anomalies. Figures 4 and 5 display the 
estimated CMIP6-based-trends for each path plotted on top of the 95% simultaneous credible bands for the 
data-based trends calculated from the latent observed annual global temperature anomaly process {Yt}. Differ-
ent lines colors denote different CMIP6 modeling groups—the same colors are used in subsequent figures. The 
percentages of CMIP6 trends inside the credible bands are tabulated in the top right hand corner of each panel. 
Since the data-based trend band is a simultaneous band, if the model trends agree with the data-based trends 
they should rarely be outside the credible band. More formally for each CMIP6 model, if the CMIP6 trends 
calculated for each global temperature anomaly run were compatible with the trends generated from the latent 
observed annual global temperature anomaly process, then 95% of runs should lie within the simultaneous band. 
We find that 10 CMIP6 models each have 100% of runs that have estimated annual global trends that are within 
the simultaneous band (CMCC-CM2-HR4, CNRM-CM6-1-HR, CNRM-CM6-1, FGOALS-f3-L, FGOALS-g3, 
GISS-E2-2-H, INM-CM4-8, MPI-ESM1-2-HR, MPI-ESM1-2-LR, NorCPM1). In total, 225 out of the total 
number of 318 runs contain trends that are outside the simultaneous band. Of the 48 CMIP6 models with some 
disagreement, 33 models do not have any runs for which the trends are compatible with the latent observed annual 
global temperature anomaly process trends whereas 15 models have at least one run that is compatible with the 
latent observed trend.

3.2. Assessing Warming

To summarize the temperature shifts that we see in the annual global temperature anomalies for the CMIP6 
model runs as compared to the latent observed annual global temperature anomaly, we calculate the difference 
in the mean temperatures from 1995–2014 relative to 1880–1899. This is similar to the comparison in IPCCs 
AR6 (Eyring et al., 2021), where the comparison is to 1850–1899. Figure 6 shows this difference for each CMIP6 
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Figure 4. Trends for runs from the first 30 models, plotted on top of gray simultaneous 95% credible band for the trends calculated using the latent observation annual 
global temperature anomaly process. Different colors denote different CMIP6 modeling groups. The percentage of estimated trends for each CMIP6 model run that are 
included in the credible band are tabulated in the top right hand corner.

 23335084, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002468 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [22/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth and Space Science

CRAIGMILE AND GUTTORP

10.1029/2022EA002468

7 of 17

Figure 5. Trends for runs from the remaining models, plotted on top of gray simultaneous 95% credible band for the trends calculated using the latent observation 
annual global temperature anomaly process. Different colors denote different CMIP6 modeling groups. The percentage of estimated trends for each CMIP6 model run 
that are included in the credible band are tabulated in the top right hand corner.
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Figure 6. The difference in the mean temperature from 1995–2014 relative to 1880–1899 for each CMIP6 model run. Different colors denote different CMIP6 
modeling groups. The gray region is a 95% credible interval calculating the same difference in mean temperature between the same time periods using the latent 
observed annual global temperature anomaly.
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model run, as compared to a 95% credible interval from the posterior distribution estimated from the posterior 
distribution of the latent observed annual global temperature anomalies, {Yt}, given the data products (the gray 
region). We estimate the mean temperature increase according to the data to be 0.896°C with a 95% credible 
interval of between 0.877 and 0.915. The corresponding result in AR6 is 0.85°C (0.69–0.95). As expected, our 
result which accounts for and combines information from multiple data products lead to a 95% interval that is 
narrower. For comparison, the CMIP6 ensemble mean of the amount of warming is 0.835°C.

In terms of this measure, 14 CMIP6 model runs agree with the latent observed annual global temperature anom-
aly. The mean temperature increase is smaller for 197 model runs and larger for 107 model runs. To further inves-
tigate warming by model, the first three lists of Table 1 indicate the collection of CMIP6 models for which all 
model runs are cooler, similar, or warmer than the latent observed annual global temperature anomalies (i.e., have 
levels of warming that are all less, inside, or higher than the observed simultaneous credible band). In addition, 
to guard against the possibility that the variability implied by our analysis of the data products may be different 
than the variability implied by the CMIP6 historical model runs, we list the collection of CMIP6 models which 
have any runs that cover the observed credible interval in the final list of Table 1.

Examining Figure 6 and Table 1 we find substantial homogeneity in the mean temperature increases among 
the runs for each model, and across different versions of models from the same modeling group. For example, 
both NorESM2 models tend to have smaller temperature increases than implied by the latent observed anoma-
lies, whereas except for the single ECEarth3-AerChem run, the ECEarth models are more likely to have larger 
increases.

3.3. Comparing Temporal Dependence

Again using the time series model given by Equation 1 and 2 fit to each CMIP6 model run, we evaluate the 
spectral density function for the autoregressive time series process. Figures 7 and 8 display the spectral density 
functions on the decibel scale estimated for each CMIP6 model run plotted on top of the 95% simultaneous cred-
ible bands for the spectral density function on decibel scale for the latent observed annual temperature anomaly 
process. (The method to calculate the simultaneous bands for spectral density functions is described at the end 
of Section 2.3.) The percentages of CMIP6 spectral density functions inside the credible bands are tabulated 
in the top right hand corner of each panel. In terms of dependence, all the historical runs from three CMIP6 

25 CMIP6 models where all runs are cooler than the observed credible band

ACCESS-CM2 BCC-ESM1 CAMS-CSM1-0 CAS-ESM2-0 CESM2

CNRM-ESM2-1 E3SM-1-0 E3SM-1-1-ECA E3SM-1-1 ECEarth-CC

GFDL-ESM4 GISS-E2-1-G HadGEM3-GC31-MM IITM INM-CM4-8

INM-CM5-0 MIROC6 MPI-ESM-1-2-HAM MRI-ESM2-0 NorCPM1

NorESM2-LM NorESM2-MM SAM0-UNICON TaiESM1 UKESM1-0-LL

0 CMIP6 models where all runs are within the observed credible band

19 CMIP6 models where all runs are warmer than the observed credible band

AWI-CM-1-1-MR AWI-ESM-1-1-LR CanESM5-CanOE CanESM5 CIESM

CMCC-CM2-HR4 CMCC-CM2-SR5 CMCC-ESM2 CNRM-CM6-1 ECEarth-Veg-LR

ECEarth-Veg FGOALS-f3-L FGOALS-g3 FIO-ESM-2-0 IPSL-CM5A2-INCA

IPSL-CM6A-LR KACE-1-0-G KIOST-ESM MCM-UA-1-0

9 CMIP6 models where any runs cover the observed credible band

BCC-CSM2-MR CESM2 ECEarth GISS-E2-1-H GISS-E2-2-H

HadGEM3-GC31-LL MPI-ESM1-2-HR MPI-ESM1-2-LR NESM3

Note. The final list indicates which CMIP6 models have at least one run with values that cover the observed credible band.

Table 1 
With Respect to the Difference in the Mean Temperature From 1995–2014 Relative to 1880–1899, the Lists of the CMIP6 
Models for Which all Model Runs Are Cooler, Similar, or Warmer as Compared to 95% Credible Intervals Calculated for 
Latent Observed Annual Global Temperature Anomalies
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Figure 7. Estimated spectral density functions on the decibel scale for runs from the first 30 models, plotted on top of the gray simultaneous 95% confidence band for 
the spectral density function on the decibel scale calculated using the latent observation annual global temperature anomaly process. Different colors denote different 
CMIP6 modeling groups. The percentage of estimated spectral density functions for each CMIP6 model run that are included in the credible band are tabulated in the 
top right hand corner.
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Figure 8. Estimated spectral density functions on the decibel scale for runs from the remaining models, plotted on top of the gray simultaneous 95% confidence band 
for the spectral density function on the decibel scale calculated using the latent observation annual global temperature anomaly process. Different colors denote different 
CMIP6 modeling groups. The percentage of estimated spectral density functions for each CMIP6 model run that are included in the credible band are tabulated in the 
top right hand corner.
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models (E3SM-1-1-ECA, E3SM-1-1, and IITM) agree with the data-based bands, calculated from the latent 
observed annual global temperature anomalies. In total, 249 out of the total number of 318 runs contain spectral 
density functions that are outside the data-based simultaneous band. Of the 55 CMIP6 models with some disa-
greement, 29 models do not have any runs for which the dependence are compatible with the data-based bands 
whereas 26 models have at least one run that is compatible with the data-based bands. Among the models that 
do not agree, we often see spectral peaks at different frequencies from those given by the data. An AR(4) time 
series model permits estimated spectral density functions with one or two peaks. Some models have single peaks 
(e.g., E3SM-1-1, INM-CM4-8 and both MPI models) whereas other models have double peaks (e.g., two of the 
CESM2 models and both FGOALS models). While the spectral peaks lie outside the bands calculated for the 
latent observed annual global temperature anomalies, the location of the single spectral peak matches the data 
reconstruction quite well for a number of different models such as GISS-E2-1-G, MIROC6, both HadGEM3 
models, and UKESM1-0-LL.

3.4. Comparing Residuals From Trend

If we think of the trend as describing the changing climate, the residuals from the trend roughly describe the noise 
in the temperature system. For both the latent observed annual global temperature anomalies and the CMIP6 
model runs we assume an autoregressive process to capture this noise. If the model fits well, the residuals of the 
Gaussian autoregressive process, also known as the time series innovations, should be centered around zero with 
a constant spread, and independent over time.

In this section we will look at these innovations with a very broad brush, in that we do not look at climate model 
innovations separately for each model. Rather, we compare the innovations calculated after fitting the time series 
model given by Equation 1 and 2 to the five original global data products with the innovations calculated to all 
the CMIP6 models runs using the same structure of time series model. For this comparison, we use what is called 
a shiftplot (Doksum & Sievers, 1976). Consider two distribution functions F and G, and define the shift function

𝐷𝐷(𝑥𝑥) = 𝐹𝐹 −1(𝐺𝐺(𝑥𝑥)) − 𝑥𝑥𝑥 

The shift function is identically zero when the continuous distributions F and G are equal. We estimate D(x) from 
a sample x1, …xn, y1, …, ym from the distributions F and G, respectively, using the empirical distribution func-
tion 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑋𝑋) =

∑𝑛𝑛

𝑖𝑖=1
1(𝑋𝑋𝑖𝑖 ≤ 𝑥𝑥)∕𝑛𝑛 , and the corresponding estimate Gm(x), and plugging these into the definition of 

D(x), using the right inverse of Fn(x), also called the empirical quantile function. We then plot the estimated shift 
function against x. Following Doksum and Sievers (1976) we get a simultaneous confidence band for the function 
from the distribution of the Kolmogorov-Smirnov statistic. The idea of this shiftplot (sometimes called residual 
quantile-quantile plot) is to assess whether the distributions of yearly innovations (over all years and over all runs 
or products) are the same. If so, the plot should look like a horizontal line at height 0. A horizontal line at a differ-
ent height indicates a location shift, while a line with nonzero slope indicates a change in variability. Figure 9 
shows that the red horizontal line at zero falls well inside the 95% simultaneous confidence band, indicating that 
the two innovation distributions (one for the latent observed annual global temperature anomalies and one for all 
the CMIP6 model runs) cannot be distinguished statistically.

4. Conclusions and Discussion
The question we are trying to answer in this paper is whether the historical climate simulations in CMIP6 are a 
reasonable description of the observed temperatures. To first learn about observed temperatures we use modern 
hierarchical statistical tools to produce latent posterior reconstructions of observed annual global tempera-
ture anomalies from 1880 to 2014 using five major observational products. With these reconstructions, we are 
able to calculate simultaneous credible bands for both the trend, smooth nonlinear changes in the mean global 
temperature anomaly, and the spectral density function that characterizes the residual time series dependence. We 
then determine whether estimates of the trend and spectral density function from CMIP6 model runs are compat-
ible with the 95% simultaneous bands calculated on the basis of the observed data products. In addition, our 
approach allows us to compare how well the models capture observed warming relative to the early years. While 
there are homogeneities across CMIP6 modeling groups and model runs with respect to the trends and temporal 
dependencies inherent in global mean temperature anomalies, there are substantial differences between these 
CMIP6 model runs and the posterior distribution of observed global mean temperature anomalies as constructed 
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from the five data products. Both the data reconstruction and CMIP6 model runs show warming in recent years, 
but the amount of warming varies substantially. In addition, the CMIP6-based model runs often indicate differ-
ent  temporal structure as compared to the data reconstruction.

In Craigmile and Guttorp  (2022), we performed a more stringent assessment of two other data products, the 
ERA5 reanalysis and the UAH satellite global temperature series. Instead of looking at the trend behavior, we 
required the two series to fall within the simultaneous credibility band for the posterior latent observed annual 
global anomaly. The reanalysis satisfied this criterion, while the satellite series did not.

Our analysis is based on estimating a smooth trend using b = 8 cubic b-spline basis functions, and estimating 
the temporal dependence using a stationary Gaussian autoregressive process of order p = 4. If we choose to esti-
mate the trend or temporal dependence in some other fashion, we may obtain different results for the trend and 
spectral density function. (Again, the Supporting Information S1 contains a robustness study, indicating that our 
reconstruction of the latent observed annual global temperature anomaly is robust to both changes the number 
of basis functions used, b, in the nonlinear trend component, as well as the autoregressive model order, p.) Also, 
throughout our analyses we have compared the estimated trend or spectral density function for each CMIP6 
model run to simultaneous credible bands calculated from the data. As a consequence we summarize whether 
each quantity is wholly inside the simultaneous credible bands. Inspecting the trends in Figures 4 and 5 further, 
we find that there are some CMIP6 model trends with good agreement over most years, but poor agreement in 
the early and later years.

We have chosen an annual time scale in order to avoid having to fit seasonal effects that would be necessary on 
a monthly time scale. As shown by Thomson (1995), the dominant cycle in global monthly temperature is the 
anomalistic year (time between perihelia) rather than the slightly shorter tropical year (time between vernal equi-
noxes), and therefore deseasonalization must be done very carefully. It may also be of interest to split the data 
into southern and northern hemispheres. A similar model for data products to that used for the global data could 
be used, however, this was not attempted as it would require us to model the bivariate time series dependence 
that is present between and within the two hemispheres. A comparison of the CMIP6 model simulations with a 

Figure 9. Shiftplot of the time series innovations calculated using the latent observed annual global temperature anomaly 
relative to the innovations calculated from all CMIP6 model runs. The thin black curves form a 95% simultaneous confidence 
band, and the red horizontal line corresponds to the two distributions being equal.
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reconstructed latent observed global temperature anomaly on a seasonal and hemispheric scale is left for further 
research. Furthermore, one could compare gridded products. The main difficulty here is that the data products 
are produced on different grids, which is also true for the CMIP6 models. In order to align all these products 
to a common grid, it is necessary to model the spatio-temporal correlation structure of each product. We have 
not  attempted this, as it would stretch our computational assets beyond their capacity.

An issue with computing global mean temperature from observational data is that the ocean air temperature is 
replaced by sea surface temperature (SST). In the CERA-20C reanalysis the difference between the two measure-
ments is fairly constant on a global scale at 1.5°C, with the SST warmer (Feng et al., 2018). However, when the 
measurements are replaced by anomalies, this difference disappears, so the anomalies from these two quantities 
can be considered exchangeable on an annual-global spatio-temporal scale. Recent work, using relatively sparse 
data from the TAO buoys, indicates that the difference may recently have been increasing in the equatorial Pacific 
(Rubino et al., 2020). We are currently investigating this issue in other research.

A future aim of our research is to model the climate simulations, which would be substantially more complicated 
than the analysis presented in this paper, and necessitate some kind of sampling framework, perhaps in the style 
of Ribes et al. (2017). Rather than comparing model simulations to reconstructed data products as we do in this 
paper, modeling the climate simulations directly could allow us to learn about time-varying commonalities and 
differences between climate models and between modeling groups. Such an approach requires a different hierar-
chical model, which must include an assessment of the dependence between paths, climate models, and climate 
modeling groups, using tools from, for example, Knutti et al. (2013); Brunner et al. (2020). (Also see, e.g., Smith 
et al. (2009); Tebaldi and Sansó (2009); Guinness and Hammerling (2017); Chang and Guillas (2018); Zumwald 
et  al.  (2020); Sansom et  al.  (2021) for the hierarchical statistical modeling of climate model simulations.) 
We  envision some variant of functional analysis of variance (e.g., Meiring (2007); Kaufman and Sain (2010)), 
and we leave this for another paper.
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