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A coustic surv e y s pro vide import ant dat a for fisheries management. During the surv e y s, ship-mounted echo sounders send acoustic signals 
into the water and measure the strength of the reflection, so-called bac kscat ter. Acoustic target classification (ATC) aims to identify bac kscat ter 
signals by categorizing them into specific groups, e.g. sandeel, mac kerel, and bac kground (as bottom and plankton). Convolutional neural net- 
w orks typically perf orm w ell f or ATC but f ail in cases where the background class is similar to the foreground class. In this study, we discuss 
how to address the challenge of class imbalance in the sampling of training and validation data for deep convolutional neural networks. The 
proposed strategy seeks to equally sample areas containing all different classes while prioritizing background data that have similar character- 
istics to the foreground class. We investigate the performance of the proposed sampling methodology for ATC using a previously published 
deep con v olutional neural netw ork architecture on sandeel data. Our results demonstrate that utilizing this approach enables accurate target 
classification e v en when dealing with imbalanced data. T his is particularly rele v ant f or pix el-wise semantic segment ation t asks conducted on 
e xtensiv e datasets. T he proposed methodology utiliz es state-of-the-art deep learning techniques and ensures a systematic approach to data 
balancing, a v oiding ad hoc methods. 
Keywords: acoustic target classification, big data, class imbalance, deep learning, similarity-based sampling. 
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Introduction 

Vertically oriented sonars, also known as echo sounders (Ko- 
rneliussen, 2018 ), are employed in acoustic trawl surveys to 

provide indices of abundance to fisheries assessment models 
(Simmonds and MacLennan, 2008 ). Typically, several trans- 
ducers are operating simultaneously, where each transducer 
operates at a specific frequency or frequency range. The 
strength of the reflected signals from objects in the water col- 
umn is commonly referred to as backscatter and is typically 
represented as single backscattering cross-section coefficients 
(MacLennan et al., 2002 ). The collected backscatter data 
from each transducer are displayed in an echogram as a 
function of ping time and range (depth). Echograms provide 
a high-resolution depiction of the ocean interior, where un- 
derwater structures like the seabed, fish schools, zooplankton 

layers, and various other objects can be seen (Blackwell et al.,
2020 ). When the backscatter from a single fish species can be 
isolated, the backscatter is linearly related to fish abundance 
(Foote, 1983 ). 

Despite the high spatial resolution of the echosounder, the 
taxonomic resolution is limited. Reliably allocating backscat- 
ter to an acoustic category, where the category may rep- 
resent a species or species group, can be challenging (Kor- 
neliussen, 2018 ). Traditionally, this has been a manual pro- 
cess based on experience, often with the aid of trawl sam- 
pling (Simmonds and MacLennan, 2008 ). Successful exam- 
ples include sandeel (Johnsen et al., 2009 ), herring (Karp 

and Walters, 1994 ), and blue whiting (Gastauer et al., 2016 ),
among others. Although this method has proven successful 
in many cases, it is time-consuming and can introduce bi- 
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reuse, distribution, and reproduction in any medium, provided the original work 
ses due to the operator’s subjective judgement or personal 
references. 
To avoid bias and subjectivity, automated methods have 

een suggested. These methods utilize algorithms to auto- 
atically classify targets (c.f. Korneliussen, 2018 ) for a re-

ent review. This process is coined Acoustic Target Classi-
cation (ATC) and includes methods that rely on the fre-
uency response of targets (Kloser et al., 2002 ; Korneliussen,
002 ) or shape, depth, and other features derived from the
coustic backscatter signals (Haralabous and Georgakarakos,
996 ; Reid, 2000 ). The recent developments in machine learn-
ng methods, including deep learning methods (LeCun et al.,
015 ), have started to gain momentum for ATC. 
Several machine learning methods have been proposed for 

TC. A framework proposed by Rezvanifar et al. ( 2019 ) in-
roduces a region of interest extractor combined with a deep
earning-based image classifier. Others have used similar ap- 
roaches where the region of interest is first detected, fol-
owed by ATC for the detected region. As Marques et al.
 2021b ) proposed, the steps can be combined using end-to-
nd deep learning frameworks like Faster R-CNN (Ren et al.,
015 ) and YOLOv2 (Redmon and Farhadi, 2017 ). Addition-
lly, YOLOv8 (Talaat and ZainEldin, 2023 ) is a more recent
ersion that is accessible for the particular task of object detec-
ion. Training these networks requires a substantial amount 
f labelled data, and Choi et al. ( 2021 ) proposed a semi-
upervised deep learning method to reduce the amount of data
equired. Marques et al. ( 2021a ) proposed a deep learning-
ased instance segmentation framework to accurately identify 
ounding boxes for herring schools. Another class of models 
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rovides semantic segmentation, where the acoustic category
s predicted for each sample (pixel) in the echogram. Brautaset
t al. ( 2020 ) developed a method based on the U-Net algo-
ithm, and Ordonez et al. ( 2022 ) tested the performance of
his model by exploring different resolutions and incorporat-
ng depth information. Vohra et al. ( 2023 ) tested Attention
-Net, U-Net, and DeepLabV3 for semantic segmentation,
nd Choi et al. ( 2023 ) combined semantic segmentation with
nsupervised learning. It is worth emphasizing that the qual-
ty of the training data significantly affects the performance
f the model. Insufficient or unrepresentative data leads to
oor generalization, while richer, more representative data in-
reases performance even with simpler algorithms (Mumuni
nd Mumuni, 2022 ). Obtaining such data is challenging, and
ata augmentation techniques that provide additional training
amples by, for example, affine transformations such as scale
nd rotation (Wong et al., 2016 ), introducing noise (Summers
nd Dinneen, 2019 ), or even using generative models (Wang
t al., 2021 ), have emerged as a solution to increase model ro-
ustness and accuracy. It is important to note that some aug-
entation techniques, like rotation, typically used for images

re not appropriate for acoustic data. 
A challenge for deep learning for ATC, and particularly

or semantic segmentation methods, is class imbalance. Class
mbalance occurs when one class is highly underrepresented,
hich is the case in ATC, where the target species are few and

ar between compared to the empty water column, seabed,
nd other structures, collectively referred to as background.
or an overview of problems and methods related to the class

mbalance, we refer the reader to Krawczyk ( 2016 ) and Buda
t al. ( 2018 ). Approaches to address the class imbalance in-
lude resampling techniques, i.e. data-level approaches (Beyan
nd Fisher, 2015 ), cost-sensitive learning, and algorithmic ap-
roaches (Hasib et al., 2020 ). Cost-sensitive learning involves
ssigning different misclassification costs to different classes
Zhou and Liu, 2010 ). Algorithmic approaches involve modi-
ying the learning algorithm to handle class imbalance directly
Krawczyk, 2016 ). Resampling techniques work by resam-
ling the unbalanced training dataset before the model train-
ng phase. The original unbalanced dataset can be balanced by
ither oversampling (Chawla et al., 2002 ; Hu et al., 2009 ) the
nder-represented class, referred to as the minority class, or
ndersampling (Japkowicz, 2000 ) the over-represented class,
eferred as the majority class. In their most basic versions,
andom oversampling duplicates random samples from the
inority class while random undersampling removes random

amples from the majority class (Van Hulse et al., 2007 ). Ran-
om undersampling has been shown to be preferable to ran-
om oversampling (Galar et al., 2011 ; Błaszczy ́nski and Ste-
anowski, 2015 ). This is due to the possibility of overfitting
uring the model generation process being increased by the
versampling method (Lin et al., 2017 ). 
Although random undersampling is widely used for imbal-

nced datasets, the disadvantage is that it could leave out data
amples that are informative (Ng et al., 2014 ). Several strate-
ies to get around these limitations were proposed. Tomek
 1976 ) proposed an undersampling method that removes the
ajority samples in close proximity to examples from the mi-
ority class, known as Tomek links, to improve the decision
oundary of a classifier. Kubat ( 1997 ) proposed one-sided se-
ection as a method to eliminate noisy and redundant sam-
les from the majority class using a 1-nearest neighbours (1-
N) rule. Barandela et al. ( 2004 ) proposed a K-NN rule for
liminating misclassified samples from the training set, with
 specific emphasis on removing the majority samples located
t class boundaries. In order to gather distributional data and
mprove resampling diversity, Ng et al. ( 2014 ) devised a diver-
ified sensitivity-based undersampling method. Sowah et al.
 2016 ) proposed a cluster-based undersampling approach that
emoves repeated and noisy instances as well as outliers from
he majority class. NearMiss is another undersampling tech-
ique that selects majority class samples closest to the minor-
ty class using a K-NN approach (Mani and Zhang, 2003 ). It
romotes reliable and equitable class decision boundary (Bao
t al., 2016 ; Peng et al., 2019 ) and has been successfully used
n applications such as electricity theft detection in smart grids
Ullah et al., 2022 ) and chronic kidney disease detection (Salau
t al., 2023 ). 

Different approaches have been used to address data im-
alance in machine learning methods for ATC. Brautaset
t al. ( 2020 ) tried various approaches, including loss weighted
y backscatter, with limited success. They resorted to an ad
oc sampling methodology where they randomly selected
he background class with a higher probability close to
he bottom. However, they still had problems with high-
ackscattering-intensity areas close to the surface being allo-
ated to sandeel. Misclassifying the bottom is a significant er-
or in ATC, but it is detectable by examining spikes in the
ummed predictions over range as a function of ping time. In
ontrast, identifying scattering that resembles the foreground
lass is far more challenging. Choi et al. ( 2021 ) addressed
he class imbalance problem by randomly undersampling the
ackground class and Vohra et al. ( 2023 ) employed Dice Loss
ith Binary Cross Entropy for the U-Net and the Attention
-Net algorithm and Focal Loss for DeepLabV3 + . Choi et al.

 2023 ) introduced a class-rebalancing weight for each learn-
ng objective. 

The main objective of this paper is to address the issue
f class imbalance for semantic segmentation networks in
TC by introducing an adaptable sampling approach. The
roposed strategy aims at prioritizing background regions
hat have similar backscattering intensity characteristics as
he foreground class. Through this approach, we expect to
mprove the training and achieve more accurate target clas-
ification when the datasets are imbalanced. To evaluate our
roposed sampling methodology, we test it on the deep con-
olutional neural network proposed by Brautaset et al. ( 2020 )
nd compare the performance with their sampling approach. 

aterial and methods 

coustic data 

n this paper, we use the acoustic data obtained from acous-
ic trawl surveys for sandeel ( Ammodytes marinus ). Sandeel is
 swimbladder-less small fish that plays an important role in
he North Sea ecosystem by serving as a primary food source
or various predators, such as seabirds, seals, and larger fish
Furness, 2002 ). It also holds significant economic value as a
arget species for commercial fishing. The sandeel data used in
his study were collected in the northeastern part of the North
ea by the Norwegian Institute of Marine Research (Johnsen
t al., 2017 ). The surveys were carried out using a Simrad
K60 with frequencies of 18, 38, 120, and 200 kHz, spanning

he years 2007–2018. The surveys were operated with RV Jo-
an Hjorth for 2007, 2008, 2010, and 2011, while RV GO
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Sars and FV Brennholm were used for the surveys in 2009 and 

2012, respectively. The survey series from 2013 to 2018 were 
conducted using FV Eros. Throughout the surveys, a 1.024 ms 
pulse duration, and a 3–4 Hz ping repetition frequency were 
used for all frequencies, and the vessel maintained a speed of 
approximately ten knots. Refer to Brautaset et al. ( 2020 ) for 
further details. 

The echograms for each year were stored separately, and 

consist of the volume backscattering coefficients, s v , arranged 

by ping time, range (depth), and frequency. 
The backscattering coefficient is the average of backscatter- 

ing intensity per cubic metre, i.e. 

s v = 

∑ 

σbs 

V 

, (1) 

where σ bs is the backscattering cross section, in m 

2 , while V 

corresponds to the volume occupied by a scattering medium,
in m 

3 , see for details MacLennan et al. ( 2002 ). As a com- 
mon data preprocessing step, see Lurton ( 2002 ) and MacLen- 
nan et al. ( 2002 ), the s v values are transformed into volume 
backscattering strength values, S v , also known as backscatter- 
ing intensity, measured in decibels ( dB re 1 m 

−1 ). The thresh- 
olded S v values are calculated as 

S v = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if 10 log 10 (s v ) > 0 

−75 if 10 log 10 (s v ) < −75 

10 log 10 (s v ) otherwise . 

(2) 

We refer to a location on the echogram, in the ping time and 

range axes, as a pixel. Thus, each pixel has four S v values that 
correspond to the four frequency channels. 

During the data preprocessing, we standardized the data to 

be comparable between the years. Missing pings were identi- 
fied using the median ping rate, and when found, columns of 
zeros were inserted into the s v data. When the range resolu- 
tion of other frequencies was lower, the data were interpolated 

onto the 200-kHz range vector. Conversely, if the range reso- 
lution was higher, s v values were averaged into bins defined by 
the 200-kHz range vector. In cases where the pulse duration 

deviated from the standard settings, the data were interpolated 

onto the range grid for the standard setting. This process re- 
sulted in s v values organized into a uniform time-range grid,
similar to pixels in a four-channel image. The seabed location 

was approximated as the depth with the maximum increase in 

vertical gradient for each ping. Refer to Brautaset et al. ( 2020 ) 
for further details. 

The echograms were manually labelled using the Large 
Scale Survey System (LSSS) (Korneliussen et al., 2016 ). Based 

on these labels, the pixels are assigned to three distinct classes: 
the target species class as a “sandeel”, an “other” class com- 
prising all other fish species, and a “background”class encom- 
passing all other objects visible in the echogram, such as the 
seabed and zooplankton layers. 

The annotated echograms exhibit a strong imbalance in 

class distributions, with an overwhelming majority of pixels 
(99.8%) belonging to the “background” class, while a small 
fraction of pixels is annotated as either “sandeel” (0.1%) or 
“other” (0.1%). This dataset corresponds to the dataset used 

in Brautaset et al. ( 2020 ). 
For this study, the data were split into training, validation,

and test sets. We used separate years as training, validation,
and test data. In particular, the survey data from 2011 to 2016 
ere used as the training data, 2017 for validation, and 2007,
008, 2009, 2010, and 2018 for testing. 

eural network 

e use a deep convolutional neural network that was de-
igned for ATC on sandeel (Brautaset et al., 2020 ). This net-
ork is a modified version of the U-Net, which was intro-
uced for pixel-wise image segmentation tasks (Ronneberger 
t al., 2015 ). For ATC, however, it is not feasible to train the
etwork using the entire dataset as one “image” due to the
xtensive size of acoustic data. Therefore, fixed-size patches 
ere selected from the annotated echograms. The patch size 
as set to 256 × 256 pixels. 
The architecture of the network consists of an encoder and

 decoder (c.f. Figure 1 ). First, it encodes the input into a 16
16 image with 1024 abstract features (1024 × 16 × 16).

hen the decoder generates an output, classifying each input 
ixel into one of three categories: “background”, “other”, or 
sandeel” (3 × 256 × 256). This output models the softmax 

robability for each pixel to belong to the three classes. 
Depending on how the training and validation patches are 

ampled, the resulting predictive model will be different. Be- 
ow, we review the sampling procedure from Brautaset et al.
 2020 ). We refer to this sampling approach as baseline sam-
ling and call the corresponding trained U-Net as the baseline
odel (see Section 3.3 ). In Sections 3.4 –3.5 , we define three
ther sampling approaches and the corresponding predictive 
odels: the similarity-based, random, and mixed model. 

aseline model 

o address the class imbalance problem, Brautaset et al.
 2020 ) proposed to sample input patches according to six
ifferent patch classes (c.f. Table 1 ). A patch class is a label
hat is associated with each patch for the training step. They
sed equal sampling probabilities for all the patch classes ex-
ept the “Background” class, the class of patches composed 

f only “background” pixels. “Background” patches were se- 
ected at random but ensuring that no fish schools or seabed
ere present within the patch. For the “Seabed”class, random 

atches containing seabed were chosen. Both the “Sandeel”
nd “Other” classes involved selecting a random pixel within 

 fish school to draw the patch around it in the way that the
atch would typically cover the fish school. For the other two
lasses, “Seabed + Sandeel” and “Seabed + Other”, the same 
rocedure was used except that only the fish schools close
o the seabed were chosen. This ensured that the patches in-
luded the seabed. 

In this undersampling approach, only the background 

atches containing seabed were considered important. Thus,
he other diverse “background” structures, such as zooplank- 
on layers were not explicitly taken into account. This leads
he baseline model to commonly misclassify the zooplankton 

ayers as fish schools. Since the non-fish school objects are not
nnotated, improving this baseline sampling is not realistic. In 

ddition, determining the optimal probability values for each 

roposed patch class is not straightforward. Hence, another 
pproach that can pinpoint significant regions for extracting 
atches in the sampling stage is needed. 

ata-driven similarity-based sampling approach 

ur approach is to improve the sampling of the “background”
y prioritizing the regions that have similar characteristics to 
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Figure 1. The str uct ure of the model used in this study (Brautaset et al. , 2020 ). The network is designed to process input data consisting of four 
channels representing frequencies of 18, 38, 120, and 200 kHz. Each channel has dimensions of 256 × 256. The network’s output is a 3 × 256 × 256 
tensor, where each pixel is assigned softmax probabilities indicating its belonging to one of the classes: “sandeel”, “other”, or “background”. 

Table 1. Proposed patch classes together with definitions and sampling probabilities in Brautaset et al. ( 2020 ). 

Patch classes Probability Description 

Background 1/26 Random patch from area without fish, above the seabed 
Seabed 5/26 Random patch from area containing seabed 
Sandeel 5/26 Random patch from area containing “sandeel” class 
Other 5/26 Random patch from area containing “other” class 
Seabed + sandeel 5/26 Random patch from area containing both “seabed” and “sandeel” classes 
Seabed + other 5/26 Random patch from area containing both “seabed” and “other” classes 

The regions of the echograms were classified into six distinct classes, and random samples were drawn from each class according to the provided probabilities. 
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sandeel” schools in terms of backscattering intensity. Instead
f using manually designed patch classes, we use the classes
orresponding to the pixel classes, namely, patches contain-
ng “sandeel”, “other”, and “background” pixels. The patch
lasses are sampled from the echograms with equal probabil-
ty (see Table 2 ). 

It is rather straightforward to sample patches contain-
ng “sandeel” and “other” since these classes are annotated.
ampling patches targeting the “background”, which include
arious unannotated structures with high variation in the
ackscattering intensities is however challenging. Random
ampling does not guarantee that these structures will be in-
luded nor to depict the variation in the backscattering inten-
ities. For example, if the echogram range is much larger than
he patch height, the majority of the randomly selected patches
ould represent only empty water and have low backscatter-

ng intensity values. 
We propose to sample background regions that have sim-

lar backscatter properties as the “sandeel” and, thus, are
rone to misclassification. In order to accomplish this, we
mployed the NearMiss undersampling methodology (Mani
nd Zhang, 2003 ). This methodology comprises three ver-
ions, among which NearMiss-1 selects samples from the ma-
ority class that have the smallest average distance to the
hree closest samples from the minority class. This approach
elps to remove majority-class samples that are most likely
o be misclassified as minority-class samples. NearMiss-2 se-
ects samples from the majority class that have the smallest
verage distance to the three furthest samples from the mi-
ority class. This approach helps to preserve more informa-
ion from the majority class while still reducing the imbal-
nce ratio. NearMiss-3 selects a given number of majority-
lass samples for each example in the minority class that are
losest. This approach is particularly useful when the minor-
ty class samples are scattered throughout the feature space
Mani and Zhang, 2003 ). Here we focus on NearMiss-2 as it
s less biassed towards the distributions within the majority or
inority class. 
The majority and minority classes and their samples must

e properly defined. Since sandeel is our target species, the
sandeel” class is considered as the minority class while the
background” represents the majority class. The “other” class
ould be viewed as a part of the majority class. However, since
t is small in size and annotated, we excluded it from the con-
ideration. If we considered “other” as a part of the major-
ty class, then applying undersampling on “other” might ex-
lude fish species that are similar to sandeel just because they
re less similar than some pixels in the background class, e.g.
ooplankton layers. Thus, the other fish schools would not
e well represented. If we applied undersampling on “other”
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Table 2. The proposed similarity-based sampling strategy. 

Patch classes Probability Description 

Similarity-based background 1/3 Random patch centred by the NearMiss regions 
Sandeel 1/3 Random patch from area containing “sandeel” class 
Other 1/3 Random patch from area containing “other” class 

Three patch classes are proposed, corresponding to the pixel classes. “Similarity-based Background” patches contain regions similar to sandeel fish schools. 
The “Sandeel” and “Other” patch classes contain fish schools of their respective classes. 

Table 3. Number of majority (background regions, y j ) and minority samples 
(sandeel schools, x t ) for training and validation years. 

Surv ey y ear Majority (y j ) Minority (x t ) 

2011 938,682 623 
2013 860,413 2,015 
2014 1,369,136 1,121 
2015 67,6913 1,515 
2016 1,412,651 829 
2017 743,134 3,602 
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separately, it would eliminate the useful samples as the class is 
small enough. 

Regarding the construction of minority class samples, we 
averaged the backscattering intensity for each frequency over 
each annotated “sandeel” school, i.e. 

x t = 

∑ 

i ∈ I t S v i 
| I t | , t = 1 , 2 , . . . , T, (3) 

where S v i is a four-dimensional vector of S v values of the pixel 
i , I t represents the index set for a fish school t , and T is the total 
number of sandeel fish schools. The averaging ensures that 
any random fluctuations are removed, similar to the approach 

that Korneliussen ( 2000 ) used. Note that we average S v values 
since they, and not the s v , are the inputs to the neural network.
The number of sandeel fish schools T varies between 623 and 

3602 over the training and validation years (c.f. Table 3 ). 
Figure 2. The steps of averaging for “background” pixels are demonstrated on 
process, the fish school pixels and the pixels below the seabed are excluded fro
using 25 × 25 pixel window (c). 
To accurately define the majority class, we excluded all
nnotated fish schools and pixels below the seabed. Using in-
ividual pixel values for the majority class would yet again be
rone to random fluctuations in the data. Therefore, we aver-
ged the “background” S v values over a specific window size.
f the window size is too small, the resulting values may still be
oo variable as well as computationally expensive. Conversely,
f we opt for a window size that is excessively large, the re-
ulting values may not be sufficiently representative of the 
background” S v value distribution. Given that the choice of 
indow size is a trade-off between computational efficiency 

nd accuracy, and considering the average size of sandeel fish
chools, we use a window of 25 × 25 after experimenting with
ifferent window sizes. Then, we computed the mean values 
f the 25 × 25 pixel regions for each frequency. Thus, we
btained four-dimensional vectors y j , j = 1,…, J , representing
he majority class samples. Here J is the number of non-
verlapping 25 × 25 regions covering the echogram dimen- 
ions. The procedure is depicted in Figure 2 for one frequency
hannel. 

For each acoustic dataset in the training and validation 

ets, once we have defined the majority and minority classes,
e calculated ρ

j 
t values representing the Euclidean distances 

rom each majority sample y j to every individual minority 
ample x t , i.e. ρ j 

t = ‖ y j − x t ‖ , j = 1, …, J , and t = 1, …T . We
hen defined the ordered set D j = { ρ j 

1 , ρ
j 
2 , . . . , ρ

j 
T } , for each

f the majority samples y j , j = 1, …, J , containing ρ j 
t values in
the example echogram at 200 kHz frequency, denoted as (a). In this 
m the echogram (b). Subsequently, the remaining pixels are averaged 
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Figure 3. The scatter plot illustrates the results of PCA after applying the NearMiss-2 algorithm to the acoustic data for a single surv e y. T he majority class 
( x j ) is visualized as blue points on the two principal components. The minority class ( x t ), which represents data points related to sandeel fish schools, is 
depicted in black. Additionally, the selected 25 × 25 background regions from I SB are shown as red points (highlighted by red squares in Figure 4 ). 
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escending order, where ρ j 
k ≤ ρ

j 
k +1 , k = 1, …, T -1. From this

istance set, we calculate the average, μj , of the first S = 3
alues, i.e. 

μ j = 

1 

S 

S ∑ 

s =1 

ρ j 
s , ρ j 

s ∈ D j , j = 1 , . . . , J. (4) 

hese values were then sorted in ascending order and the N th
mallest value was denoted as m N 

. Our aim here is to incor-
orate the most similar regions while also introducing some
evel of variation. To achieve this, we conducted experiments
ith different values of N and determined that setting N at
ve times the number of fish schools in each training dataset
ave the best F1 score on the validation data. Finally, the
imilarity-based index set I SB was defined as 

I SB = 

{
j | μ j ≤ m N 

}
. (5) 

his set points to the most similar, according to the NearMiss-
 methodology, background regions to the sandeel fish schools
n the acoustic data. 

To demonstrate the distribution of the selected y j , j ∈ I SB ,
e performed principal component analysis (PCA) (Abdi and
illiams, 2010 ) on the majority, y j , j = 1, …, J , and the minor-

ty, x t , t = 1, …, T , samples. The scatter plot in Figure 3 shows
hat the selected majority samples cluster around the centre of
he minority class. This is expected since we have selected the
inimum averaged distances of the three furthest distances to

he minority class. 
We also attempted NearMiss-1 and NearMiss-3 techniques

o undersample the majority class. However, NearMiss-1 led
o the selected majority samples resembling the distribution
f the minority class. This outcome was not desirable as our
bjective was to capture the most typical sandeel fish schools,
ather than extreme cases with very high or very low backscat-
ering intensities. Similarly, NearMiss-3 followed the distri-
ution of the majority class, but its emphasis on the “back-
round” class could result in selecting irrelevant areas. On the
ther hand, NearMiss-2 allowed us to concentrate more on
he most similar regions at the centre of the minority class.
dditionally, as we show below, our sampling methodology

ncorporates the surrounding pixels, thereby already account-
ng for intensities variation. 

The training step requires 256 × 256 patches. Therefore,
e selected the 256 × 256 patches centred on the 25 × 25 re-

ions corresponding to y j , where j represents randomly sam-
led indices from the set denoted as I SB . We refer to this sam-
ling procedure as the similarity-based background sampling
nd the corresponding patch class as the “Similarity-Based
ackground” patch class. We refer to the overall sampling ap-
roach (see Table 2 ), as the similarity-based sampling, and the
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Figure 4. Three example patches (a, b, and c) where three “Similarity-Based Background” patches are generated based on the similarity-based 
sampling. The inner red squares are the 25 × 25 regions from I SB that the NearMiss-2 algorithm determined similar to sandeel schools, while the outer 
orange regions are the 256 × 256 input patches used during training. Note that the background patches may include pixels of wider range of bac kscat ter 
intensities, while the centre patch ensures that the difficult pixels are included during training. 
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corresponding network model as the similarity-based model.
The “Sandeel” and “Other” patches are sampled as the base- 
line model, c.f. the description in Section 3.3 . We emphasize 
that the exclusion of the aforementioned pixels is done only 
to determine the coordinates for the similarity-based sampling 
methodology. Once the coordinates on the acoustic data have 
been identified, patches are drawn from the whole echograms 
without any pixel exclusion. 

The resulting “Similarity-Based Background” patch class 
includes patches with background regions having similar 
backscattering intensity patterns to those of sandeel fish 

schools. Figure 4 shows examples of the patches from the 
“Similarity-Based Background” patch class. There are cases 
where the annotations are missing, and Figure 4 a provides an 

example where the selected patch contains an unannotated 

sandeel fish school. In Figure 4 b and c, the identified regions 
are representing dense plankton layers. 

When training the network with these “Similarity-Based 

Background” patches, we expect the resulting model to 

improve. Moreover, since a “Similarity-Based Background”
patch also includes surrounding pixels (c.f. Figure 4 ), the net- 
work will also be exposed to morphological features that will 
provide additional information during training. In addition,
these surrounding pixels exhibit the characteristic traits of the 
“background” class ensuring that the network is adequately 
exposed to the more common parts of the “background” class 
as well. 

To assess the performance of the similarity-based under- 
sampling method, we compared the distribution of μj based 

on the similarity-based sampling and that of random sam- 
pling (c.f. Figure 5 ) for one survey (2011). The figure main- 
tains the same colour scheme as Figure 4 , using red for the se- 
lected regions and orange for the input patches for easy iden- 
tification and comparison. The histogram of the selected μj ,
j ∈ I SB , which corresponds to the regions of interest, is de- 
picted in red (see Figure 5 a). These regions represent the most 
sandeel-like regions in the data, such as not-annotated sandeel 
fish schools (as given in Figure 4 a) and zooplankton layers (as 
given in Figure 4 b and c). In Figure 5 b, the histogram in red 

corresponds to a random selection μj , and thus to random 
5 × 25 background regions. By drawing 256 × 256-sized 

atches centred around the selected regions, we obtain the cor-
esponding μj values for the regions within the patches. The 
istograms for these values are displayed in orange colour.
he resulting distribution in Figure 5 a is similar to a uni-

orm distribution but with a slightly higher density of sam-
les that resemble those of sandeel schools. The distribution 

esulting from the random selection (see Figure 5 b) follows
he majority class distribution. This indicates that random 

election can capture some degree of diversity in the acous-
ic data, but the resulting regions used as inputs for the net-
orks closely resemble the distribution of the majority class.
ue to the low density of the majority class distribution for

ow μj , the most similar to the sandeel school regions can be
issed. 

ther sampling approaches 

e tested a total of four different sampling strategies for
raining the neural network. In addition to the baseline sam-
ling where patches that include the bottom were emphasized 

c.f. Section 3.3 ), and the similarity-based sampling approach 

c.f. Section 3.4 ), we tested a random sampling methodol-
gy for the “background” class. We also tested a combina- 
ion of the random and similarity-based where we sampled 

he “Similarity-Based Background” patches and the random 

Background”patches with a probability of 1/6 each. The cor- 
esponding trained models for these random and mixed sam- 
ling methodologies are referred as the random and mixed 

odels, respectively (c.f. Table 4 ). We employed these models
o assess our proposed sampling method against the widely
sed random undersampling technique and to study how the 
esults change when the two sampling strategies are combined.
lease note that all sampling methods are applied only to the
raining and validation datasets, and these datasets are chosen 

efore undersampling is carried out. 

raining and evaluation procedures 

e trained the network using the data obtained by the
our sampling strategies: baseline, similarity-based, random,



8 A. Pala et al. 

Figure 5. The distributions of μj for “Similarity-Based Background” patch selection (a) and random “Background” patch selection (b). The distribution of 
μj for all the majority samples, i.e. j = 1,..., J , is represented by the blue colour. The red colour in (a) indicates μj , j ∈ I SB , while the same colour in (b) 
represents the randomly selected μj . The orange colour corresponds to μj of the regions contained in the selected 256 × 256 patches. 

Table 4. The sampling strategies employed to obtain random 256 × 256 patches for training the similarity-based, random, and mixed models are described. 

Patch classes Probability Description 

Similarity-based Mixed Random 

Sandeel 1/3 1/3 1/3 Random patch from area containing “sandeel” class 
Other 1/3 1/3 1/3 Random patch from area containing “other” class 
Similarity-based background 1/3 1/6 0 Random patch centred by the NearMiss regions 
Background 0 1/6 1/3 Random patch from area without fish, above seabed 

Additionally, the sampling probabilities for each patch class are provided, along with an explanation of the criteria used. 
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nd mixed sampling. Each time, we apply the same training
nd validation configurations as Ordonez et al. ( 2022 ). In
ummary, we trained the network using stochastic gradient de-
cent with a batch size of 16, an initial learning rate of 0.005
reducing this value every 1000 iterations by a factor of 2) and
 momentum value of 0.95. To further deal with the class im-
alance in the dataset, the network employs a weighted cross-
ntropy loss function with class weights of “background”,
sandeel”, and “other”, to be 10, 300, and 250, respectively to
rain the models on 160000 randomly chosen samples based
n the sampling schemes. As a stopping criterion, the training
terations were limited to 10000. 

All the trained models are binary pixel classifiers with a
hreshold between 0 and 1. Pixels are classified as positive if
he output for the “sandeel” class exceeds the threshold and
egative otherwise. To evaluate the performance of the mod-
ls, we utilized precision–recall curves. Precision is the ratio
f correctly predicted “sandeel” pixels among all predicted
sandeel” pixels, while recall is the proportion of accurately
redicted “sandeel” pixels out of all the true “sandeel” pixels.
y selecting the threshold that maximizes the F1 score, which
alances precision and recall, we report the achieved F1 score
s 

F 1 = 2 × Precision × Recall 
Precision + Recall 

. (6) 

o obtain classification results at the pixel level, we followed
he same prediction implementation as Brautaset et al. ( 2020 ).
his involved calculating precision and recall curves for each
ear separately. To generate the pixel-level classification
esults, we applied the trained models to small overlapping
mage patches. As a post-processing step, we eliminated
ny fish predictions located more than ten pixels below the
eabed, i.e. classifying them as “background”. The reason
or this step is that pixels below the seabed represent the
eflections of the objects located above the seabed. 

We used the trained models, namely the baseline model and
he new similarity-based, random, and mixed models, for pro-
ucing predictions for all the acoustic data used for training,
alidation, and testing purposes. We obtained precision and
ecall curves by considering all pixels from the echograms for
ach year separately and we compared the performance of the
odels. 

esults 

n this section, we evaluate how the four sampling strategies
or the training data influence the performance of the corre-
ponding predictive models. Namely, the performance of our
roposed similarity-based model was evaluated and compared
o the baseline, random, and mixed models using maximized
1 scores across multiple survey years, as shown in Table 5 .
recision–recall curves are given in Figure 6 . We also exam-

ned at which echogram range (depth) the similarity-based
odel improved the “sandeel” pixel predictions compared to

he baseline and random models in Figure 7 . Additionally, we
rovide an example prediction from the baseline and our pro-
osed model in Figure 8 . It is important to note that, due
o the undersampling, most of the background data has not
een used for training and validation. The F1 scores for these
ears are a good indication of the model performances and
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Table 5. F1 scores for each year are presented in bold numbers for the four 
aforementioned models. 

F1 scores 

Surv ey y ear Baseline Random Mixed Similarity-based 

2007 0.1095 0.1655 0.3044 0.4171 
2008 0.6622 0.6700 0.6629 0.7073 
2009 0.8088 0.8450 0.8195 0.8137 
2010 0.7704 0.7777 0.7728 0.7664 
2011 0.7114 0.7784 0.7349 0.7809 
2013 0.4776 0.5970 0.5848 0.6347 
2014 0.7927 0.7978 0.7909 0.8188 
2015 0.6320 0.6413 0.6323 0.6530 
2016 0.4810 0.4799 0.4797 0.5016 
2017 0.7495 0.8053 0.7789 0.8164 
2018 0.8310 0.8438 0.8362 0.8311 

The similarity-based model demonstrates better performance compared to 
the other models in most years, except for 2009, 2010, and 2018, where the 
performances are closely competitive. 
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Figure 6. The four models, including random selection of background patches (g
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The results demonstrate the effectiveness of the similarity- 

ased sampling when compared to the baseline model, as
t consistently achieves better performance across the sur- 
ey series for training, validation, and test sets. Compared 

o the baseline model, the similarity-based model consistently 
chieves the best performance across the survey series except 
he test year of 2010. In particular, the similarity-based model
xhibited considerable improvements for several years. For 
xample, in the test year of 2007, the similarity-based model
chieved an F1 score of 0.4171, which is ∼0.3076 higher than
he baseline model’s score of 0.1095. Similarly, in the training
ear of 2013, the model achieved an F1 score of 0.6347, repre-
enting an improvement of ∼0.1571 compared to the baseline 
odel. 
In terms of the F1 score, the random model performance

as slightly better than that of the similarity-based model for
rey), similarity-based selection (blue), mixed model (yellow), and 
. The performance improvement is particularly evident in the years 2007, 
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Figure 7. The distributions of “sandeel” pixels by depth for the example test years 2007 (a) and 2009 (b) are visualiz ed. T he total number of ground truth 
pixels count (orange), the count based on the similarity-based model (blue), the count from the random model (green), and the count from the baseline 
model (red) are visualized. The dashed curves denote the number of misclassified pixels from the similarity-based, random, and baseline models. 
Notably, the similarity-based model effectively reduces the misclassification of “background” pixels as “sandeel” particularly close to the sea surface. 
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he test years of 2009, 2010, and 2018, with improvements of
.0313, 0.0113, and 0.0127, respectively. It is, however, im-
ortant to note that in those particular years, all the models
erformed well. On the other side, the similarity-based model
ields higher F1 scores compared to the random model in the
est years of 2007 and 2008, with improvements of 0.2516
nd 0.0373, respectively. Across all the training and validation
ears, the similarity-based model consistently outperforms the
andom model, resulting in an F1 score increase ranging from
.0025 to 0.0377. The random model performed better than
he baseline model in all but one year. This suggests that using
andcrafted patches is not particularly beneficial. A strategy
onsidering only the pixel classes as patch classes along with
pplying the proposed sampling methodology, can be effective
n enhancing model performance. In addition, since the ran-
om undersampling is much less computationally expensive,
t is preferable to the baseline sampling. 

The random model performed better than the mixed model
n all training, validation, and test years except in the test
ear of 2007. In 2007, the mixed model has a good improve-
ent compared to the random model, with ∼0.1389 higher
1 score. For all other survey years, the random model gives
1 score improvements ranging from 0.0435 to 0.0002, with
n average improvement of 0.0131. It was expected that the
erformance of the mixed model would be between the perfor-
ance of the random and similarity-based models. However,

he random model is mostly performing better than the mixed
odel. This indicates that when the combination of similarity-
ased and random sampling is used, the variation between the
elected patches for training is not adequately satisfied. For the
est years 2009, 2010, and 2018, the mixed model performed
lightly better than the similarity-based model but not better
han the random model for these years. It is important to note
hat the mixed model is performing better than the baseline
odel in all the test, validation, and training years except the

raining years of 2014 and 2016. 
The precision–recall curves (c.f. Figure 6 ) provide further

nsights into the performance of the models. The similarity-
ased model demonstrates higher precision compared to the
aseline model in multiple years, including the test years of
007, 2009, and the training years of 2014 and 2016. This
ndicates a higher proportion of correctly classified positive
nstances, i.e. “sandeel” class, among all predicted positive in-
tances. In other words, the samples from the “background”
lass are classified more precisely. Moreover, when compared
o the random and mixed models, the precision–recall curves
onsistently show that the similarity-based model achieves
igher precision values. This shows that the similarity-based
odel is more accurate in identifying positive instances, result-

ng in fewer false positives. These findings support the earlier
bservations based on maximized F1 scores. 
Although the similarity-based model consistently outper-

orms the baseline model, it is important to note that per-
ormance varies across different years. In the training year of
011, for example, while the similarity-based model achieves
 higher maximized F1 score (0.7809) compared to the base-
ine model (0.7114), it exhibits lower precision values at
ower threshold levels. This observation demonstrates that the
coustic data from different years have different properties.
e also note that the number of not-annotated fish schools
ay lead to variations in model performance, which seems to
e the case for 2011. 
We investigated at which echogram range (depth) the

imilarity-based model improved the “sandeel” pixel predic-
ions compared to the baseline and random models. When
onsidering the counts of ground truth “sandeel” pixels and
he numbers of predicted “sandeel” pixels from all these
odels, we see that there is a high number of misclassi-
cations from the baseline model in the upper water col-
mn. Compared to the baseline model, the random model im-
roves the predictions close to the sea surface. However, it
till gives a higher number of misclassifications in the upper
ater column compared to the similarity-based model. This
attern is particularly clear in the years of a poor baseline
odel performance (c.f. Figure 7 a), and less so for the years
here the difference between the models is less significant

c.f. Figure 7 b). This shows that the similarity-based model
educes misclassifications in the upper field, where plank-
on layers are known to cause challenges for the baseline
odel. 
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A notable difference can be observed in the predictions of 
the baseline, random, and similarity-based models for a spe- 
cific region (c.f. Figure 8 ). The baseline and random models 
predict the dense layer in the background close to the sur- 
face as “sandeel”, while the similarity-based model accurately 
classifies this field as “background”. This example predic- 
tion highlights the improved performance of the similarity- 
based model in correctly classifying background structures 
compared to the baseline and random models. This was one 
of the main objectives in proposing similarity-based sampling.
However, it is also important to note that the similarity-based 

model, like the baseline and random models, encounters chal- 
lenges in accurately identifying some parts of the fish schools,
as evident from the predictions (c.f. Figure 8 e). Although the 
similarity-based model fails to identify certain portions of the 
fish schools, the baseline and random models miss an even 

larger number of fish school parts. 

Discussions 

This paper addresses the problem of class imbalance in acous- 
tic data through the introduction of an adaptable undersam- 
pling approach particularly relevant to semantic segmentation 

problems. The proposed methodology utilizes state-of-the-art 
deep learning techniques and ensures a systematic approach 

to data balancing, avoiding ad hoc methods. A strength of the 
proposed undersampling approach is that it is data-driven and 

only uses the pixel classes defined by the annotations. By ef- 
fectively tackling class imbalance, we contribute to the field of 
ATC by improving the state-of-the-art deep learning method 

for semantic segmentation. 
Dealing with sampling methodology is crucial when apply- 

ing deep learning methods to acoustic data, which is charac- 
terized by its large size and substantial class imbalance. Al- 
though the baseline study (Brautaset et al., 2020 ) manually 
balanced the training data by focusing on the “background”
class containing seabed samples, it did not account for near- 
surface and other potential structures. The absence of these in 

the training dataset led the network to misclassify them. To 

detect the most informative subsets from the “background”
class, our approach identifies the most sandeel-like regions 
using NearMiss undersampling method, and extracts input 
patches centred around these regions. This method enhances 
the network’s training and improves model performance, par- 
ticularly in near-surface areas with dense plankton layers. 

The proposed similarity-based sampling noticeably im- 
proved the predictions of the network in certain years, such 

as 2007 from the test set, and 2013 and 2016 from the train- 
ing set, when the baseline model’s performance was poor.
For these specific years, the classification of acoustic targets 
was particularly challenging due to the presence of numer- 
ous structures that shared similar backscattering intensity pat- 
terns with “sandeel”, such as zooplankton or other unidenti- 
fied structures. 

Another finding arising from this research is that the ran- 
dom undersampling method is also useful for deep seman- 
tic segmentation models on ATC given that the correspond- 
ing model yields better F1 scores in three out of the five test 
years. It shows an improvement in F1 score compared to the 
similarity-based model with increments of 0.0313, 0.0113,
and 0.0127 for the test years of 2009, 2010, and 2018, re- 
spectively. However, it is important to note that the similarity- 
based model achieves a more substantial improvement in the 
1 score for the test years of 2007 and 2008, with increments
f 0.2516 and 0.0373, respectively. Moreover, the similarity- 
ased model is better at classifying non-bottom sandeel-like 
tructures, compared to the random model (c.f. Figures 7 and
 ). In practice, during manual data scrutiny, the seabed can
e separated from the fish since the acoustic properties are
sually very different. However, backscatter signals that are 
imilar to the foreground class are typically more challenging.
his is where the similarity-based model has its advantage. 
The proposed similarity-based sampling approach is gen- 

ral and has the potential to improve the performance of
ther deep learning models for ATC that face class imbalance.
owever, when the fish has similar backscatter signals as the

eabed, the seabed removal during patch selection should not 
e performed. Choi et al. ( 2021 ) randomly undersampled the
ajority class, in their case the background patches, to achieve

lass balance. They aim to first cluster the extracted and la-
elled patches, then classify them using a semi-supervised deep 

earning framework. For their specific case, the similarity- 
ased sampling method can be applied by selecting represen- 
ative patches to further improve their deep clustering objec- 
ive. Vohra et al. ( 2023 ) used Dice Loss and Focal Loss to ad-
ress the class imbalance for their deep learning-based seman- 
ic segmentation problem, i.e. the automatic detection of un- 
erwater discrete scatterers (single marine organisms). In their 
ase, they have 571 × 1200 pixels of echograms and they did
ot have to sample from the echograms. Similarity-based sam- 
ling could be accomplished by first categorizing echograms 
ccording to their background features and prioritizing the 
chograms with more foreground-like background attributes.
ousseau et al. ( 2022 ) used undersampling on the majority
lass (juvenile salmon) for the classification step, and it could
e valuable to extend the similarity-based sampling method 

o classification problems as well. Lastly, in the study by Choi
t al. ( 2023 ), class-rebalancing weights were introduced for
he deep semi-supervised semantic segmentation model, and 

he similarity-based sampling method could complement this 
pproach by ensuring that the selected background samples 
re sufficiently similar to the foreground class. While this 
roof-of-concept primarily focuses on ATC and monitoring 
chools of sandeel, the approach can also be applied to similar
roblems involving large datasets that require sampling tech- 
iques for training purposes, such as satellite image segmenta- 
ion (Khryashchev et al., 2018 ) and seismic data segmentation
Birnie et al., 2021 ). 

One limitation of our proposed sampling methodology is 
hat it can inadvertently include sandeel fish schools that are
ot annotated as “sandeel” within the “background” class.
e observed, similarly to Brautaset et al. ( 2020 ), the presence

f fish schools that were either incompletely annotated or not
nnotated at all. As shown in Figure 4 a, these areas are identi-
ed by our algorithm, and the corresponding patches are pro-
ided to the neural network. Since these regions are consid-
red “background”, the network is trained to classify them as
background” rather than “sandeel”. As a result, the random 

odel that does not prioritize sandeel-like “background”may 
chieve slightly better performance in this regard. However, it 
s important to note that despite this weakness, our proposed
ampling strategy substantially improves the performance of 
he model. 

To overcome the difficulties that arise from annotation 

uality, future studies could focus on handling annotation un- 
ertainty. Applying active learning, in which the uncertainty 
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Figure 8. The illustration depicts the comparison of models on the example echogram from 200 kHz (a). It includes the ground truth annotations (b), the 
predictions of the baseline model (c), the predictions of the random model (d), and the predictions from the similarity-based model (e). The “sandeel”
class is visualized in red, while the “background” class is represented in black. The baseline and random models show false positives near the sea 
surface, where dense plankton layers exist. In contrast, the similarity-based model accurately classifies these parts as “background”. 
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in the labels is discovered and the learning system can engage 
with a user (or other information sources) to re-label current 
data points (Yang et al., 2017 ), is one potential option. By 
providing more accurate labels, active learning could increase 
the effectiveness of the deep learning models performed on 

the acoustic data. Another future direction could be to create 
an abstract vector representation for the acoustic data using 
a self-supervised (or unsupervised) technique. The key benefit 
is that classifiers can be trained fast (even interactively) on 

top of the embedding, freeing us from relying on annotations,
which are technically challenging to obtain and likely to be 
erroneous. 

We have proposed an adaptable approach to select data 
from echograms for training deep learning models. The ap- 
proach is based on a similarity-based undersampling method- 
ology, which identifies the most foreground-like regions. It of- 
fers a solution to effectively address the challenge of handling 
class imbalance in acoustic data and contributes to the devel- 
opment of ATC methods. 
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