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Abstract
Retrospective patterns are commonly investigated to validate fish stock assessment models. A widely applied measure for

retrospective bias is Mohn’s ρ and corresponding retrospective plots. However, retrospective patterns can be interpreted dif-
ferently by experts. To make decisions regarding significant retrospective patterns less subjective, we proposed a post-sample
Mohn’s ρ significance test. As case studies, we applied the state space assessment model SAM with data on Northeast Arctic
cod and Norwegian coastal cod north of 67◦N. We showed that the acceptance regions of Mohn’s ρ depends on both the data
available and the assessment model complexity. We also assessed the test power under a range of assumption violations and
conclude that Mohn’s ρ is useful for detecting violations associated with bias, but not for violations associated with variances
and correlations.
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1. Introduction
A retrospective pattern in fish stock assessment is a sys-

tematic inconsistency in an estimate, e.g., spawning stock
biomass (SSB) or fishing mortality, in recent years of an as-
sessment. Such inconsistencies indicate model misspecifica-
tion. In particular, they may indicate that parameters have
been systematically over- or underestimated in some con-
secutive years. Retrospective patterns often occur when a
model parameter is assumed constant, while it is in fact time-
varying in the true system. Detecting this kind of error is
crucial for producing sustainable quota advice, e.g., a sys-
tematic overestimation of current SSB may cause quota ad-
vice that will make the fishery collapse. Mohn’s ρ (Mohn
1999) is a widely applied measure for retrospective patterns
(ICES 2019, 2020a, 2020b, 2020c, 2020d, 2020e, 2021a, 2021b;
Legault 2020; Carvalho et al. 2021; Kell et al. 2021) Historic
estimates and therefore Mohn’s ρ, are however, subjected to
randomness in data, and relatively little is known about the
statistical distribution of Mohn’s ρ.

Hurtado-Ferro et al. (2015) used a simulation study and sug-
gested an acceptable SSB Mohn’s ρ interval (−0.15, 0.2) for
medium and long-lived species. This interval is widely used
in practice as a rule of thumb when validating assessments
(ICES 2020c, 2020d, 2020e, 2021b; Carvalho et al. 2021; Kell
et al. 2021). However, the distribution of Mohn’s ρ depends
on the unknown true data-generating mechanism and the
assessment model applied to the generated data. The data-
generating mechanism here is the combination of the pro-
cess generating the latent population and the mechanism

generating the data given the population. Therefore, it is es-
sential to evaluate the significance of the Mohn’s ρ in the
context of the specific assessment.

Post-sample evaluation is a leave-out procedure for eval-
uating whether recent data are inconsistent with historic
data and an assumed model (Harvey 1990, section 5.6). In
post-sample evaluation, data are divided into two subsets, (1)
data prior to the post-sample period are used to estimate the
model and (2) data within the post-sample period are used
to define a test statistic with known distribution under the
model. The distribution of the test statistic is obtained ana-
lytically or approximated using a parametric bootstrap (Efron
and Tibshirani 1994; Davison and Hinkley 1997). In this re-
search, we introduced a Mohn’s ρ post-sample significance
test by defining the years within the retrospective analysis
as the post-sample period and using Mohn’s ρ as the test
statistic. Mohn’s ρ is used as the test statistic because it is
widely applied in practice. The null distribution of Mohn’s ρ

is calculated using the parametric bootstrap. The resulting ac-
ceptance regions are tailored to the data and the complexity
of the assessment model used, and can be wider or smaller
than the standard interval suggested by Hurtado-Ferro et al.
(2015). To illustrate the proposed Mohn’s ρ significance test,
we applied the state space assessment model SAM (Nielsen
and Berg 2014; Berg and Nielsen 2016; Breivik et al. 2021) on
two case studies, Northeast Arctic (NEA) cod and Norwegian
coastal cod north of 67◦N (NCC cod).

We further seek to determine the power of a Mohn’s ρ test
for detecting model misspecifications and data issues, i.e., the
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probability for detecting an assumption violation given that
it is present. The null distribution of Mohn’s ρ in the pro-
posed significance test is constructed using the parametric
bootstrap, and the distribution under a given assumption vi-
olation can be obtained by modifying the bootstrap accord-
ingly. By comparing the distributions of Mohn’s ρ with and
without misspecification, we can quantify the corresponding
power of the proposed significance test in the hypothetical
case of a single violation of the null hypothesis.

Miller and Legault (2017) used a parametric bootstrap pro-
cedure to estimate the distribution of Mohn’s ρ by sampling
from distributional assumptions about the observations.
Our approach differs in that we bootstrap both the latent
processes, i.e., fishing mortality, recruitment and survival,
and observations conditioned on the simulated processes.
By sampling both the latent processes and observations, we
bootstrap all random variables in the model and provide
the distribution of Mohn’s ρ in the post-sample significance
test. State space assessment models have been increasingly
popular in fisheries science (Nielsen and Berg 2014; Cadigan
2015; Miller et al. 2016; Aanes 2016; Berg and Nielsen 2016;
Perreault et al. 2020; Breivik et al. 2021; Newman et al. 2022),
and the proposed procedure provides the distributions of
Mohn’s ρ tailored to the data and complexity of the applied
model. Retrospective patterns can be interpreted differently
by experts, and the motivation of our research is to reduce
the subjectivity of decisions regarding significant retrospec-
tive patterns when applying state space assessment models.

2. Materials and methods

2.1. Model
In our research, we used the state space assessment model

SAM (Nielsen and Berg 2014; Berg and Nielsen 2016; Breivik
et al. 2021). SAM incorporates standard stock equations and
includes the abundance (N) and fishing mortality (F) as latent
effects (states). The applied state space framework automat-
ically weights data sources on how well the data fit into the
population dynamic structure, and by applying the estimated
processes, we can propagate the states into the future to pro-
duce fish quota advice.

We will now define SAM mathematically. Let

log Na0,y = log R
(
Ny−1

) + ηa0,y(1a)

log Na,y = log Na−1,y−1 − Fa−1,y−1 − Ma−1,y−1 + ηa,y

when a0 < a < A

(1b)

log NA,y = log
(
NA−1,y−1e−FA−1,y−1−MA−1,y−1

+NA,y−1e−FA,y−1−MA,y−1
) + ηA,y

(1c)

Here, R is a recruitment function and Ma,y is the assumed
known natural mortality rate at age a in year y. The age span
is defined from a0 to A, where all fish of age A or older are
included in the oldest age group (plus group). Furthermore,
ηa,y is assumed independent mean zero Gaussian distributed,
and typically, there are separate variance parameters for the
recruitment (ηa0,y) and the survival process (ηa,y when a > a0).

The fishing mortality vector Fy = {F1, y,..., FA,y} is assumed to
follow a random walk as in Nielsen and Berg (2014); Berg and
Nielsen (2016); Breivik et al. (2021).

log Fy = log Fy−1 + ξF
y(2)

Here, ξF
y is mean zero multivariate Gaussian distributed,

and it is often assumed a first-order autoregressive structure
in the age dimension (Berg and Nielsen 2016).

The model is fit to data time series of estimated commer-
cial catch at age (Ca,y) and survey indices at age (Ia,y). These
time series inform the system through standard observation
equations,

log Ca,y = log
(

Fa,y

Fa,y + Ma,y

(
1 − e−Fa,y−Ma,y

)
Na,y

)
+ ε

(C)
a,y(3a)

log I(S)
a,y = log

(
Q (S)

a e−(Fa,y+Ma,y )day(S)/365Na,y

)
+ ε

(S)
a,y(3b)

Here, Q (S)
a is the unknown survey catchability at age a for

survey S, and day(S) is the number of days into the year when
the survey is typically half done. Furthermore, ε(C) and ε(S)

are mean zero multivariate Gaussian distributed. Note that
fleet specific age plus groups may be included in the observa-
tion equations. In our case studies we included a total stock
biomass index (ITSB,y). ITSB,y is assumed to be proportional to
the true total stock biomass with noise, and we included it in
the model by

log ITSB,y = log

(
QTSB

A∑
a=a0

wa,ye−(Fa,y+Ma,y )day/365Na,y

)
+ εTSB,y(4)

Here, QTSB is the unknown survey catchability, wa,y is the as-
sumed known mean stock weight at age a in year y, and εTSB,y

is mean zero Gaussian distributed.

2.2. Mohn’s ρ
Denote Y as the terminal year of an assessment, i.e., the

most recent year with data. Mohn’s ρ of an estimated quan-
tity, e.g., SSB, was introduced in Mohn (1999) and is defined
as

ρ = 1
n

Y−1∑
y=y0

X̂y|y − X̂y|Y
X̂y|Y

(5)

Here, n is the number of years sequentially removed in the
retrospective analysis, X̂y|Y is the estimate at year y using all
available data in year Y, X̂y|y is the estimate using data avail-
able in year y (i.e., when peeling off the Y − y last years of
data), and y0 = Y − n. Typically, n is set to 5 in working groups
arranged by the International Council for the Exploration of
the Sea (ICES). An often applied rule of thumb is that ret-
rospective patterns should be addressed if Mohn’s ρ (eq. 5)
for SSB is outside of the interval (−0.15, 0.2) for medium and
long-lived species (Hurtado-Ferro et al. 2015; Kell et al. 2021).

Data on catch in the terminal year are sometimes not avail-
able, resulting in an estimated fishing mortality in the termi-
nal year that is very uncertain. In such scenarios, we followed
common practice in ICES to relabel X̂y|y and X̂y|Y in eq. 5 to be
estimates in year y − 1 and Y − 1 given data available in year y
and Y, respectively, when referring to fishing mortality. This
is the practice for NEA cod and haddock (ICES 2020a).
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2.3. Inference
The model is estimated by maximum likelihood using the

R-package template model builder (TMB) (Kristensen et al.
2016) combined with the optimization routine nlminb (Core-
Team and contributors worldwide 2022). TMB utilizes auto-
matic differentiation and efficiently integrates over latent
effects with the Laplace approximation by utilizing Markov
structures. nlminb further utilizes the gradient provided by
TMB for quasi-Newton optimization of the marginal likeli-
hood. The latent effects are the log abundance (log N) and log
fishing mortality (log F). Our inference procedure is identi-
cal to Nielsen and Berg (2014); Berg and Nielsen (2016); and
Breivik et al. (2021).

2.4. Post-sample Mohn’s ρ significance test
The goal in diagnostics for model fitting is to determine

whether the observed data are representative of the data
expected given an assumed model (Cressie and Wikle 2011,
page 40). In particular, Mohn’s ρ provides insight about
whether the data in the n most recent years systematically
shifted important estimates in a way that is inconsistent with
the model conditioned on data prior to the post-sample pe-
riod. The proposed test investigates whether the sequential
inclusion of the post-sample data results in a significant retro-
spective pattern under the null hypothesis (H0): The assessment
model estimated with data prior to the post-sample period generated
the post-sample data. We let Mohn’s ρ be the test statistic and
provide the distribution of Mohn’s ρ under H0. In general,
leaving out recent data and applying them to construct a
test statistic with known distribution, given the remaining
data are known as post-sample evaluation (Harvey 1990, sec-
tion 5.6). We therefore refer to the proposed Mohn’s ρ test as
the post-sample Mohn’s ρ significance test. The distribution
of Mohn’s ρ under H0 and the corresponding significance
level are constructed using the parametric bootstrap (Efron
and Tibshirani 1994; Davison and Hinkley 1997). By compar-
ing the assessment value of Mohn’s ρ with it’s distribution
under H0, we can objectively determine whether the post-
sample data resulted in a Mohn’s ρ that significantly signals
an inconsistency with respect to the model conditioned on
data prior to the post-sample period, or if it was likely caused
by randomness given the model state in year y0. The proposed
post-sample significance test is a special case of a parametric
bootstrap test (Davison and Hinkley 1997, page 148).

We are interested in the distribution of Mohn’s ρ condi-
tioned on the data prior to the post-sample period under
H0, i.e., the distribution of ρ

(
Dnew|Dy0 , H0

)
where Dnew is

(random) post-sample data, Dy0 is the set of observations
available in year y0 and ρ(·) maps the data to Mohn’s ρ

value given the applied assessment model. The distribution
of ρ

(
Dnew|Dy0 , H0

)
is unavailable analytically, so we obtained

it using the parametric bootstrap. The proposed parametric
bootstrap procedure generates realizations of Dnew by first
sampling Ny0 = {

Na0,y0 , · · · , NA,y0

}
and F y0 = {

Fa0,y0 , · · · , FA,y0

}
given Dy0 , then utilizing the Markov properties of the latent
effects to project the population dynamics into the future
with eqs. 1 and 2, and finally sampling Dnew with observation
eqs. 3 and 4. We will now define the bootstrap procedure in

detail. Let log N̂y0|y0 and log F̂ y0|y0 be estimated log abundance
and fishing mortality in year y0 given Dy0 . Denote �̂y0|y0

as the
corresponding estimated joint covariance matrix. The boot-
strap procedure is defined as follows:

(i) Simulate
(

log N (b)
y0

, log F (b)
y0

)
from N

((
log N̂y0|y0 ,

log F̂ y0|y0

)
, �̂y0|y0

)
for bootstrap sample b.

(ii) Given
(
N (b)

y0
, F (b)

y0

)
, simulate the processes up to year Y by

applying eqs. eqs. 1 and 2. One exception is included for
recruitment and is elaborated below.

(iii) Simulate observations in the post-sample period by ap-
plying eqs. 3 and 4 and the simulated processes.

(iv) Fit SAM with observations available prior the post-
sample period (Dy0 ) and the simulated observations
(D(b)

new).
(v) Calculate Mohn’s ρ (eq. 5).

(vi) Repeat the steps (i)–(v) a large number (B) of times.

Denote qα as the α-quantile of the parametric bootstrap.
If Mohn’s ρ falls outside of the bootstrap prediction interval
(qα/2, q1 − α/2), the post-sample data updated the estimate sig-
nificantly inconsistent with respect to the model conditioned
on data prior to the post-sample period. We set B = 1000 in
our research, and we further denote the (1 − α) 100% predic-
tion interval of Mohn’s ρ as a (1 − α) 100% acceptance inter-
val.

The recruitment function in our case studies follows a ran-
dom walk and is typically associated with a large variance. A
random walk with high dispersion will predict recruitment
poorly a few years forward in time. To produce realistic re-
cruitment, we sample it with replacement from the set of all
previously estimated recruitment. Note that similar recruit-
ment sampling procedures are commonly applied when pro-
viding quota advice (e.g., see ICES 2021a).

2.5. Mohn’s ρ distribution with model
misspecifications

We can obtain the distribution of Mohn’s ρ for a specific
misspecification in the post-sample period by modifying the
parametric bootstrap described in Section 2.4. For example,
the uncertainty of commercial catch observations in the post-
sample period can be modified in step iii. In our research, we
calculated the test power in eight different scenarios, each
with one violation of H0. Table 1 provides information about
these scenarios. They are constructed by modifying steps ii
and iii in Section 2.4, meaning that the reality within the
simulation study is modified and not the assessment model
assumptions. All scenarios, except for one, are constructed
such that the misspecification gets more severe linearly in
time, e.g., in scenario M3, the natural mortality is increased
with a factor 3

5 in year y0 + 1 and so on until it is increased
with a factor of 3 in year Y. For each scenario, we calculated
the average number of Mohn’s ρ samples outside the post-
sample Mohn’s ρ acceptance region. This average is an ap-
proximation of the test power.
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Table 1. Description of misspecification scenarios.

Scenario Description Linear change

M3 Natural mortality scaled with a factor of 3 Yes

M/3 Natural mortality scaled with a factor of 1/3 Yes

Q3 Survey catchabilities scaled with a factor of 3 Yes

C/3 Catches are reported with a scaling factor of 1/3 Yes

sdF Variance of log F increments scaled with a factor of 3 Yes

SdI Variance of index observations scaled with a factor of 3 Yes

sdC Variance of catch observations scaled with a factor of 3 Yes

corObs Correlation structure in observations are removed No

Note: Misspecifications are included only in the five most recent years including terminal year.

2.6. Retrospective plot
Retrospective plots are commonly investigated to identify

retrospective patterns. A retrospective plot shows the esti-
mated quantity using all data and corresponding estimates
obtained when sequentially removing the last year’s data. In
our research, we included prediction intervals on how esti-
mates change in the retrospective analysis under H0, which
can be used to determine whether an estimate is significantly
modified. To create these intervals, we defined d(b)

y as the
difference between the estimated quantity using all data and
the corresponding estimate obtained when removing the last
year’s data for bootstrap sample b, i.e., d(b)

y = X̂ (b)
y|y − X̂ (b)

y|Y . Let
dy, α be the corresponding α-quantile and note that the inter-
val (dy,α/2, dy,1 − α/2) is a (1-α)100% prediction interval for how
much the estimate in year y changes in the retrospective anal-
yses under H0. To objectively investigate whether an estimate
changes significantly, we included the prediction interval

PIy = (
X̂y|Y − dy,α/2, X̂y|Y + dy,1−α/2

)
(6)

in our retrospective plots. If X̂y|y falls outside of this interval,
we conclude that the estimate in year y changed significantly
in the retrospective analysis. Note that the prediction inter-
vals are for estimates within individual years, and not for
systematic patterns. ICES (2020e) recommends investigating
estimates from each step in the retrospective analysis closely
even if there are no patterns. With the proposed procedure,
we can determine whether each estimate in the retrospec-
tive analysis is significantly different from the terminal
estimate. However, one should be cautious when selecting
the significance level because we performed several tests.

3. Results
We applied our procedure to NEA cod and NCC cod case

studies. Both stocks are officially assessed with SAM (ICES
2021a, 2022). During the most recent benchmark for NEA
cod (ICES 2021a), flexibility in the latent fishing mortality
process was reduced because it removed retrospective pat-
terns as determined by inspection of retrospective plots. This
makes NEA cod ideal as a case study. The NCC cod assessment
has much less data compared to the NEA cod assessment and
is included because we want to highlight that Mohn’s ρ accep-
tance intervals should be different for different data sources.
In our research, we sequentially removed 5 years of data in
our retrospective analysis, i.e., let n = 5 in eq. 5 as applied at
the recent NEA cod benchmark (ICES 2021a).

Table 2 provides a short description of the data used. A
detailed description of these data and model configurations
for NEA cod and NCC cod are provided in the corresponding
benchmark reports (ICES 2021a, 2022). In the official NEA cod
assessment, stomach data are utilized to include cannibalism
in the natural mortality by running SAM sequentially. For
simplicity, we do not apply this sequential procedure, but as-
sume the same natural mortality as applied in the final SAM
run (ICES 2021a).

In our case study, we calculated Mohn’s ρ for SSB, recruit-
ment, and average fishing mortality (F̄ ) for ages 5–10 for NEA
cod and 4–8 for NCC cod. These age ranges are the same as
those used in the official assessments. Quota advice is based
on targeting F̄ at certain levels depending on SSB, and these
quantities are therefore especially important to be estimated
with consistency.

Figure 1 illustrates 95% acceptance intervals of Mohn’s ρ

for NEA and NCC cod assessments. The green lines in Fig. 1 il-
lustrate the rule of thumb acceptable SSB Mohn’s ρ intervals
(Hurtado-Ferro et al. 2015; Kell et al. 2021). For NEA cod, the
95% acceptance interval based on the proposed post-sample
Mohn’s ρ test is narrower than what is suggested in Hurtado-
Ferro et al. (2015), while for NCC cod the interval is wider. The
red points in Fig. 1 illustrate Mohn’s ρ with corresponding P
values, which are obtained by doubling the one sided P value.
Figure 2 illustrates SSB retrospective plots that include 95%
prediction intervals for how much the estimates are modified
in the retrospective analysis under H0 (see Section 2.6). Note
that the median Mohn’s ρ for recruitment of NCC cod devi-
ates clearly from zero in Fig. 1b. This difference is because the
recruitment of NCC cod is estimated to be relatively high in
year y0 and the random walk structure in the recruitment is
neglected in the bootstrap.

Our research is motivated by model adjustments at the
most recent benchmark for NEA cod (ICES 2021a). At this
benchmark, a correlation structure in the fishing mortal-
ity increments (see eq. 2) was removed from the assessment
model based on fishing mortality retrospective patterns (ICES
2021a). Figure 3a illustrates Mohn’s ρ along with acceptance
intervals when including the first-order autoregressive cor-
relation structure between ages that was discarded at the
benchmark. Mohn’s ρ for fishing mortality has a P value
of 0.1 and is therefore not highly significant. The correla-
tion structure was, however, not discarded based on Mohn’s
ρ but based on visualization of retrospective patterns (ICES
2021a). Figure 3b shows the retrospective plot for F̄ . We con-
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Table 2. Short summary of NEA (top) and NCC (bottom) cod data.

Data source Years Short description

Catch at age 1946–2019 Catch at age estimates from coastal states harvesting the stock

Survey 1 1981–2020 Joint Norwegian–Russian Winter survey, swept-area index (Mehl et al. 2016)

Survey 2 1985–2020 Joint Norwegian–Russian Winter survey, acoustic index (Mehl et al. 2016)

Survey 3 1982–2017 Russian survey, ended permanently in 2017

Survey 4 2004–2019 Joint Norwegian–Russian Ecosystem survey, swept-area index (Johannesen et al. 2019)

Catch at age 1994–2020 Catch at age estimates from Norwegian fisheries, provided with ECA model (Hirst et al. 2012)

Survey 1 2003–2020 Norwegian coastal survey, swept-area abundance-at-age index (Aglen et al. 2021)

Survey 2 1995–2020 Norwegian coastal survey, acoustic total stock biomass index (Aglen et al. 2021)

Note: All NEA cod indices are provided by age.

Fig. 1. (a) Estimated 95% acceptance regions for Mohn’s ρ for NEA and (b) NCC cod. Green lines illustrate the rule of thumb
acceptance region (−0.15, 0.2) for SSB. Red points show obtained Mohn’s ρ in assessments and numbers provide P values. Black
solid points show median Mohn’s ρ.
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clude that all estimates of F̄ within the post-sample period
are reduced when including the post-sample data, but it is
difficult to determine whether the pattern is significant. Fig-
ure S1 illustrates 24 retrospective plots for F̄ obtained in the
parametric bootstrap (in step v) and provides an indication
on how we can expect retrospective patterns to look like if
the model has generated the post-sample data. As indicated
by the close to significant Mohn’s ρ, the observed retrospec-
tive pattern in Fig. 3b is at the borderline of what to expect,
and we consider it to be only a weak indication of model
misspecification.

Figure 4 shows 95% prediction intervals for Mohn’s ρ and
test powers for the assumption violation scenarios elaborated
in Table 1. The case specific power shown in Fig. 4 is to be in-
terpreted as the probability of detecting a significant Mohn’s
ρ (significance level 0.05) when the only violation of the null
hypothesis is given by the scenarios elaborated in Table 1. For
example, Figs. 4a and 4d illustrate that there is approximately
88% and 97% probability for detecting significant SSB Mohn’s
ρ in scenario M3 for NEA cod and NCC cod, respectively.

Convergence problems may occur when modifying input
data. For NEA cod, we did not have convergence problems in
our research. However, for NCC cod, approximately 4% of the
simulated data sets resulted in convergence problems when
calculating Mohn’s ρ. All bootstrapped data sets that resulted
in convergence problems were discarded and replaced with a
new sample.

4. Discussion
In this research, we introduced a post-sample significance

test for Mohn’s ρ and constructed corresponding acceptance
intervals using the parametric bootstrap. A Mohn’s ρ outside
of the corresponding acceptance region implies that the post-
sample data updated the estimate of interest significantly
inconsistent with respect to the model conditioned on data
prior to the post-sample period, and the Mohn’s ρ is there-
fore indicative of model or data misspecifications. We illus-
trated that the post-sample acceptance regions depend on the
data and complexity of the assessment model, and the accep-
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Fig. 2. (a) Retrospective SSB plots for NEA and (b) NCC cod. Solid black lines illustrate SSB estimated with all data and shaded
areas are corresponding 95% confidence intervals. Colored lines show estimates in the retrospective analysis. Vertical intervals
are 95% prediction intervals for how much the estimates are modified in the retrospective analysis under H0 (see eq. 6).

Fig. 3. (a) Black intervals show 95% acceptance intervals for NEA cod Mohn’s ρ using the model with correlation structure in
fishing mortality increments. Red points illustrate Mohn’s ρ, corresponding P values are given to the left of each interval, and
the green line provides the ICES rule of thumb acceptance region for SSB. Grey intervals illustrate 95% acceptance intervals in
the official assessment (same as in Fig. 1a). (b) Retrospective F̄ plot for NEA cod using the model with correlation structure in
fishing mortality increments, see Fig. 2 for general figure description.

tance regions can be both wider and narrower than the rule
of thumb proposed by Hurtado-Ferro et al. (2015). If Mohn’s
ρ falls within the corresponding acceptance interval, it pro-
vides no significant evidence of inconsistency in the post-
sample data with respect to the estimated model prior to the
post-sample period.

We demonstrated that the post-sample Mohn’s ρ signifi-
cant test is able to detect model misspecification. Figure 4
illustrates test power when the only violation of the null hy-
pothesis is specified in Table 1. We observed that the power
varies between data sets. The only scenarios that introduced
clear shifts in median Mohn’s ρ are those that introduce bias
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Fig. 4. Estimated power of the post-sample Mohn’s ρ test with significance level 0.05. (a), (b), and (c) are for NEA cod and (d),
(e), and (f) are for NCC cod. Green horizontal lines illustrate 95% acceptance intervals. Vertical intervals and points show 95%
prediction intervals of Mohn’s ρ and median Mohn’s ρ under given misspecification.

in the quantity of interest, i.e., changes in natural mortality,
systematic misreporting of catch, and change in index sur-
vey catchability. The scenarios that did not produce changes
in median Mohn’s ρ are those scenarios related to changes in
variance and correlation parameters, i.e., change in observa-
tion variances, process variance, and observation correlation.
This shows that Mohn’s ρ is useful for detecting violations
that introduce bias in the parameter of interest and indicate
that it is not useful for detecting violations related to variance
and correlation parameters. Mohn’s ρ is subjected to random-
ness in data and a Mohn’s ρ test will sometimes fail to detect a
misspecification. Indeed, the examples we have investigated
represent rather drastic changes in parameters like survey
catchability and catch reporting, and in many cases they are
likely to not be detected (Fig. 4). Carvalho et al. (2017) also
found Mohn’s ρ to have relatively little power compared to
other model diagnostics, when inspecting 10-year retrospec-
tive patterns using the rule of thumb proposed by Hurtado-
Ferro et al. (2015). Conversely, a reduction in retrospective
patterns does not necessarily translate into less biased esti-
mates. Szuwalski et al. (2018) illustrated through simulations
that it was possible to make model modifications that reduce
Mohn’s ρ while still increasing the error of reference point
estimates. These and our results highlight the importance
of justifying the model formulations independently of val-
idation criteria and applying several validation procedures
to choose between justified model candidates, e.g., inspec-
tion of residuals (Thygesen et al. 2017). We highlighted that

the power of the Mohn’s ρ tests, provided in Table 1, are
obtained by assuming that the estimated assessment model
is the true data-generating process. The applied assessment
model is never the correct model and the power will differ
in reality from Table 1. However, the power analysis provides
an indication about what types of model misspecifications a
Mohn’s ρ test is able to detect.

The distribution of Mohn’s ρ depends on the complexity
of the assessment model. Figure 3a illustrates changes in the
acceptance regions for NEA cod Mohn’s ρ when an autore-
gressive structure is included in the fishing mortality incre-
ments. We found that the regions are slightly larger when the
additional flexibility is included, and we find this intuitively
reasonable since the latent process is then more flexible. This
illustrates that model modifications may reduce Mohn’s ρ by
affecting its distributions without improving the model spec-
ification.

The bootstrap procedure we propose can be applied to im-
prove our intuition on how retrospective plots vary due to
randomness under H0. If we are unsure whether a retro-
spective plot indicates model misspecification, we can com-
pare it with simulated retrospective plots and see whether
the real one is anomalous, e.g., if a retrospective plot looks
one-sided and suggests that a parameter may have been
over- or underestimated in recent years, we can investigate
how often such a structure occurs due simply to random vari-
ation given the estimated model prior to the post-sample pe-
riod.
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In our research, we included prediction intervals in ret-
rospective plots to illustrate how much estimates typi-
cally adjust when all data are included for estimation (see
Fig. 2). Such intervals can be applied to objectively determine
whether an estimate has changed significantly in a retrospec-
tive analysis. We highlighted that these intervals can be wider
than the corresponding confidence intervals that utilize all
data. This is reasonable because we are typically surer about
an estimate a few years back in time compared to in the ter-
minal year.

The post-sample Mohn’s ρ significance test conditions
Mohn’s ρ inference on data prior to the post-sample period.
This differs from Miller and Legault (2017), who bootstrapped
the entire data set based on distributional assumptions about
the observations. Following the idea of bootstrapping the
entire data set, we could sample realizations from the pos-
terior distribution of the latent effects and further sample
new observations conditioned on these effects. However,
this procedure could be problematic because model misspec-
ifications may be included in the posterior distribution of
the latent effects. For example, in scenario M3 in Table 1, it
is intuitive that the survival process posterior has a mean
significantly smaller than zero in the post-sample period to
accommodate the increased natural mortality. Miller and
Legault (2017) did not investigate state–space models, so they
did not have to address this problem.

A rule of thumb to reduce subjectivity is to interpret that
a retrospective pattern is significant if the confidence inter-
val of the estimate (e.g., SSB) does not include the ρ-adjusted
value (Brooks and Legault 2016). That is, interpret the Mohn’s
ρ as significant if X̂Y |Y 1

1+ρX
/∈ CIXY |Y , where X̂Y |Y is the estimate

of interest, ρX is the corresponding obtained Mohn’s ρ, and
CIXY |Y is the confidence interval of XY|Y. The intuition behind
the rule of thumb is that if the ρ-adjusted estimate is within
CIXY |Y , then the adjustment was not significant with respect
to the uncertainty of X̂Y |Y . Our research differs because we
directly provide confidence intervals of Mohn’s ρ under H0.

Mohn (1993) bootstrapped survey observations based on a
VPA model and found that the average bootstrap estimates
did not show retrospective patterns. A similar result is found
in this research because the median Mohn’s ρ is centered
around zero, see Fig. 1. This is because under H0, the bias
of an estimate should be close to zero. If it is not centered at
zero that may imply parameter identifiability issues.

In a state space model, where recruitment is a random walk
(as in our case studies), rather than a function of a stock re-
cruitment curve, there is little to inform the pattern in later
years, and the estimates tend to become constant. Additional
years of catch data can retroactively inform the recruitment
leading to large retrospective patterns that are not indicative
of model misspecifications. If there is a stock–recruitment re-
lation in the state space model, we recommend utilizing that
structure in the significance test.

The post-sample Mohn’s ρ significance test investigates
whether the post-sample data are consistent with the model
estimated with data prior to the post-sample period. Table 1
provides the test power in scenarios where a misspecifica-
tion was introduced in the post-sample period. If a mis-
specification enters before the post-sample period, the data-

generating process under H0 partially includes the misspec-
ification. As a result, the test power will depend on how the
model has incorporated the misspecification at the start of
the retrospective analysis.

When a significant retrospective pattern is found, we rec-
ommend reviewing both the data and assessment model in
detail. Such a review demands team effort by scientists with
expert knowledge about all aspects of the assessment. We
will now highlight two examples from benchmarks where
we have first-hand experience on how the data and assess-
ment model were reviewed and modified to remove retro-
spective patterns. (1) During the benchmark for NEA cod ICES
(2021a), a clear retrospective pattern was observed for SSB.
For this particular stock, a corresponding survey area was ex-
tended some years prior to the benchmark, and it was there-
fore suggested that a separate catchability parameter be in-
cluded before and after the extension. The inclusion of a
break point in the catchability parameter removed the ret-
rospective pattern in SSB. (2) During the benchmark for NEA
haddock ICES (2020b), retrospective patterns were removed
by including survey plus groups in eq. 3b. Previously, survey
observations of the oldest haddock were discarded. The abun-
dance of old haddock had increased in the last decade, and it
was therefore intuitive that the inclusion of separate survey
plus groups could solve retrospective issues.

Retrospective analysis is useful for identifying consistent
over- or underestimation in consecutive years, pinpointing
exactly the kind of errors that are of particular concern for
the management of fish stocks. Evaluating retrospective pat-
terns is very important in operational stock assessment. To
avoid misinterpretation of retrospective patterns, it is impor-
tant to evaluate their statistical significance. In this respect, it
is important to recognize that the distributions of these pat-
terns are determined by the specific model applied and the
data available. We have presented tools that address these
concerns, and that can assist in deciding on whether a ret-
rospective pattern is significant and indicative of model mis-
specification. In particular, our proposed procedures are well
suited to guard against over-interpretation of retrospective
patterns.
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