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Selective imputation for multivariate time series
datasets with missing values

Ane Blázquez-Garcı́a, Kristoffer Wickstrøm, Shujian Yu, Karl Øyvind Mikalsen, Ahcene Boubekki,
Angel Conde, Usue Mori, Robert Jenssen, and Jose A. Lozano

Abstract—Multivariate time series often contain missing values for reasons such as failures in the data collection mechanism. These
missing values can complicate the analysis of time series data, and thus, imputation techniques are typically used to deal with this
issue. However, the quality of the imputation directly affects the performance of subsequent tasks, especially when the missing rate is
high. In this paper, we propose a selective imputation method that identifies a subset of time points with missing values to impute in a
multivariate time series dataset. This selection, which will result in shorter and simpler time series, is based on both reducing the
uncertainty of the imputations and representing the original time series as good as possible. The method is applied to different
datasets to analyze the quality of the imputations and the performance obtained in subsequent tasks, such as supervised
classification. The results show that it is not essential to impute all missing values as the optimal subset of time points can improve both
the quality of the imputations and the accuracy of the classification.

Index Terms—Multivariate time series, missing data, imputation, irregular sampling
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1 INTRODUCTION

A multivariate time series is a sequence of multivariate
data points that have been recorded in an orderly fashion
and are correlated in time. For instance, time series arise
commonly in many application domains such as biology [1],
astronomy [2, 3], geophysics [4], and health [4]. However,
for reasons such as failures in the data collection mecha-
nism, multivariate time series often contain missing values.
Since the presence of missing values hinders an advanced
analysis of time series data and complicates the subsequent
application of machine learning algorithms for tasks such
as classification or anomaly detection, their treatment is an
important task to address.

Techniques in the literature usually tackle this issue
using imputation methods. In general, we can categorize
the imputation methods for time series into: 1) agnostic
methods, which are defined as pre-processing methods and
are independent of the subsequent machine learning task, 2)
intrinsic methods, which are defined within the subsequent
machine learning algorithm that will be applied.

Within the agnostic imputation methods, basic imputa-
tion techniques such as forward filling [5, 6], zero impu-
tation [5], or mean imputation [6] have been widely used.
More advanced techniques such as Generative Adversarial
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Networks (GAN) [7, 8] have also been proposed in this
category. The main advantage of these techniques is that
they can be used in combination with any machine learning
task (e.g., forecasting, classification, or clustering) as they do
not depend on the task itself.

In contrast, the intrinsic methods for multivariate time
series are usually defined for classification tasks and use the
information of the labels of the time series to impute the
missing values [9, 10, 11]. As an example, Gaussian Pro-
cesses have been used together with deep learning methods
to obtain the imputed values [12, 13, 14]. Note that the
imputations provided by these techniques are specific for
the model and machine learning task (e.g., classifier) used.

In both the agnostic and intrinsic cases, the set of time
points to impute needs to be determined beforehand. A
naive solution is to impute all the missing values in all of
the time points, assuming that the time series is regularly-
sampled [10, 11, 15, 16, 17]. This solution is frequently
adopted in the literature because many machine learning
models require regularly-sampled time series without miss-
ing values (i.e., fully-observed time series) [18]. Indeed,
authors often consider that the time series has an hourly
sampling [5, 6, 12, 19]. However, these methods tend to
make too many imputations; as an extreme example, they
carry out imputations even in the time points where there
is no measurement in any of the variables. Imputing so
many missing values can produce high errors and affect the
results of subsequent tasks, especially when the missing rate
is high.

As such, more advanced techniques rely on imputing
only the missing values in the time points where at least
one of the variables has been observed [9, 20]. The resulting
time series may have an irregular elapsed time between
consecutive observations. Thus, for subsequent tasks such
as classification, techniques in this group require choosing



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

algorithms that are capable of dealing with irregularly-
sampled time series. Although these techniques need to
impute fewer values than in the previous case, it is ques-
tionable whether imputing all those data points is necessary
to adequately represent the time series.

In this paper, we propose an agnostic method to selec-
tively impute the missing values in a collection of multi-
variate time series, for the first time in the literature. In
particular, the method selects the best subset of time points
to impute based on the idea that selecting many time points
can lead to a poor quality of the imputations, while selecting
few time points can lead to a poor representation of the time
series. In this way, the proposed method allows to shorten
and simplify the time series, besides reducing both the error
introduced by the imputations and the cost in different
aspects (e.g., computational cost or the cost associated with
the data collection).

The rest of this paper is organized as follows. Section
2 defines the context of the problem to be addressed and
introduces the notation used throughout the paper. Section 3
presents the details of the proposed methodology. Section 4
provides the conducted experiments and the corresponding
results. Finally, the conclusions drawn and suggestions for
future work are discussed in Section 5.

2 PROBLEM SETTING AND NOTATION

Let D = {Y 1, ..., Y N} be a time series dataset composed of
N multivariate time series. Each time series Y i is formed by
L variables and contains missing values1. Additionally, let
Ω = {t1, t2, ..., tT } be the set of time points with at least one
observation in D. An illustration of the problem setting is
shown in Fig. 1, where the actual observations of each time
series are represented by black crosses. In this example, it
can be seen that D has observations in a total of eight time
points (i.e., |Ω| = T = 8).

Y1

Y2

YN

t1 t8t2 t3 t4 t5 t6 t7

Figure 1: Illustration of the problem setting.

In this context, the main focus of this paper is to address
the problem of imputing missing values of the multivariate
time series in D. In particular, the objective of this paper
is twofold: 1) selecting the optimal subset of time points,

1. Without loss of generality, in this paper, we assume that the dataset
has multiple time series (N > 1) and variables (L > 1), but the method
is also applicable to a single time series (N = 1) and/or univariate time
series (L = 1).

which we denote as P ∗, where P ∗ ⊆ Ω, and 2) filling the
missing information on those time points.

For the sake of clarity, the notation used throughout this
paper is summarized in Table 1.

Table 1: Summary of the notation used.

D , Time series dataset
N , Number of multivariate time series in D

Y i , ith multivariate time series in D

L , Number of variables of the time series in D

Ω , Candidate set of time points
T , Length of Ω

P , Subset of time points of Ω

P c , Complementary set of P in Ω (i.e., P c = Ω \ P )
P ∗ , Optimal set of time points

3 METHODOLOGY

The overall diagram of the proposed methodology is shown
in Fig. 2. The first step consists of imputing all the missing
values in the candidate set Ω (see Section 3.1). Then, the
criterion to evaluate the different sets of time points to
impute is designed (see Section 3.2), and following this
criterion, the optimal time points are identified (Section 3.3).
Once the optimal set of time points of a time series dataset
has been selected, the time series are represented by those
time points (see the last step in Fig. 2), and the subsequent
task would be performed using this reduced representation.
The details of the methodology are explained below.

3.1 Imputation of the missing values

Since the time series in D contain missing values, the first
step is to obtain imputations for all the time steps in Ω. For
this, we use a probabilistic model, in particular, a Multi-task
Gaussian Process (MGP) [21], not only to impute those val-
ues but also to provide the uncertainty of the imputations, as
it will then help in assessing the quality of the imputations.
This technique is useful to model multivariate time series
because it considers the correlations between the variables
of the time series. See Appendix A for more details on MGP.

In particular, an independent MGP will be fit to each
of the multivariate time series in D. Given a multivariate
time series Y i, the corresponding model parameters will be
learned using all its observed values. This can be seen as the
first step of the pre-processing of the time series. Once the
hyperparameters of the MGP model have been learned for
each time series, we can obtain an estimated value together
with its uncertainty for any missing time point in that time
series.

3.2 Criteria for the time point selection

The next step consists of establishing a criterion to evaluate
the quality of each subset of time points P ⊆ Ω. For this
purpose, it should be taken into account that selecting a
subset of time points P implies, on the one hand, having
to impute the missing values in P , and on the other hand,
losing the actual observations that are not in this subset (i.e.,
observations in P c).
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Figure 2: Diagram of the proposed methodology. Points in orange are the estimated values, and black crosses are the actual
observations.

Therefore, the first criterion that we consider when
evaluating a subset of time points P is the quality of the
imputations of the missing values within P . To this end, we
quantify the uncertainty of the imputations such that low
uncertainty represents high imputation quality (see Section
3.2.1). On the other hand, we propose a second criterion to
assess the quality of the actual observations within P that is
based on measuring the information that is lost by excluding
some of the time points. In particular, the more information
that is lost, the worse the set of time points P is. To measure
this, we introduce a new concept denominated predictive
capability of a set of time points (see Section 3.2.2).

The details of the two criteria are described in the fol-
lowing sections.

3.2.1 Quantification of the uncertainty

As the imputations have been made with a probabilistic
model, the uncertainty for a subset of time points P can
be quantified using the variances of the imputations. In
particular, we quantify the uncertainty in P of a time series
i by computing the mean variance of the imputed values.
That is,

V i
P =

1

M i
P

Mi
P∑

j=1

σ2
j (1)

where M i
P is the number of missing values in time series i

and set P , and σ2
j is the variance of the jth imputed value.

Note that this value is computed using the MGP.
To illustrate the intuition behind this criterion, an exam-

ple is shown in Fig. 3. The aim is to quantify the uncertainty
of the imputed values that are represented with orange dots.
Specifically, the selection of points P consists of four time
points and contains M i

P = 4 missing values. Moreover,
the uncertainty of their imputations is illustrated in blue by
the confidence intervals of the predictions derived from the
MGP. Based on this, in this example, the imputation of the
missing value in the second variable has the poorest quality
since it is the most uncertain.

Finally, in a collection of N time series, the best point set
P ∗ in terms of this first criterion is the set of points that has
the smallest uncertainty:

P ∗ = arg min
P⊆Ω

f1(P ) = arg min
P⊆Ω

1

N

N∑
i=1

V i
P (2)

PP

Figure 3: Illustration of the uncertainty of the imputed
missing values within the set of time points P . The imputed
values are shown with orange dots and the uncertainty with
blue shading.

where f1(P ) = 1
N

∑N
i=1 V

i
P measures the overall mean

uncertainty of the time series dataset for point selection P .

3.2.2 Quantification of the predictive capability

To measure the predictive capability of a set of time points
P , a new MGP model is learned using only the actual
observations in P . Then, we measure how well these points
predict the observations that have not been included in P
(see Fig. 4). The intuition is that if the points in P are able
to predict the excluded observations accurately, then this
exclusion is not causing a relevant loss of information.

PP

Figure 4: Illustration of the predictions of the excluded
observations obtained using the observations in P . Actual
observations are depicted by black crosses, and the pre-
dicted values of the excluded observations are shown by
yellow squares.

To evaluate the predictive capability, we propose using
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the Root Mean Squared Error (RMSE) in the following way:

PCi
P =

{ √
1
Q

∑Q
j=1(ŷij,P c − yij,P c)2, if Q ≥ 1

0, otherwise
(3)

where Q is the total number of actual observations in P c

(note that Q ≥ 0), yij,P c is the jth actual observation outside
P and time series i, and ŷij,P c is the respective predicted
value that has been obtained using the observed values
within set P . As an example, in Fig. 4, there are |P c| = 2
time points that have not been selected, and there are Q = 3
actual observations within those time points P c.

Finally, the best set of points P ∗ in a time series dataset
consisting of N time series should obtain the maximum pre-
dictive capability globally, or, in other words, the minimum
prediction error:

P ∗ = arg min
P⊆Ω

f2(P ) = arg min
P⊆Ω

1

N

N∑
i=1

PCi
P (4)

where f2(P ) = 1
N

∑N
i=1 PC

i
P measures the overall mean

predictive capability in the time series dataset for point
selection P .

3.3 Best sets of time points
The inclusion of many time points in P may involve hav-
ing more missing values and a higher uncertainty of the
imputations, but it also implies having a higher predictive
capability since more actual observations are considered.
On the contrary, the fewer points included in P , the fewer
missing values there will be, having a smaller uncertainty,
but also worsening the predictive capability because many
observations are excluded. In general, uncertainty and pre-
dictive capability are conflicting objectives.

Thus, we formulate the problem of finding the best set
of time points as a multi-objective optimization problem in
terms of 1) uncertainty and 2) predictive capability:

min
P⊆Ω

(f1(P ), f2(P )) (5)

The objective of this optimization is to find a Pareto set
similar to the one that can be seen in Fig. 5. As illustrated in
this figure, all the solutions in the Pareto set contain non-
dominated solutions (i.e., subsets of time points), that is
solutions that cannot be improved in any of the objectives
without worsening the other objective. Note that this set
dominates all solutions within the shaded region.

In particular, the two extreme solutions of the Pareto set
in our problem are highlighted by green dots in Fig. 5. One
of the extreme solutions corresponds to selecting all time
points in Ω and is located at the bottom right in the figure
(i.e., large f1, and f2 = 0). In this case, the prediction error is
the minimum that can be obtained because no observations
are excluded, while the uncertainty is very high since all
missing values need to be imputed. Conversely, the other
extreme solution, which is located on the top left of the
figure (i.e., f1 = 0, and large f2), involves selecting a
small set of time points in which no imputation has to be
performed, and therefore, the uncertainty is 0 (i.e., the min-
imum that can be obtained). At the same time, this extreme
set may contain very few time points and thus has the worst

predictive capability because much information is lost and it
is not able to reconstruct the excluded observations as well
as other subsets in the Pareto.

(0,0)

Figure 5: Example of a Pareto set illustrated by crosses. The
extreme solutions in the Pareto are highlighted by green
crosses.

Due to the large number of possible solutions (all pos-
sible subsets of Ω), we propose to use a meta-heuristic
algorithm (e.g., NSGA-II [22]) to solve this multi-objective
optimization problem. It should be noted that these algo-
rithms do not necessarily reach the optimum but usually
provide suitable solutions. Taking this into account, from
this point on, we will refer to the sets in the Pareto as the
optimal sets of time points but bear in mind that since we
are using a heuristic, these solutions are an approximation
of the Pareto.

4 EXPERIMENTS

The experimentation is divided into two parts. The first part
consists of analyzing the optimal sets of points P ∗ obtained
by our method in synthetic datasets (see Section 4.1). In
the second part, we apply our selective imputation method
and analyze its performance when we apply a subsequent
classification algorithm (see Section 4.2).

In both experiments, we assume that the missing be-
haviour in the dataset D is not random and that the time
series share a common missing pattern. The reason for
doing this is twofold. On the one hand, it will allow for
a better interpretation and validation of the time point
selection. On the other hand, in many time series datasets,
missing data shares a common missing data pattern. For
instance, in health data, patients admitted to the ICU that
are progressing favorably and are not severely ill tend to
receive less attention over time [23].

Parameter setting

The selected parameters for the MGP and the multi-
objective optimization algorithm are common to both parts
of the experimentation.

Concerning the MGP model, we use the gpytorch [24]
library in Python and chose 100 iterations and a learning
rate of 0.1. For the multi-objective optimization, we use the
widely known NSGA-II algorithm [22], a multi-objective
evolutionary algorithm that uses non-dominated sorting.
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In particular, we use the pymoo [25] library in Python to
implement this algorithm. This method has been selected
based on its popularity, but since it is only an element of the
framework, the evolutionary algorithm could be modified
by the user. The specified parameters are the population
size, which has been set to 20, and the number of gen-
erations, which has been set to 50. Additionally, we have
initialized the algorithm such that the initial population
contains the individual P = Ω. The rest of the initial
population is generated randomly.

4.1 Part I: Evaluation of the Pareto set in synthetic
datasets
In this section, four different synthetic datasets are used to
evaluate the performance of our approach in a controlled
scenario. In all cases, the method is applied to a time series
dataset of 100 bivariate time series.

4.1.1 Generation of the synthetic datasets
The four synthetic datasets can be divided into two groups.
The first group consists of two datasets generated using
sinusoidal functions such that[

y1,t

y2,t

]
=

[
sin((4πt)/T )
sin((3πt)/T )

]
+

[
ξ1,t
ξ2,t

]
where T is the length of the time series, t ∈ {0, ..., T},
and [ξ1,t, ξ2,t]

T is the noise vector. For these experiments,
we choose T = 50, and corr(ξ1,t, ξ2,t) = 0.7 to make y1,t

and y2,t correlated. Moreover, for each ξi,t, given an interval
xi = [xi1, x

i
2] with xi1, x

i
2 ∼ N(0, 1) where the noise values

will be, E(ξi,t) = x̄i and V ar(ξi,t) = (σxi/3)2 where σxi

is the standard deviation of xi. Then, missing values are
injected such that most of the missing values are within a
certain time intervalA: the probability that each observation
yj,t where t ∈ A is missing is 0.9, whereas observations
outside that interval have a probability of 0.2 of being
missing.

The intervals chosen for conducting this experiment are
A1 = [30, 40) and A2 = [10, 18) ∪ [42, 48), each interval
leading to a synthetic dataset in this group. An example of
a time series in this group of synthetic datasets is shown in
Fig. 6, for both of the intervals being analyzed. Based on the
underlying idea of our proposal, we expect the method to
avoid selecting points in A (A1 in the first dataset, and A2

in the second dataset), since this interval will have many
missing values and, so, high uncertainty.
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(b) A2 = [10, 18) ∪ [42, 48)

Figure 6: Example of a time series in the first group of the
synthetic datasets. The orange dots represent the missing
observations.

The second group consists of two datasets generated
based on a first-order Vector AutoRegressive (VAR) model
such that[

y1,t

y2,t

]
=

[
α1

α2

]
+

[
ρ1 0
0 ρ2

] [
y1,t−1

y2,t−1

]
+

[
ξ1,t
ξ2,t

]
where t ∈ {0, ..., T}. In particular, we choose α0 = α1 = 0,
ρ1 = ρ2 = 0.8, and T = 50. Additionally, following [26],
we choose the noise term such that corr(ξ1,t, ξ2,t) = ρ(1 −
ρ1ρ2)[(1 − ρ2

1)(1 − ρ2
2)]−1/2, where corr(y1,t, y2,t) = ρ and

ρ = ρ1 = ρ2. As in the previous group, given an interval
xi = [xi1, x

i
2] with xi1, x

i
2 ∼ N(0, 1) where the noise values

will be, E(ξi,t) = x̄i and V ar(ξi,t) = (σxi/3)2 where σxi is
the standard deviation of xi. In this case, a particular time
interval B is then replaced by a new, different process. This
process consists of an increasing function such that for t ∈
B,

yi,t = yi,t−1 + εi,t (6)

where εi,t ∼ N(0, 0.2). Then, the missing values are injected
uniformly throughout the time series with a probability of
0.4 of being missing.

As with the sinusoidal dataset, the intervals chosen for
conducting the experiments are alsoB1 = [30, 40) andB2 =
[10, 18)∪[42, 48) (see Fig. 7). Note that each of these intervals
also leads to a synthetic dataset in this group. In this case,
our hypothesis is that the method will tend to select the
time points in B, since this interval cannot be inferred by
the points outside the interval.
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(b) B2 = [10, 18) ∪ [42, 48)

Figure 7: Example of a time series in the second group of
synthetic datasets. The orange dots represent the missing
observations.

4.1.2 Results
The evaluation of the optimal subsets of points obtained
by our method is performed in two parts: the first part
analyzes the Pareto set in a qualitative manner, and the
second part evaluates this Pareto by comparing it with
randomly generated subsets of time points. In short, this
section analyzes the results regarding the optimization part.

The selected subsets of time points for the two synthetic
datasets in the first group are shown in Fig. 8. In particular,
the black squares in this figure represent the time points
that have been selected in each of the sets, and conversely,
the white squares represent the time points that have not
been selected. Also, the red lines highlight the intervals A1

and A2. As it can be seen in the figure, the most uncertain
intervals (i.e., those with many missing values) are not
selected: A1 and A2 contain most of the white squares.
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(b) A2 = [10, 18) ∪ [42, 48)

Figure 8: Optimal sets in the first group of synthetic datasets.

For the second group of synthetic datasets, the optimal
subsets of time points are shown in Fig. 9. Unlike the first
dataset, the method tries to include the intervals B1 and B2

as they provide new information that the rest of the points
do not contain. In this case, the Pareto set contains fewer
optimal sets than in the first synthetic dataset.
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(b) B2 = [10, 18) ∪ [42, 48)

Figure 9: Optimal sets in the second group of synthetic
datasets.

On the other hand, to demonstrate that the point sets in
the Pareto are good in terms of uncertainty and predictive
capability, each optimal set is compared to 20 randomly
generated sets of the same size. For instance, if an optimal
set contains 15 time points, this set is compared to 20
randomly generated sets, each consisting of 15 time points.
This analysis will help checking if the solutions are good
enough because the optimization method used is heuristic.
That is, we will examine if the optimization part has been
performed adequately.

Specifically, for each set in the Pareto, this comparison
analyzes, on the one hand, how many random sets dominate
the set being analyzed (the number of random sets located
in region 1 in Fig. 10), and, on the other hand, the set in
question how many random sets dominates (the number of
random sets located in region 2 in Fig. 10). It is desirable to
have few points in region 1 and most of them in region 2. In
particular, we perform this comparison in the cases in which
the optimal set is not of length T , because otherwise all the
random sets would be the same and the analysis would be
meaningless.

For both groups of synthetic datasets, almost no random
set dominates the corresponding optimal set (region 1 in
Fig. 10). Particularly, in the first group, no optimal set
is dominated by any random set, whereas, in the second
group, there is only one random set that dominates the
optimal set (on average, each set in the Pareto are dominated
by 0.00% of random sets in scenario B1, and 0.45% in
scenario B2). Conversely, when analyzing region 2, we find
that the optimal sets dominate most of the random sets.
In particular, the optimal sets dominate on average: in the
first group, 95.26% and 96.58% of random sets in A1 and
A2, respectively; in the second group, 55.50% and 71.36% of
random sets in B1 and B2, respectively.

Region 1

Region 2

f1

f2

Figure 10: An example of the comparison between a set
in the Pareto, which is depicted by a green cross, and 20
random sets of the same size, which are illustrated by black
points.

4.2 Part II: Application in classification tasks
In this section, the usefulness of the proposed method in
subsequent tasks such as multivariate time series classifica-
tion is shown. We would like to emphasize that this section
is not trying to demonstrate that our method is the best
solution for the classification task but to illustrate that, with
an appropriate selection of time points, it is possible not only
to reduce the uncertainty and imputation error, but also to
improve the results of the classification task.

As a preliminary proof of this hypothesis, in Fig. 11, we
show the evolution of the mean accuracy of five popular
classifiers when we perform a backward analysis in the
Libras dataset [27] by removing the globally most uncertain
time point of the time series dataset at each iteration. To
obtain these accuracy values, we first pre-process each time
series and impute all its missing values using MGP. The
purple line in the figure indicates the accuracy obtained
when using all the imputed time points, which corresponds
to the 0th iteration in Fig. 11. As can be seen, by removing
the most uncertain time points from the time series, we can
obtain an improvement in the results of the classifier up to
eliminating approximately half of the time points.
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Figure 11: Backward analysis in the Libras dataset with 85%
of injected missing data.

Now that we have seen that the selection of time points
to impute can be beneficial for subsequent tasks such as
multivariate time series classification, we will try to find the
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optimal set of time points in different datasets and analyze
the results of this task when using the simplified dataset.

4.2.1 Datasets
The experiments are performed in different datasets and
classification tasks from the UEA repository [27]. Addition-
ally, the dataset from the Physionet Challenge [28] that aims
to predict in-hospital mortality is also used. In particular,
for the Physionet dataset, we use a subset of samples, main-
taining the mortality rate (14.29%), and variables, following
[29], for efficiency and simplification.

The characteristics of the chosen datasets are summa-
rized in Table 2, which shows the wide variety of the sets. In
particular, for each case, 70% of the multivariate time series
in the dataset is used to identify the best sets of time points
and learn the classifier, and 30% for evaluation. Addition-
ally, it should be noted that all the datasets described in the
table originally have a regular sampling. We denote these
equally-spaced time points as X = {1, 2, ..., T}, where T is
the length of the time series.

While the Physionet dataset already contains missing
values (it has an hourly sampling with missing values), the
datasets from the UEA repository do not contain missing
values. Thus, we inject the missing values in those datasets
in such a way that the time series will contain more missing
values at the end of the time series. In particular, if we
denote mr1 as the missing rate of the first half of the time
series (i.e., [1, ..., T/2]), then mr1 ∼ U(0.7, 0.8). In the same
way, if we denote mr2 as the missing rate of the second half
of the time series (i.e., [T/2+1, ..., T ]), thenmr2 ∼ U(0.9, 1).

Among the datasets used from the UEA repository, the
Japanese Vowels dataset has time series of different lengths.
In this case, a padding with missing values is made until
the maximum length, which is 29, is reached. Then, the
remaining missing values are injected to satisfy the missing
rates described above.

The datasets used in this experimentation will be avail-
able in the GitHub repository2 for further reproducibility.

4.2.2 Classifiers
Five traditional classifiers are used in the experimentation:
Time Series Forest (TSF) [30], Mr-SEQL [31], 1-Nearest
Neighbor using independent and dependant Dynamic Time
Warping (DTW) distances [32], and RISE [33]. The score
used throughout the experimentation is the mean accuracy
of the five classifiers. For the classifiers that are designed to
deal only with univariate time series (TSF, Mr-SEQL, and
RISE), dimension concatenation is used [34]. The library
used has been sktime [34] in Python, and the hyperpa-
rameters of the classifiers are set to the default values.

4.2.3 Baseline methods
Since techniques in the literature usually impute all the
missing values, the baseline methods will be naive methods
that will impute all the values of all the (equally-spaced)
time points (i.e., X). In particular, the baseline methods will
impute the missing values with the widely used Forward
Filling (FF, baseline 1) and also with the Multi-task Gaussian
Process (MGP, baseline 2). Once all the missing values have

2. https://github.com/ablazquezg

been imputed, all the time points will be used to learn the
classifier.

4.2.4 Results
In this section, we analyze both the quality of the impu-
tations by computing the imputation error and also the
accuracy of the classifiers using the sets of time points
selected by our method.

To begin with, the imputation error is calculated in the
test set using RMSE and normalized data between 0 and 1.
In particular, the imputation error has only been computed
in those datasets that originally have no missing values. As
shown in Table 3, the imputation error is always smaller
using the probabilistic MGP method than the FF method.
Moreover, there are always sets in the Pareto that manage to
reduce this error by using less time points. In particular, this
reduction becomes very significant in some datasets, such
as the Libras dataset.

The results regarding the classification accuracy are
shown in Table 4. On the one hand, we analyze the results
obtained using the baseline methods (i.e., when using all
the time points), and we find that, in general, the MGP
imputation provides better accuracy than the FF imputation.
On the other hand, if we compare the accuracy results of
the sets in the Pareto with those obtained with the baseline
methods, we conclude that the proposed methodology is
always able to find sets of time points that improve the
accuracy (see columns ≥ FF (%) and ≥ MGP (%) in Table
4). Furthermore, the sets that fail to improve it manage to
obtain similar results to the baselines but having reduced
the number of time points significantly. For more details on
the reduction of the time series, see Table 5. In general, the
sets in the Pareto reduce the time series by an average of
27.12% of the length per dataset.

It should also be noted that in those cases in which the
accuracy results of our method appear not to be successful,
the imputation error is reduced. For example, the accuracy
results obtained with the FF baseline method in the Racket
Sports dataset are better than using our method. However,
96% of the sets in the Pareto obtain a lower imputation error
than the FF baseline.

5 CONCLUSIONS AND FUTURE WORK

In conclusion, this paper introduces a time point selec-
tion method to selectively impute the missing values in a
multivariate time series dataset. This selection is based on
the uncertainty of the imputed values and the predictive
capability of the selected observations. In this way, the
overall uncertainty of the dataset is reduced, and it allows
to use simplified time series in subsequent tasks.

It should be noted that our method is not restricted to
obtaining time series with equally-spaced time points, but
this restriction could be added if desired. This makes our
method more flexible than other techniques in the literature
as it has the possibility to obtain time series with equally-
spaced time points, where traditional machine learning
techniques can be then applied.

The imputation method used to fill in the missing values
has been MGP, but other probabilistic models that provide
the uncertainty of the imputed values could also be used.
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Dataset Length Dimensions # of instances Classes
Japanese Vowels 29 12 640 9
Racket Sports 30 6 303 4
Libras 45 2 360 15
Physionet 48 6 700 6
Finger Movements 50 28 416 2
Basic Motions 100 6 80 4
Epilepsy 206 3 275 4

Table 2: Description of the datasets used in the classification task.

Dataset Baseline methods Point selection
FF MGP min mean max ≤ FF (%) ≤MGP (%)

Racket Sports 0.2869 (0.0065) 0.2362 (0.0014) 0.2362 (0.0014) 0.2608 (0.0016) 0.2836 (0.0023) 96.00 (4.18) 5.00 (0.00)
Libras 0.2974 (0.0038) 0.2094 (0.0050) 0.1054 (0.0059) 0.1654 (0.0038) 0.2094 (0.0050) 100.00 (0.00) 99.00 (2.24)
Finger Movements 0.2845 (0.0013) 0.2664 (0.0019) 0.2318 (0.0042) 0.2576 (0.0036) 0.2688 (0.0033) 100.00 (0.00) 84.11 (10.00)
Basic Motions 0.2772 (0.0075) 0.1967 (0.0025) 0.1963 (0.0029) 0.1978 (0.0028) 0.2003 (0.0031) 100.00 (0.00) 26.00 (16.36)
Epilepsy 0.3067 (0.0017) 0.2246 (0.0011) 0.2204 (0.0018) 0.2230 (0.0013) 0.2246 (0.0011) 100.00 (0.00) 99.00 (2.24)

Table 3: Results of the imputation errors. The columns related to the baseline methods indicate the average imputation
error with the standard deviation between parentheses of 5 different train/test partitions. The next three columns show
some statistics of the imputation errors of the sets in the Pareto. The last two columns describe the percentage of the sets
that achieve a lower imputation error than the baselines.

Dataset Baseline methods Point selection
FF MGP min mean max ≥ FF (%) ≥MGP (%)

Japanese Vowels 0.7613 (0.0128) 0.7502 (0.0133) 0.7098 (0.0154) 0.7343 (0.0121) 0.7542 (0.0120) 14.89 (21.02) 16.78 (18.91)
Racket Sports 0.4954 (0.0198) 0.4440 (0.0221) 0.4193 (0.0307) 0.4514 (0.0232) 0.4792 (0.0235) 3.00 (4.47) 69.00 (18.51)
Libras 0.5111 (0.0276) 0.6963 (0.0216) 0.6822 (0.0249) 0.7022 (0.0143) 0.7315 (0.0132) 100.00 (0.00) 65.00 (25.74)
Physionet 0.8215 (0.0088) 0.8276 (0.0042) 0.8168 (0.0088) 0.8240 (0.0060) 0.8309 (0.0051) 42.22 (46.80) 62.22 (51.88)
Finger Movements 0.5251 (0.0154) 0.5245 (0.0146) 0.4925 (0.0136) 0.5196 (0.0139) 0.5450 (0.0096) 50.11 (34.00) 50.33 (29.68)
Basic Motions 0.7483 (0.0272) 0.7933 (0.0266) 0.7700 (0.0240) 0.7955 (0.0243) 0.8233 (0.0239) 83.00 (38.01) 72.00 (8.37)
Epilepsy 0.8106 (0.0037) 0.8607 (0.0098) 0.8429 (0.0055) 0.8583 (0.0082) 0.8713 (0.0145) 100.00 (0.00) 50.00 (28.94)

Table 4: Accuracies in the classification task. The columns in the table follow the same rationale as Table 3.

Dataset Length max accuracy Mean length Mean reduction (%)
Japanese Vowels 19.60 (4.98) 16.11 (1.30) 44.46
Racket Sports 17.20 (5.26) 21.62 (1.17) 27.93
Libras 26.20 (4.27) 32.70 (1.50) 27.33
Physionet 33.40 (5.94) 37.06 (2.26) 22.79
Finger Movements 36.80 (13.25) 32.72 (0.90) 34.56
Basic Motions 71.8 (16.39) 81.79 (3.38) 18.21
Epilepsy 178.60 (21.76) 176.02 (4.85) 14.55

Table 5: Length reduction using the sets in the Pareto. The columns describe 1) the dataset used, 2) the lengths of the sets
that provide the maximum accuracy, 3) the average length of the sets in the Pareto, and 4) the percentage reduction of this
average. The values shown are the mean values of the 5 partitions and the standard deviation between parenthesis.

Since we use a probabilistic imputation method, an inter-
esting future line of research could be to provide more so-
phisticated measures of uncertainty (e.g., using information
theory). Moreover, in some contexts (e.g., when learning
normality), it may be interesting to learn a single global
imputation model on the whole dataset.

Reducing the set of time points does not only simplify
the time series but can also help to improve the results of
subsequent tasks such as whole time series classification.
There are always sets in the Pareto that improve the accu-
racy, and those that do not improve it remain with a similar
performance, but using a shorter representation of the time
series. However, the use of more sophisticated classifiers
could help to improve the results in terms of accuracy. In
this line, future research could focus solely on improving
the results of the classification task.

As mentioned throughout the paper, a significant ad-
vantage of the proposed method is that, in addition to the
multivariate time series classification task, this method can

also be used in combination with other subsequent machine
learning tasks such as anomaly detection, forecasting, or
clustering. Thus, an interesting line for future work would
be to test the applicability of the method in additional
subsequent tasks since the literature has mainly focused on
the classification task.
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APPENDIX A
MULTI-TASK GAUSSIAN PROCESS

Multi-task learning is a machine learning framework that
aims to improve performance through the learning of mul-
tiple tasks at the same time, and sharing the information
of each task [35]. Thus, Multi-task Gaussian Process (MGP)
is an extension to Gaussian Processes (GPs) for handling
multiple outputs at each time [21].

The objective of MGP is to model a set of processes
{fl(x)}Ll=1, each one associated with a task, rather than a
single process f(x). When dealing with multivariate time
series, the tasks refer to the dimensions of the time se-
ries (i.e., having L tasks means that the time series is L-
dimensional). For convenience, we ignore the ith superscript
of the time series Y i and use Y to refer to a time series in D.
Additionally, we use T̃ to define the length of time series Y .

Given a set X = {x1, ...,xT̃ } of T̃ indexes, the set
of responses for L tasks is defined as the flatten vector
y = [y11, ..., yT̃1, y12, ..., yT̃2, ..., y1L, ..., yT̃L]T , where yil
is the response for the lth task on the ith input xi. The
observations are assumed to be noisy, and thus, each yil
is defined as

yil = fl(xi) + εil (7)

where εil ∼ N (0, σ2
l ). This can also be denoted as a T̃ × L

matrix:

Y =

y11 · · · yT̃1
...

. . .
...

y1L · · · yT̃L

 (8)

such that y = vec(Y ). Each lth row indicates the lth

dimension of time series Y , and the ith column specifies
the L-dimensional vector at index xi.

When the time series being analyzed has missing values,
only a subset of the values in Y are observed. Therefore,
given a set of observations yo ⊆ y, the aim is to predict
some of the unobserved values at some input locations for
certain tasks (or variables). For this, L different processes
(latent functions) are modeled, {fl}Ll=1, assuming that each
l dimension is drawn from a fl process.

The most straightforward way to model the L processes
is to assume that they are independent and thus use a GP for
each of those processes. That is, each process is defined by
a mean function, µl(x), and a covariance function, kl(x, x’).
For convenience, we assume the mean function to be is zero.
Then, fl(x) ∼ GP (0, kl(x,x

′)), and

yl =

 y1l

...
yT̃ll

 ∼ N (0,Kl + σ2
l I), where l ∈ {1, ..., L}

Additionally,y1

...
yL

 ∼ N(
0...
0

 ,
K1 · · · 0

...
. . .

...
0 · · · KL

+

σ
2
1I · · · 0
...

. . .
...

0 · · · σ2
LI

)
(9)

= N (0,Kf,f + ΣL)

where Kl is the covariance matrix associated with process
fl, and ΣL is the L×L diagonal matrix in which the (l, l)th

element is σ2
l .

This approach assumes that the processes are indepen-
dent, and thus, the blocks outside the main diagonal of Kf,f

are zero. Conversely, multi-task learning aims to exploit
the dependencies between processes and define those terms
outside the diagonal. In particular, this approach defines a
covariance function that gives a positive semi-definite (PSD)
covariance matrix Kf,f , also considering the dependencies
between the processes.

Different models for defining the covariance function can
be found in the literature. A widely used model is the In-
trinsic Coregionalization Model (ICM) [36], which assumes
that the fl(x) processes are defined by a linear combination
of functions that have been sampled independently for the
same GP, sharing the same covariance function k(x,x′).
That is,

fl(x) =
R∑
i=1

aidu
i(x) (10)

where {fl(x)}Ll=1 is the set of functions to be modeled, aid ∈
R are the coefficients of the linear combination, and each
ui(x) is sampled from u(x) ∼ GP (0, k(x,x′)). Then, the
covariance function is defined as

cov(f(x),f(x′)) = AAT k(x,x′) = Bk(x,x′)

where f(x) = [f1(x), ..., fL(x)]T , A = [a1 a2 ... aR],
B ∈ RL×L, and k is a covariance function over inputs.
The main idea is to place independent GP priors over the
processes, with a shared correlation function k over time.

Following this ICM model, [21] define the covariance
function of the MGP as:

cov(fl1(x), fl2(x′)) = Kf
l1,l2

k(x,x′)

where yil ∼ N(fl(xi), σ
2
l ), Kf ∈ RL×L is a PSD matrix that

specifies the inter-task similarities, and Kf
l1,l2

is the (l1, l2)th

element of matrix Kf . That is,y1

...
yL

 ∼ N(
0...
0

 ,

Kf

11K · · · Kf
1LK

...
. . .

...
Kf

L1K · · · Kf
LLK

+

σ
2
1I · · · 0
...

. . .
...

0 · · · σ2
LI

)

= N (0,Kf ⊗K + ΣL)
(11)

where Kf,f = Kf ⊗K .
Given the training index set X and the output ob-

servations y, the posterior distribution of f(x∗) =
{f1(x∗), ..., fL(x∗)} at test point x∗ is given by

f(x∗)|X,y,x∗ ∼ N (f̄(x∗),Σ∗) (12)

where the mean and variance predictions are respectively
given by

f̄(x∗) =(Kf ⊗K(x∗, X))T Σ−1y

Σ∗ = var(x∗) =(Kf ⊗K(x∗,x∗))−
(Kf ⊗K(x∗, X))Σ−1(Kf ⊗K(X,x∗))

(13)
where ⊗ denotes the Kronecker product, Σ = Kf ⊗
K(X,X) + ΣL ⊗ I is a LT̃ × LT̃ , Kf is the matrix that
specifies the inter-task similarities, K(X,X) is the matrix of
covariances between all pairs of training points, ΣL is the
L × L diagonal matrix in which the (l, l)th element is σ2

l ,
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and K(x∗, X) is the vector of covariances between the test
point x∗ and the training points.

Since only a subset of values yo ⊆ y has been observed,
the covariance matrix Σ only needs to be computed at
the observed values. That is, if the observed values yo
correspond to the values in the indexes Io of the vector
y, then, from the matrix (Kf ⊗ K(x∗, X))T Σ−1 only the
columns in those indices Io are needed. This means that
the covariance matrix Σ and its inverse only needs to be
computed at the observed values. Additionally, from the
matrix (Kf⊗K(x∗, X))T , only the columns associated with
the dimensions and time indexes with observations need to
be computed (i.e., the columns in the Io indexes).

Learning Hyperparameters
The parameters to be learned are θ = (Kf , {σ2

l }Ll=1,η),
where η are the parameters of the k(x,x′) kernel function.
The aim is to learn the parameters θ to maximize the
marginal likelihood p(yo|X,θ). This can be done using 1)
gradient-based methods, where the Cholesky decomposi-
tion can be used to guarantee positive-semidefiniteness of
Kf (i.e., Kf = LLT , where L is lower triangular), or 2) the
EM algorithm.

Taking into account the fact that y|X ∼ N(0,Σ), the log
marginal likelihood to be maximized is defined by:

L = log p(yo|X,θ)

= −1

2
log det(Σo)− 1

2
yT
o Σ−1

o yo −
no
2
log(2π)

(14)

where Σo is the covariance matrix at the observed values,
and no is the length of vector yo.
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