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A B S T R A C T   

We demonstrate the use of Ensemble Kalman Inversion (EKI) for building three-dimensional, multi-fault, kine-
matically restorable structural geologic models, by means of a workflow in which fault geometry, the distribution 
of slip on a fault, and the geometry of folded horizons are all modeled. The models are constrained by obser-
vations of faults and horizons in the present deformed state together with the expectation that horizons should 
restore flat. Two modeling approaches are tested: restoration from the deformed state, and forward modeling 
from the restored state. We first test these methods on a synthetic model involving a single fault, and then apply 
them to a real-field example involving five faults. Models are prone to ensemble collapse, which results in un-
derestimation of uncertainty at small ensemble sizes, but localization and covariance inflation can mitigate this 
issue. With these methods, EKI can recover the true parameter values in the synthetic case and produce a solution 
consistent with the data in the real case, as well as quantify uncertainty in both cases. EKI, therefore, shows 
promise as a tool for building complex, restorable structural geologic models, and it holds the potential for 
integration of fault kinematics with other ensemble-based subsurface modelling workflows.   

1. Introduction 

Models of subsurface geologic structures are of critical importance to 
many applications in the geosciences and related industries, including 
those related to resource exploration, natural hazards, and scientific 
understanding of fundamental geological processes (Brandes and Tan-
ner, 2014; Wellmann and Caumon, 2018). Static three-dimensional 
geological models can be built by interpolation between data points, 
using geostatistical methods such as Kriging (see Wellmann and Cau-
mon, 2018; for a recent review of this kind of modeling). Such models 
represent the present-day (deformed) structure, but not the processes of 
deformation that produced them (Caumon et al., 2013; Laurent et al., 
2013). 

To better ensure geological realism, a model should not only repre-
sent accurately the observed deformed-state structure, but also be 
restorable to a pre-deformational state in which sedimentary strata are 
approximately horizontal or back to their regional dip. Restoration, 
incorporating knowledge of deformational processes such as fault- 
related folding, provides a means to test the validity of a geological 
model and to make necessary modifications. This approach is most 
associated with the concept of balanced cross sections (Dahlstrom, 1969; 

Elliott, 1983; Groshong et al., 2012) and with kinematic methods such as 
fault-bend folding (Suppe, 1983) and trishear (Erslev, 1991), but 
three-dimensional (e.g. Cardozo, 2008; Georgsen et al., 2012) and 
geomechanical restoration (e.g. Moretti et al., 2006) methods also exist. 
Recent work by Grose et al. (2021) has also incorporated fault kine-
matics into interpolation-based 3D modeling workflows. 

Whether models are created to be restorable or through static 
interpolation, they are non-unique solutions and are subject to uncer-
tainty (Bond, 2015; Wellmann and Caumon, 2018; Cardozo and Oakley, 
2019). Data inversion methods, such as Markov chain Monte Carlo 
(MCMC), can be used to find an optimal solution and to estimate un-
certainty in model parameters (de la Varga and Wellmann, 2016; Car-
dozo and Oakley, 2019). However, as the complexity of the model 
increases, such as by moving from two to three dimensions, allowing 
parameters such as fault displacement to vary spatially, and including 
multiple faults, the number of parameters that an inversion must fit for 
becomes very large. Such high dimensional parameter spaces challenge 
many of the standard algorithms, including MCMC, but can be addressed 
through alternative methods such as Ensemble Kalman Inversion (EKI) 
that are based on Gaussian approximations (Iglesias et al., 2013a, 
2013b). In this paper, we apply EKI to structural geologic modelling, 
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showing that it can be used to build complex, three-dimensional 
geological models that are kinematically restorable. We also find that 
the method can be used to estimate uncertainty in model parameters, 
but to do so, it is necessary to detect and account for the phenomenon of 
ensemble collapse. EKI has the potential to be a valuable tool in struc-
tural geologic modeling, allowing data inversion to be applied to com-
plex or computationally intensive models that are difficult to fit with 
other methods. 

2. Background 

2.1. Data inversion in structural geologic modeling 

Data inversion, i.e., using computational algorithms to fit a model to 
data, provides an alternative to manually building a geological model. In 
the use of fault-related fold kinematic methods for structural restoration, 
data inversion has been mostly associated with the trishear model 
(Erslev, 1991; Allmendinger, 1998). Data inversion algorithms that have 
been applied to trishear include simple grid searches (Allmendinger, 
1998), local (Cardozo and Aanonsen, 2009) and global (Cardozo et al., 
2011) optimization, randomized maximum likelihood (RML) (Cardozo 
and Aanonsen, 2009), Monte Carlo simulations (Regalla et al., 2010), 
and Markov chain Monte Carlo methods (Oakley and Fisher, 2015). A 
discussion about the advantages and limitations of these methods is 
given by Cardozo and Oakley (2019). These methods have been applied 
to relatively simple models involving a single fault. Faults are either 
assumed to be planar with constant slip or represented by simple cir-
cular listric geometries (Cardozo and Brandenburg, 2014). They have 
also mostly been applied in two-dimensions, with the few uses of 
three-dimensional trishear being limited to simple linear variations of 
model parameters along strike (Cardozo and Aanonsen, 2009). 

In three-dimensional geological modeling, as in fold kinematics, 
there is also increasing interest in quantifying uncertainty rather than 
producing a single model (Røe et al., 2014; Cherpeau and Caumon, 
2015; Wellmann and Caumon, 2018), and stochastic data inversion 
methods have been applied in this field as well. Cherpeau et al. (2012), 
de la Varga and Wellmann (2016), Aydin and Caers (2017), Grose et al. 
(2018), and Grose et al. (2019) have all applied Markov chain Monte 
Carlo methods to the problem of building three-dimensional geological 
models. In these studies, the goal is to build a static model, possibly 
incorporating geological knowledge in the process (Grose et al., 2019), 
but not to produce one that is kinematically restorable. In addition, due 
to the limitations of the algorithms used with respect to 
high-dimensional parameter spaces, they have either inverted for 
simplified parameterizations of three-dimensional fault or fold geome-
tries (Cherpeau et al., 2012; Grose et al., 2018, 2019), or required highly 
informative priors (de la Varga and Wellmann, 2016). 

2.2. Ensemble Kalman inversion and the ensemble Kalman Filter 

Since its introduction by Evensen (1994), the ensemble Kalman Filter 
(EnKF) has become a widely used tool in several fields of Earth science, 
such as weather forecasting (Houtekamer and Mitchell, 2001), ocean-
ography (Evensen, 1994; Evensen and van Leeuwen, 1996), and reser-
voir modeling (Aanonsen et al., 2009), which all require matching 
complex models to data. Although the EnKF was originally developed as 
a method for data assimilation in time-varying systems, EnKF-style up-
dates to an ensemble of models can also be applied repeatedly using the 
same dataset as a means of solving inverse problems. Methods of this 
type include the Ensemble Kalman Inversion (EKI) of Iglesias et al. 
(2013b), the iterative ensemble smoother of Chen and Oliver (2012, 
2013), and the ensemble smoother with multiple data assimilation of 
Emerick and Reynolds (2012, 2013). In this paper, we adopt the EKI 
approach, following the work of Iglesias et al. (2013b, 2016), Chada 
et al. (2018), and Iglesias and Yang (2021), but the other iterative 
methods are similar. 

Ensemble Kalman methods have several benefits for solving inverse 
problems. There is no need to calculate derivatives of the forward model 
as in gradient-based inverse methods (Evensen, 2009a). They are well 
suited to inversions with high-dimensional parameter spaces (Evensen, 
2009a), where the need for a large number of model evaluations may 
make other inversion methods such as MCMC impractical (Iglesias et al., 
2013a). Because the calculation of the forward model for each ensemble 
member is done independently, the algorithm can easily take advantage 
of parallel computing (Muir and Tsai, 2020). By using an ensemble of 
model realizations, Ensemble Kalman methods can be used to estimate 
not only the best-fitting model parameters, as in optimization methods, 
but also uncertainty in the parameters (Evensen, 2009a). However, 
compared to MCMC methods that also allow uncertainty estimates, the 
EnKF, EKI, and related methods require far fewer evaluations of the 
forward model to converge to a solution (Iglesias et al., 2013a). 

Ensemble Kalman methods do have some limitations, however. They 
converge to an exact sample of the posterior distribution only in the case 
of a linear model (Evensen, 2018). For a non-linear model, they provide 
only an approximation. Ensemble Kalman methods also rely on the 
assumption that parameter and data distributions are Gaussian, and they 
may be inexact if this assumption is not true (Evensen, 2018). There is 
thus a tradeoff in accuracy and speed when comparing EKI to MCMC 
methods, which can, with sufficient iterations, sample from the true 
posterior distribution of a non-linear model and from non-Gaussian 
distributions. Another drawback is the risk of ensemble collapse, in 
which the variance of model parameters is underestimated. This phe-
nomenon results from the finite size of the ensemble, which can produce 
spurious correlations between data and model parameters or other data 
(Aanonsen et al., 2009; Evenson, 2009; Lacerda et al., 2019). Despite 
these limitations, EnKF, EKI, and similar methods are sufficiently ac-
curate for many problems, including non-linear ones, as evidenced by 
their widespread application. In this paper, we seek to solve a problem 
with a high dimensional parameter space and with a somewhat costly to 
evaluate model, and for those reasons we adopt the EKI methodology. 

2.3. Value of uncertainty quantification in structural geology 

While structural geologic modeling and restoration provide valuable 
and widely-used tools, uncertainty in these models is often not quanti-
fied. Uncertainty arises from multiple sources. Subsurface data are often 
sparse, such as from boreholes, or have gaps in critical areas, such as 
around poorly imaged fault zones in seismic reflection data, so that the 
structure in these gaps is uncertain. Filling in these unknown areas is a 
major motivation for the use of structural balancing techniques 
(Groshong et al., 2012). Further, even where data are available, they are 
always subject to some uncertainty. In the case of seismic imaging, 
uncertainties of 10s or even 100s of meters may exist in the interpre-
tation of horizon depths, fault geometries, and fault throw (Schaaf and 
Bond, 2019). Balancing can help to validate interpretations, but is itself 
subject to uncertainty (Judge and Allmendinger, 2011; Woodward, 
2012). Uncertainty in structural models is of particular interest to the 
petroleum industry, but is similarly relevant to any application that 
requires an understanding of subsurface structure (Bond, 2015), such as 
mining, subsurface storage of fuels or wastes, and seismic hazard anal-
ysis. Even in the petroleum industry, the focus of uncertainty quantifi-
cation with the EnKF has been on reservoir engineering variables such as 
porosity and permeability (Aanonsen et al., 2009) with the geology of 
the models assumed constant. A small number of studies have consid-
ered uncertainty in horizon or fault geometry within EnKF-based 
reservoir history matching (Seiler et al., 2010a, 2010b; Irving et al., 
2014), but the focus there is still on matching fluid flow data, not on the 
types of data and methods typically used to build balanced geological 
models. Skauvold and Eidsvik (2018) also used the EnKF to quantify 
uncertainty in a model of sedimentation and stratigraphy, but this did 
not include faulting. As data volumes increase and computational 
methods improve, uncertainty quantification is of growing interest 
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throughout the earth sciences, including in structural geology as shown 
by an increasing number of papers on the subject published in the 
Journal of Structural Geology (Bond, 2015). We propose that Ensemble 
Kalman methods, already widely used in reservoir engineering, can be a 
valuable tool for structural geologists to meet the needs of uncertainty 
quantification in three-dimensional modeling and kinematic 
restoration. 

3. Methods 

3.1. Ensemble Kalman inversion 

In an inverse problem, we seek to infer model parameters (u) from 
observations (d), given a known forward model (G), which relates model 
parameters to the observations. In real-world cases, the observed data 
are subject to noise so they will take the form: 

d=G(u) + η, (1)  

where η is the noise. We assume that η is multivariate Gaussian with a 
known covariance matrix, Γ, and zero mean. 

The ensemble Kalman filter uses an ensemble of realizations of both 
the model parameters and the observed data. With N as the total number 
of ensemble members, the initial ensemble of parameter vectors, 

{u(j)
0 }

N
j=1 , is drawn from the prior distribution of u. Similarly, an 

ensemble of data perturbations, {ξ(j)}
N
j=1 , is drawn from the covariance 

Γ, so that y(j) = d + ξ(j) is the data realization for ensemble member j. 
At each iteration of the EKI, we update the values of u for all 

ensemble members using the formula (Iglesias and Yang, 2021, their Eq. 
(4)) 

u(j)
n+1 = u(j)

n + CuG
n

(
CGG

n + αnΓ
)− 1( d+

̅̅̅̅̅
αn

√
ξ(j) − G

(
u(j)

n

))
, (2)  

where n is the iteration number, and CuG
n and CGG

n are empirical 
covariance matrices, as given in Eqs. A1 and A2 in Appendix A, and αn is 
a regularization parameter inspired by the regularizing Levenberg- 
Marquardt algorithm (Hanke, 1997). Eq. (2) is applied repeatedly to 
the same set of data to update the model parameters until a convergence 
criterion is reached. We choose αn according to the method of Iglesias 
and Yang (2021), which they call EKI-DMC, for “data-misfit controller.” 
Details are given in Appendix A. 

3.2. The problem 

In this paper, we aim to apply the EKI-DMC method to the problem of 
building a geological model that honors observed structural data and is 
kinematically restorable to an original horizontal or sub-horizontal, 

planar configuration. This requires building a model of the fault ge-
ometry and displacement on the fault surface, building a model of the 
horizon geometry in either the deformed or restored state, and using a 
kinematic model for fault-related deformation to transform the horizon 
model from the deformed to the restored state or vice versa. Depending 
on how much information is available a priori, it may not be necessary to 
consider all parts of the model as unknowns. In this paper, however, we 
fit for all parts of the model (fault geometry, fault displacement, and 
horizon geometry) to test the case of maximum uncertainty. The 
workflow is summarized in Fig. 1. 

3.3. Fault model 

We parametrize the fault in terms of a local coordinate system (u,v,w) 
relative to a dipping reference plane (Hoffman and Neave, 2007; 
Georgsen et al., 2012; Røe et al., 2014), with the u direction being along 
strike, v up-dip, and w normal to the plane towards the hanging wall. The 
origin of the reference plane is fixed, but its strike (φ) and dip (ψ) are 
allowed to vary. The fault surface is defined by a function f(u,v), which is 
the signed distance from the reference plane and is parameterized as: 

f (u, v)= cf + εf (u, v), (3)  

where cf is a constant offset from the reference plane and εf (u,v) is an 
additional offset at position (u,v). For each fault, we then fit for a single 
value of each φ, ψ , and cf (which together provide the three values 
necessary to define a plane) and for εf (u,v) at each grid cell of the 
reference plane. 

The three-dimensional fault kinematic model we use is that of 
Georgsen et al. (2012). This kinematic model is defined by a displace-
ment field, d(u,v), with a value at each grid point of the reference plane, 
an asymmetry parameter, γ, which defines the ratio of hanging wall to 
footwall displacement, and a reverse drag radius, R, which determines 
the extent of deformation away from the fault. The displacement profile 
is expected to be approximately elliptical (Walsh and Watterson, 1987). 
We therefore fit for an elliptical trend and a perturbation to it, defining 
d as: 

d(u, v)= dellipse(u, v) + εd(u, v), (4)  

where dellipse(u,v) is the elliptical trend, which depends on the along- 
strike and along-dip semi-axis lengths of the ellipse (lu and lv), the cen-
ter of the ellipse (u0, v0), and the maximum displacement (dmax) as given 
in Appendix B, Eqs. B1-2. εd(u,v) is the perturbation and is solved for at 
each point of the same grid used for f(u,v).Displacement decreases away 
from the fault surface according to the curve of Cardozo et al. (2008). 
The three-dimensional displacement field (Georgsen et al., 2012; Røe 
et al., 2021) is given by Eqs. B3-5 in the Appendix. 

Fig. 1. Flow chart illustrating the EKI workflow. The 
creation of the prior ensemble will be problem- 
specific and may involve drawing random values 
within ranges considered reasonable or may involve 
the use of a pre-existing ensemble of models, perhaps 
derived from geostatistics or from interpretations by 
multiple people. The “Run Model” step (label 3) in-
cludes the interpretation of the fault and fold geom-
etry from model parameters (sections 3.3 and 3.4) as 
well as restoration or forward modeling using the ki-
nematic model. Meaning of colors: Grey: Data sources 
and prior knowledge, Yellow: Data, Blue: Model pa-
rameters, Orange: Model outputs, Purple: EKI terms 
and equations. (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
Web version of this article.)   
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3.4. Horizon model 

Horizon geometry is defined by depth at points on a horizontal grid 
in the global Cartesian coordinate system. We follow the approach used 
in the Havana and RMS software, in which the model domain is divided 
into fault blocks defined by whether they are in the footwall or hanging 
wall of each fault (Hoffman and Neave, 2007). Within each fault block, 
only the points that fall on the correct side of the fault are used to make 
the modeled horizon that will be compared to data, while the rest of the 
points are considered inactive. This approach allows fault geometry to 
change easily and allows for sharp changes in horizon depth across a 
fault. 

We parameterize the depth of the top horizon in terms of a planar 
trend plus a residual, which is fit for at each grid square. Since we are 
working with conformable horizons in the restored state (pre-growth 
strata), we parameterize the depth of horizons below the top horizon by 
distance below the overlying horizon. The full equation for the depth of 
each horizon is: 

zi,j(x, y)=
{

ax + by + c + dj + εz,i,j(x, y), i = 1
zi− 1,j(x, y) + Ti + εz,i,j(x, y), i > 1, (5)  

where the subscript i indexes the horizon, and j indexes the fault block. 
The coefficients a, b, and c define the plane that the top horizon should 
restore to, Ti is the restored-state mean thickness from horizon i to the 
overlying horizon, dj is a vertical offset term for fault block j, and εzi,j(x, 
y) is an additional vertical offset of horizon i in fault block j at location 
(x,y). In the inversion, we fit for each of the global parameters (a, b, c, dj, 
and Ti) and for the local variables εz,i,j(x,y) at each grid cell for each 
horizon and each fault block. In some cases, we define some fault blocks 
on smaller grids than the global model to reduce the number of pa-
rameters needed. 

3.5. Restoration and forward modeling 

We consider two approaches to fitting for horizon geometry: resto-
ration and forward modeling. In the restoration method, we fit for the 
horizon geometry in the deformed state (as defined by the trend and 
perturbation terms in Eq. (5)). We measure misfits between these hori-
zon depths and the horizon data. We then restore the model by running 
the kinematic model backwards and reinterpret the restored horizon 
depths onto the model grid, where we measure the misfit of each grid 
point from the expected restored state planar trend. In the forward 
method, in contrast, we fit for the horizon geometry in the restored state, 
again as a trend plus a perturbation. We take the perturbation term at 
each grid cell as the restored-state misfit, thus allowing the restored- 
state model to not be perfectly planar but penalizing it for deviations 
from a plane. We then run the kinematic model forward to calculate the 
deformed-state horizon geometry, and we measure the misfit from the 
horizon data. The parameterization of the horizon depths in this case is 
somewhat simpler, since the restored-state horizon is unfaulted, so only 
one fault block is needed. Therefore, dj in Eq. (5) is 0, and there is only 
one εz parameter per horizon at each cell of the model grid, rather than 
one for each fault block. 

3.6. Hierarchical parameterization 

The results of the EnKF and EKI depend in part on the prior proba-
bility distribution of model parameters as represented by the initial 
ensemble. For the spatially varying parameters εf(u,v), εd(u,v), and εz(x, 
y), a prior that incorporates spatial correlation is likely to be a good 
choice, but parameters such as the length-scale of correlation may be 
unknown. For this reason, hierarchical priors may be used (Chada et al., 
2018), in which these parameters are unknowns to be fit during the 
inversion. In this paper, for all three spatially varying parameters, we 
use a hierarchical parameterization based on a spherical variogram. 

Given a variogram range, r, and standard deviation, σ, the covariance 
between two grid points is (Davis, 2002): 

Cij =

{
σ2( 1 + 0.5

(
h3 − 3h

))
, h < 1

0, h ≥ 1, (6)  

where: 

h=
lij

r
, (7)  

and lij is the distance between the two grid points. Given the covariance 
matrix C and its lower triangular Cholesky decomposition L, such that C 
= LLT, a random realization of the spatially varying model parameter (p) 
at all points on the grid is given by: 

p=Ls, (8)  

where s is a vector of random numbers drawn from the standard normal 
distribution (mean of 0 and standard deviation of 1). Other methods of 
drawing realizations could also be used if needed for large grids (e.g. 
Abrahamsen et al., 2018), but this method is sufficient for our models. 
Using the hierarchical parameterization of p in terms of s, r, and σ, we fit 
for these values as the model parameters rather than fitting for p 
directly. This parameterization in terms of a spherical variogram as-
sumes a zero mean; we have accounted for this fact by including the 
necessary trend terms as separate parameters in Eqs. (3)–(5) so that the 
assumption of zero mean is reasonable for the ε terms. Since we use the 
hierarchical parameterization for multiple properties, we denote r and σ 
with subscripts f, d, and z for the fault surface, displacement, and hori-
zon depths respectively and with numbers in the case of multiple faults 
or horizons (see Table 1 in the manuscript and S1 in the supplementary 
material). 

3.7. Data 

We fit our models to three types of data (Fig. 1, label 1). Two of these 
are straightforward: points on the fault surface and points on the 
deformed-state horizons, which typically come from interpretations of 
seismic reflection data or well logs, and we try to minimize the misfit of 
the model to each of these data types in the deformed state. To include 
kinematic restoration in our models, it is necessary to include a third 
type of data that can test the quality of the restoration. For this, we use 
the restored-state depths of each horizon, measured at each grid point. 
Since the expected depth of the restored-state plane is defined by the 
unknown parameters a, b, c, and Ti, we cannot create realizations of the 
restored state depths directly, so we create realizations of the differences 
between the restored horizons and the plane defined by these parame-
ters, which we compare to the observed differences in each model. These 
realizations have a mean value of 0 and a user-specified covariance. 

3.8. Priors 

The initial ensemble (Fig. 1, label 2) should be drawn from the prior 
probability distribution of the model parameters. Since the gridded 
model parameters εf(u,v), εd(u,v), and εz(x,y) are defined hierarchically, 
the priors for the hierarchical parameters (s in Eq. (8)) are standard 
normal distributions. The remaining non-local parameters are restricted 
to a specified range of reasonable values, which must be chosen for each 
specific problem (see Table 1 for an example). Since the EKI does not 
enforce bounds on parameter values, we use a logarithmic trans-
formation to convert the non-local parameters to an unbounded domain. 
For a variable x with limits xmin and xmax, the transformation is: 

xtransformed = ln
(

x − xmin

xmax − x

)

. (9) 

Initial values for these transformed variables are all drawn from a 
normal distribution with standard deviation of 1.8, which gives a 
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distribution that is close to uniform when transformed back to the 
bounded domain. For the prior ensemble and the data realizations, we 
use Latin hypercube sampling (McKay et al., 1979; Stein, 1987) to 
ensure an approximately even representation of the distribution. 

3.9. Detecting and mitigating ensemble collapse 

A simple way to detect ensemble collapse, which we adopt in this 
work, is to add a dummy parameter to the model with known prior mean 
and variance and no real correlation with the data (Evensen, 2009b; Røe 
et al., 2016). Any reduction of the posterior variance of the dummy 
parameter is therefore a sign of ensemble collapse and an indication of 
its magnitude. Two widely used methods for mitigating ensemble 
collapse are localization and covariance inflation (Evenson, 2009), and 
we consider both in this work. Localization (Fig. 1, label 4) attempts to 
reduce or eliminate spurious correlations that can appear in the 
covariance terms of Eq. (2) (Fig. 1, label 5), while covariance inflation 
(Fig. 1, label 6) attempts to correct the variance of model parameters in 
the ensemble after the update step (Eq. (2)) is completed. 

A variety of localization methods exist (Lacerda et al., 2019), but we 
use the bootstrap method of Zhang and Oliver (2010)., which has the 
benefit that it does not rely on distance and can therefore be applied to 
the non-local parameters in our model, such as R and γ in the fault ki-
nematic model and the various hierarchical parameters. For covariance 
inflation, we use the method of Evensen (2009a,b), which uses dummy 
parameters to estimate the amount of variance loss, and which was 
found to work well by Lacerda et al. (2019). While the dummy param-
eters for inflation can be regenerated at each iteration of the inversion 

(as described by Evensen, 2009b), we found by comparison to an in-
dependent dummy parameter, that ensemble collapse was best averted if 
the same set of dummy parameters is carried through all iterations, and 
we do that here. The equations for the localization and inflation methods 
are given in Appendix C. 

4. Results 

4.1. Synthetic model 

To test the proposed method, we first created a synthetic model 
(Fig. 2). This model consists of a single elliptical fault and two horizons. 
The fault has a strike of 070◦ and dip of 55◦ with its center at 1200 m 
depth. The displacement ellipse has dimensions lx = 1000 m and ly =

500 m, with asymmetry γ = 0.6, reverse drag radius R = 700 m, and 
maximum displacement dmax = 250 m. To make a more challenging 
model to fit (i.e. one in which f(x,y) and εd(x,y) are not 0 at all grid 
points), we alter this basic model. The fault surface is curved as shown in 
Fig. 2 and the displacement field is perturbed by addition of a Gaussian 
random field drawn from a spherical variogram with range of 600 m and 
standard deviation of 20 m. The two horizons in the model were hori-
zontal before deformation, with depths of 1400 m and 1100 m. To create 
synthetic data points for the horizons and fault surface, we take their 
elevations at all points where they are present on a 2 km × 2 km hori-
zontal grid at 100 m spacing between grid points. This dense dataset is 
roughly analogous to data from a 3D seismic survey. All data are per-
turbed with a 10 m standard deviation, so that the data uncertainty is 
known for this case. Horizon data points within 25 m of the fault surface 
are removed (Yielding and Freeman, 2016). For the inversion, horizons 
and faults are gridded with 100 m spacing. Allowed parameter ranges 
for the inversion are as shown in Table 1. We draw data realizations from 
normal distributions with a standard deviation of 10 m for all three data 
types, to match the uncertainty in the synthetic data. 

To determine the ability of the algorithms to find the correct solu-
tions without ensemble collapse, we test the EKI-DMC alone, with 
localization, with covariance inflation, and with both localization and 
covariance inflation. For each case, we test ensemble sizes of 100, 200, 
500, 1000, and 2000 members, and we test both the restoration and 
forward modeling methods. 

The standard deviation of the dummy parameter (Fig. 3, top row) 
shows significant ensemble collapse at low ensemble sizes with the EKI- 
DMC algorithm alone. Ensemble standard deviation tends to approach 
the true value (1.0) more accurately as ensemble size increases, but 
ensembles of as many as 2000 members may be prohibitively time- 
consuming for large models. The collapse is worse for the restoration 
method, but it is substantial for forward modeling as well. Inflation 
shows the most significant effect in reducing ensemble collapse, while 
localization has more modest effects. The combination of both locali-
zation and inflation leads to dummy parameter standard deviations 
close to 1 even at small ensemble sizes such as 100 members. 

In addition to the changes in the standard deviation of the dummy 
variable, the mean also shows changes away from zero (Fig. 3, bottom 
row). The significance of these changes is unclear. They are both positive 
and negative and do not show clear trends, suggesting that they are 
random. We also find that they vary from one run to the next if the 
inversion is rerun with the same model sizes but different starting en-
sembles. They may therefore be random fluctuations that are able to 
grow because there is no actual constraint on the dummy variable from 
the data as there would be for a physically meaningful variable. 

In the remainder of our analysis, we focus on the N = 200 ensemble 
size with both localization and inflation, as this size and combination of 
methods shows only slight ensemble collapse and less change of the 
dummy mean than in the N = 100 case. 

If EKI is to be a useful tool for structural modeling, then it must be 
able to retrieve the true values of parameters for the synthetic model 
with reasonable accuracy. Model parameters come in two types: those 

Table 1 
Allowed ranges for the non-local parameters in the synthetic model. The local 
parameters εf(u,v), εd(u,v), and εz(x,y), and the corresponding s variables in the 
hierarchical representation are not bounded.  

Description Variable Minimum Maximum True 
Valuea 

Fault surface variogram range rf 500 m 5000 m N/A 
Fault surface variogram st. 

dev. 
σf 50 m 500 m N/A 

Fault strike φ 60◦ 80◦ 70◦

Fault dip ψ 40◦ 65◦ 55◦

Fault surface offset cf − 200 m 200 m 0 m 
Displacement variogram 

range 
rd 50 m 2500 m 600 m 

Displacement variogram st. 
dev. 

σd 5 m 100 m 20 m 

Maximum displacement dmax 50 m 500 m 250 m 
Displacement horizontal 

semi-axis 
lu 250 m 1500 m 1000 m 

Displacement vertical semi- 
axis 

lv 250 m 1500 m 500 m 

Displacement ellipse center u u0 − 200 m 200 m 0 m 
Displacement ellipse center v v0 − 200 m 200 m 0 m 
Displacement asymmetry γ 0 1 0.6 m 
Reverse drag radius R 100 m 1500 m 700 m 
Horizon A variogram range rz1 50 m 2000 m N/A 
Horizon B variogram range rz2 50 m 2000 m N/A 
Horizon A variogram st. dev. σz1 1 m 100 m N/A 
Horizon B variogram st. dev. σz2 1 m 60 m N/A 
Regional slope in x direction a -tan 

(2.5◦) 
tan(2.5◦) 0◦

Regional slope in y direction b -tan 
(2.5◦) 

tan(2.5◦) 0◦

Horizon A mean depth c 1000 m 1200 m 1100 m 
Block 1 offsetb d1 − 100 m 100 m N/A 
Block 2 offsetb d2 − 100 m 100 m N/A 
Horizon B mean depth below 

A 
T2 100 m 400 m 300 m  

a N/A indicates values that were not used in making the synthetic forward 
model, because the horizons were initially perfectly horizontal and the fault 
surface curvature was not done with a variogram. 

b Restoration method only. 
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such as fault strike or displacement asymmetry that are not tied to a 
specific location, and those that are defined at a specific grid point on a 
fault or horizon. We used kernel density estimation (KDE), as imple-
mented in Matlab’s ksdensity function, to estimate probability distri-
butions for parameters from the final ensembles. Results for 9 non-local 
parameters with N = 200 (Fig. 4) show means that are close to the truth, 
and probability distributions that are sufficiently wide to encompass the 
true value within uncertainty. Some parameters are more accurately and 
precisely fit than others, however. For instance, the restored depth of 
horizon A is fit within a few meters of the true value of 1100 m (1099.5 
± 2.3 m and 1101.0 ± 3.5 m for the forward and restoration methods, 
respectively) (Fig. 5c). Given that Fig. 2 shows a large area unaffected by 
faulting and still at this original depth, it is likely that the data from this 
area strongly constrain this model parameter. On the other hand, the 
along-dip semiaxis of the displacement ellipse (lv) is much more uncer-
tain (Fig. 4i). Since displacement is constrained primarily by the 
magnitude of deformation of horizons and the two deformed horizons 

used in the model do not cover the full dip extent of the fault (Fig. 2), it is 
likely that there is simply not sufficient data to constrain this value with 
high precision. For most parameters, the forward and restoration 
methods give similar results. Fault dip, with a true value of 55◦ is a 
notable exception, with the forward mean being too low (51.3◦ ± 4.5◦) 
and the restoration mean too high (59.0◦ ± 5.1◦), but even in that case 
there is substantial overlap of the two distributions, and both means are 
within one standard deviation of the truth (Fig. 4b). 

To see how well the Ensemble Kalman inversion can find the correct 
values for and quantify uncertainty in the gridded displacement field, 
fault surface geometry, and horizon geometry, we plot ensemble means 
and standard deviations of these values and compare them to the true 
values (Figs. 5 and 6). These results are for forward modeling, but 
restoration results are similar (Figs. S1 and S2 in supplementary mate-
rial). The horizon geometry in both the restored and deformed states is 
fit very well (Fig. 5), with both the restored and deformed state 
ensemble means being nearly indistinguishable from the truth (Fig. 5a-b 

Fig. 2. Geometry of the synthetic model. (a) Three-dimensional view. Blue lines on fault are the upper horizon A cutoffs. (b) Structure contour map of Horizon A. 
Contours show depth in meters. Black dots show locations of simulated wells used in the sparse data case (see section 4.2). (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Comparison of different methods and ensemble sizes. Top row: Ensemble standard deviations for the dummy parameter. Bottom row: Ensemble means for the 
dummy parameter. Columns from left to right show the results using only the EKI-DMC algorithm, the EKI-DMC algorithm with localization, the EKI-DMC algorithm 
with covariance inflation, and the EKI-DMC algorithm with both localization and inflation. In each case, black lines show the restoration method, and blue lines the 
forward modeling method, while red lines show the initial ensemble. Since the dummy parameter does not affect the model, its final ensemble mean and standard 
deviation should ideally be equal to those of the initial ensemble. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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and d-e). Standard deviations in the depth to the top horizon are highest 
near the fault (up to about 37 m), but are less than 10 m in other areas 
and in the restored state (Fig. 5c and f), while the thickness of the unit 
between the two horizons (Fig. 5g-i) in the restored state is well- 
constrained to within about 10 m of its true value of 300 m. 

The fault surface geometry and displacement are not quite as well fit 

as the horizon geometry, in that some differences from the truth can 
easily be distinguished visually (Fig. 6). Nonetheless, the major features 
are accurately reproduced. Since the fault is curved (Fig. 2), the fault 
surface function, f(u,v), is negative in the along-strike middle of the fault 
and positive towards its edges (Fig. 6a), and this is seen in the ensemble 
mean (Fig. 6b), with uncertainty lowest in the center and higher towards 

Fig. 4. KDE probability densities for several non-local model parameters, N = 200 case, and forward modeling (blue) or restoration (red) methods. The prior density 
(black dotted line) corresponds to the initial ensemble and is the same for both methods, while the posterior density corresponds to the final ensembles. Ensemble 
means are indicated by vertical dashed lines and the true values by a black solid line. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 5. Results for gridded horizon depths, z(x,y) and thicknesses (vertical in the restored state) for the synthetic model. True values are shown in the left column, 
ensemble means in the middle column, and ensemble standard deviations in the right column. The results shown here are for forward models with N = 200, using 
both localization and covariance inflation with the EKI-DMC algorithm. 
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the edges (Fig. 6c). Fault displacement (Fig. 6 d-f) has approximately the 
correct elliptical shape and maximum central displacement (see also 
Fig. 4). Uncertainty in displacement is highest near the upper edge of the 
fault, likely reflecting the lack of horizons in that area to constrain it. 
Displacement is both a function of an elliptical trend, the parameters of 
which were shown in Fig. 4, and a gridded residual (εd). Much of the 
displacement field that is shown in Fig. 6 (middle row) is due to this 
trend. To separate the contributions of the residual, we plot just the 
residual in Fig. 6g-i. Some features of the residual, such as the presence 
of a negative region on the right side of the fault are captured in the 
ensemble mean, but in general, the ensemble mean shows lower re-
siduals that are within one standard deviation of zero. 

4.2. Sparse data 

In the synthetic model analysis so far, we have used a data set con-
sisting of points on a regularly spaced grid. In many real-world cases, 
however, only a smaller number of scattered data points are available, 
such as from wells or outcrops. Further, in such sparse data cases there 
may be greater reliance on models to fill in the structure where data are 
not available. To test this case, we created a sparse data version of the 
synthetic model. Fifty simulated wells were created at scattered loca-
tions (Fig. 2b), and their intersections with the two horizons and the 
fault were taken as data, providing 14 fault data points and 97 horizon 
data points. Since the restored state misfit from a plane is measured on 

Fig. 6. Results for gridded fault surface geometry, f(u,v), and displacement, d(u,v), for the synthetic model. True values are shown in the left column, ensemble means 
in the middle column, and ensemble standard deviations in the right column. The results shown here are for forward models with N = 200, using both localization 
and covariance inflation with the EKI-DMC algorithm. The black line shows the fault tip line in the true model. Values outside of this tip line in the true model (A) do 
not affect the model data, so the results in (B) are not required to match this region. 

Fig. 7. Some results for the sparse data case (wells in Fig. 1b): (A) KDE probability densities of fault displacement and displacement asymmetry (compare to Fig. 4), 
and (B) comparisons of the true model, ensemble mean, and ensemble standard deviation for the top horizon depth (compare to Fig. 5) and the fault surface function, 
f(u,v) (compare to Fig. 6). The results in (B) are for forward models with N = 200, using both localization and covariance inflation with the EKI-DMC algorithm. 
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the grid (see section 3.5), we still use all 441 grid squares for each ho-
rizon as data points for this constraint. 

Results for this inversion using forward modeling (Fig. 7) and 
restoration (Fig. S3 in supplementary material) show that the ensemble 
mean is still able to capture the major features of the true model, but 
with greater uncertainty than in the dense data case. For example, with 
sparse data the maximum displacement and the asymmetry (Fig. 7) are 
302 ± 101 m and 0.61 ± 0.17, respectively, with forward modeling and 
211 ± 83 m and 0.64 ± 0.17 with restoration. In contrast, with dense 
data, they are 198 ± 71 m and 0.67 ± 0.07 with forward modeling and 
187 ± 97 m and 0.66 ± 0.13 with restoration. All of these values are 
within error of the true values of 250 m and 0.6, but the uncertainty is 
generally greater with sparse data. Similarly, the mean upper horizon 
depth matches the truth well in Fig. 7, as in Fig. 5, but the standard 
deviation is higher and the area of high standard deviations around the 
fault is larger. The fault, as well, has the basic curved shape and elliptical 
displacement of the true model but with greater uncertainties in Fig. 7 
than in Fig. 6. 

4.3. Emerald Field 

For a real-world case study, we use the Emerald Field model that is 
provided as a tutorial example in the RMS modeling software and that 
has been used in previous studies such as Cardozo et al. (2008), 
Georgsen et al. (2012), and Røe et al. (2010; 2014). We consider a 
portion of the model encompassing five normal faults (F1 to F5), and we 
use data from two horizons (A and C, Fig. 8). Parameter ranges are given 
in Table S1 (supplementary material). These were chosen based on 
general knowledge from the data and the interpolation-based model in 
Fig. 8 (e.g. number of faults and their approximate locations and 
reasonable horizon depths) but with sufficient uncertainty to not 
pre-determine the solution. We use an ensemble size of N = 200 with 
covariance localization and inflation. We test both the forward modeling 
and restoration methods, although we focus on the forward modeling 
results here since they give a slightly better fit to the data. (Results for 
the restoration method are given in the supplementary material in 
Figs. S4–S6 and Text S1.) The data consist of points on the horizons 
interpreted from a 3D seismic survey (5323 total points), with points less 
than 50 m from a fault removed from the dataset, and points comprising 
fault sticks and midlines (5424 total points). The horizontal grid used to 
model the horizons and assess their fit to a plane in the restored state has 

100 m spacing with a total of 4697 grid points per horizon (or 9394 total 
for the two horizons). In total, there are 20,139 data points, while the 
number of model parameters is 21,401. The uncertainty in the data is 
not well known, but it is to be expected that the horizons are better 
imaged and thus less uncertain than the faults. Further, the misfit from a 
planar restored state may be affected by the imperfect nature of the 
kinematic model (section 3.3), so this also is expected to be less certain 
than the directly observed data. To reflect this state of knowledge, we 
estimate uncertainties (1 standard deviation) of 20 m for the horizon 
data and 50 m for the fault data and restored state misfits. A dummy 
parameter is also included in the model, with an initial Gaussian dis-
tribution of 0.0 ± 1.0, and its final distribution of 1.0 ± 1.0 shows little 
ensemble collapse but does indicate a shift of the mean similar to those 
observed in Fig. 3. 

In the work so far, we have used minimally informative prior dis-
tributions in which the non-local model parameters are limited to a 
specified range but have no other constraints or correlations, while the 
spatially varying values are constrained only by the use of a spherical 
variogram prior. However, the geometries of faults and horizons, and 
perhaps even the distribution of displacement on the fault, may be 
approximately known, especially in dense data cases. In this case, it 
makes sense from a Bayesian perspective to make use of such prior 
knowledge. Therefore, we try the Emerald Field case with two different 
prior ensembles. In one case, we randomly generate parameters within 
the allowed range as described above. In the other case, for a more 
informative prior, we create an ensemble of 200 initial realizations using 
the software packages RMS and Havana, both of which can create 
multiple geostatistical realizations of a model. Havana is used to simu-
late uncertainty in the fault surfaces and displacement fields, while RMS 
is used to simulate uncertainty in the fault positions and orientations and 
in the horizons. In order to use the forward modeling method and hi-
erarchical parameterization, we restore each realization after export 
from RMS, and we fit variograms to gridded parameters to convert them 
to a hierarchical form. 

Fig. 9 shows horizon C, which is the top horizon in the model, in the 
deformed state. Using the minimally informative prior as described 
above, the prior ensemble mean shows only the general position and 
strike of fault F1 and little hint of the other faults (Fig. 9a), and uncer-
tainty is high throughout (Fig. 9e). The final ensemble mean resolves the 
shape of F1 and the offset across it well and shows the other faults to 
some degree, such as by the presence of a higher block between F1 and 
F2 and a lower one between F2 and F3 (Fig. 9b). Uncertainty is highest 
in the vicinity of the faults, and especially in complex areas such as the 
truncation of F2 and F3 by F1 in the SE part of the model (Fig. 9f). When 
instead the prior generated by RMS and Havana is used, even the prior 
ensemble mean shows the different fault blocks well (Fig. 9c), and the 
final ensemble mean is not very different (Fig. 9d). What does change 
substantially is the ensemble standard deviation (Fig. 9g–h), which is 
greatly decreased in the final ensemble. 

Looking at the misfit between the ensemble mean models and the 
data points (Fig. 10) shows that they are mostly fit well but with some 
outliers. When using the minimally informative prior, the RMS error is 
8.7 m in the restored state, with a maximum value of 30.4 m, and 37.2 m 
in the deformed state, with a maximum of 109.7 m, showing that the 
restored state is better fit, at least when using forward modeling. When 
using the more informative prior, the RMS misfit is 13.4 m in the 
restored state, with a maximum of 70.4 m, and 13.9 m in the deformed 
state, with a maximum of 50.0 m. When using the restoration method 
instead of the forward modeling method, the results are reasonably 
similar but with somewhat higher restored state misfits, slightly lower 
deformed state misfits, and significantly higher maximum misfits (Text 
S1 in supplementary material). 

The throw on fault F1, as measured by the offset of the two horizons 
A and C, also shows the effects of the EKI inversion with the two priors 
(Fig. 11 and S6 in supplementary material). With the minimally infor-
mative prior, the initial ensemble has a very large uncertainty (blue 

Fig. 8. The portion of the Emerald Field model used in our inversion, as seen in 
RMS. There are two horizons in this model, horizon A which is the lower ho-
rizon, and horizon C which is the upper horizon. F1 to F5 are faults. Green and 
pink lines on the faults show the horizon cutoffs. Continuous lines are footwall 
cutoffs, and dashed lines are hanging wall cutoffs. This is a model as made by 
interpolation in RMS, rather than by our method, and thus provides a basis for 
comparison. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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dashed lines), which is successfully narrowed down by the EKI (red 
dashed lines). With the more informative prior, there is less uncertainty, 
but it is still narrowed somewhat, especially when using the restoration 
method. The mean throw also changes from the prior to the final 
ensemble, in particular for the forward modeling method where it de-
creases on the SE side and increases on the NW, although those changes 
are still mostly within error of the prior mean. In both cases, the throw in 
the interpolation-based model shown in Fig. 8 is similar, but not iden-
tical, to the ensemble mean resulting from EKI. 

The throw on fault F1 also shows important differences between the 
forward modeling (Fig. 11a–b) and restoration (Fig. 11c–d) methods. 
For the uninformative prior, the throw is always positive (normal sense), 

while in the restoration method it can be negative. This occurs because, 
in the forward method the horizon is continuous in the restored state 
and the fault displacement is always positive, so the resulting throw is 
positive, while with the restoration method, the throw is determined 
directly from the deformed horizon geometry, which is discontinuous 
across faults and can therefore have a negative throw if there is no prior 
information to constrain it. With the informative priors, this issue is 
avoided, but another difference appears: the forward modeling final 
ensemble mean shifts down in the SE and up in the NW, while the 
restoration final mean does not show this pattern and is very close to 
Fig. 8 interpolation-based model along much of its length. This differ-
ence is likely related to the differences in the deformed and restored 

Fig. 9. Prior and final ensemble means (top row) and standard deviations (bottom row) for the deformed state depth to the upper horizon (Horizon C) in the Emerald 
Field model with the forward modeling method. (A, B, E, F): With a minimally informative prior ensemble drawn randomly from the allowed parameter space. (C, D, 
G, H): With a prior ensemble generated using geostatistical methods. Note that E uses a different color scale than F-H for the standard deviation of depth due to the 
much higher values in that case. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Misfit between the final ensemble mean model and data points in the restored state (top row) and deformed state (bottom row) depth to the upper horizon 
(C) when using a minimally informative prior (left column) and a prior from geostatistical simulation by RMS and Havana (right column). 
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state RMS misfits from the data. The restoration method fit the deformed 
state data better, and it is thus similar to Fig. 8 model, which is based on 
interpolation in the deformed state without consideration of the restored 
state. The forward method produces a model that better matches a plane 
in the restored state but does not match the deformed state data quite as 
well. It is hard to say that either result is more correct, but it is important 
to consider how the modeling method may affect whether some data are 
better fit than others. 

5. Discussion 

5.1. Use of EKI in structural geologic modeling 

Results show that EKI can be used for building structural models that 
incorporate kinematic constraints. The method is well suited to large 
models involving multiple faults and horizons and spatially varying 
parameters. We have been able to model a realistic system involving five 
different faults with spatially varying fault geometry, horizon geometry, 
and fault displacement distribution, in which we invert simultaneously 
for thousands of parameters. 

Tests with a synthetic model show that the ensemble average model 
is generally able to achieve a good approximation of the true model. The 
ensemble also provides a measure of uncertainty in the parameters, 
which can be measured through statistics such as the standard deviation, 
but the usefulness of this is undermined by the phenomenon of ensemble 
collapse. Covariance inflation can mitigate ensemble collapse, while 
localization provides a lesser benefit. Large ensemble sizes are also able 
to avoid ensemble collapse if they are practical. The use of a dummy 
variable provides a simple way to identify ensemble collapse and 
therefore to determine whether uncertainty estimates from the method 
can be trusted. 

Some model parameters are, however, better fit than others. In the 
synthetic model, the horizon geometry (Fig. 5) was better fit than the 
fault geometry and displacement (Fig. 6). This may be due to a greater 
number of data points constraining the horizons, but it may also be due 
to more complex or difficult to fit non-local parameters. For instance, 
fault strike and dip showed considerable uncertainty (Fig. 4), and 
gridded fault surface or displacement parameters will likely have to 
change to achieve a good fit to data as the orientation of the reference 
plane changes. By contrast, horizons were originally horizontal in the 
synthetic model, and their depths were precisely fit (Fig. 4). In the case 
of fault displacement, the use of an elliptical trend meant a more com-
plex trend function than for horizons or the fault surface. The results, as 
shown in Fig. 6, suggest that this trend alone was enough to capture 

much of the information available about the displacement, with the 
residual field being within error of zero. In the case of a fault that ad-
heres less well to the assumption of an elliptical displacement field (as 
might be true in a real-world case such as the Emerald Field), however, 
the residual would likely be more important. 

With the Emerald Field case, we have illustrated how our method 
applies to a particular real-world case. The analysis of fault throw in 
Fig. 11 is particularly indicative of how this method can help to provide 
best estimates and quantified uncertainties for a variable of interest. 
Fault throw and displacement and their variations along strike are useful 
in understanding fault scaling laws (Kim and Sanderson, 2005) and fault 
growth history (Jackson, et al., 2017) and interpreting geologic struc-
tures (Barnett et al., 1987; Freeman et al., 1990). In petroleum geology, 
fault throw is of critical interest due to its effects on reservoir volumes 
and fault sealing (Røe et al., 2014; Yielding, 2015). Similar concerns 
apply to CO2 storage (e.g. Michie et al., 2021; Wu et al., 2021). Seismic 
hazard analysis is another application in which quantifying throw or slip 
(or their rates) on a fault is of primary importance, and in which 
along-strike variations in fault throw affect predictions (e.g. Faure 
Walker et al., 2019). It is also a quantity for which direct observations 
are frequently unavailable. In seismic imaging, horizon cutoffs along the 
fault are frequently poorly resolved, so horizon geometries at some 
distance from the fault together with a model of how displacement de-
creases away from the fault must be used to infer throw (Godefroy et al., 
2018). That is what we have done here, since our dataset included ho-
rizon depths in the vicinity of the fault, but not any horizon cutoffs on 
the fault surface. Our results (Fig. 11 and S6 in supplementary material) 
show that with this information we were able to recover details of the 
fault throw. Our ensemble mean is similar to a purely 
interpolation-based solution (black lines), although whether it is better 
or worse cannot be said with certainty since the absolute truth is not 
known. Perhaps more importantly, our results show a reduction of un-
certainty in the fault throw over much of its length when compared to an 
informative, but interpolation-based prior (Fig. 11b and d). 

The Emerald Field case also illustrates the fact that the prior infor-
mation is important, as in any Bayesian method, and must be considered 
when creating the initial ensemble. We found that we can fit the major 
features of even a large model with a minimally informative prior, but if 
a more informative prior is available, it will improve the results 
(Figs. 9–11). We also found that the EKI significantly reduced the 
standard deviation of the ensemble in both cases, showing its ability to 
find the best-fitting, kinematically balanced models. When used with an 
informative prior, the result will depend in part on how much uncer-
tainty is in the prior and on the uncertainty assigned to data in the EKI, 

Fig. 11. Along-strike throw profiles on fault F1 based 
on offset of the top horizon (Horizon C). Solid lines 
show ensemble means for the initial ensemble (blue), 
final ensemble (red), and the model from Fig. 8 
(black). Dashed blue and red lines show one standard 
deviation limits around the ensemble means. F2 and 
F3 mark the locations where faults F2 and F3 inter-
sect fault F1 in Fig. 8. (For interpretation of the ref-
erences to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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but it does suggest that if an initially wide range of models is considered, 
the EKI can help to narrow down the possibilities. We also see in Fig. 10 
that the forward modeling method results in lower misfit in the restored 
state than in the deformed state, with the difference being largest for the 
minimally informative prior. This result likely reflects the fact that the 
minimally informative prior for the restored state is created by zero- 
mean perturbations about a plane with no guarantee of being close to 
the deformed-state data. With the restoration method (Fig. S5 in sup-
plementary material) the misfit is instead somewhat higher in the 
restored state than the deformed state, suggesting that each method 
favors fitting the data in the state in which the model is parameterized. 

In the examples presented here, we have jointly fit for horizon ge-
ometry, fault geometry, and fault kinematics. It is possible, of course, to 
fit for only some of these parameters. For instance, the method can be 
used to fit horizon and fault geometry in the deformed state without 
considering fault kinematics. In that case, the methods presented here 
provide an alternative to interpolation-based static modeling methods, 
and may be especially useful for sparse data cases where the interpo-
lation is more uncertain. By using a hierarchical parameterization, we 
are also able to incorporate uncertainty in the variogram range and sill 
rather than using single prescribed or best-estimate values. In the field of 
static three-dimensional geological modeling, there is considerable in-
terest in quantifying uncertainty (Schweizer et al., 2017; Wellmann and 
Caumon, 2018; Yang et al., 2019; Pirot et al., 2022), and the methods 
that we present here, or similar ones based on EKI, could provide a path 
towards accomplishing these goals. 

Alternatively, an approach often used with kinematic models such as 
trishear is to consider horizon geometry as known and to fit only for fault 
kinematic parameters, displacement, and possibly fault geometry. That 
can easily be done with EKI, in which case EKI provides an alternative to 
methods such as global optimization and Markov chain Monte Carlo that 
have been previously used for these problems. It requires significantly 
fewer model evaluations than MCMC methods, which is important for 
computationally demanding models, but it still provides an estimate of 
uncertainty unlike methods aiming at a single best-fit solution. It is 
somewhat like the RML method used by Cardozo and Aanonsen (2009) 
for trishear, but with the difference that the ensemble members are used 
together to update their parameters rather than each ensemble member 
being fit individually. 

5.2. Restoration and forward modeling methods 

Incorporating fault kinematics into the model requires transforming 
the model between a restored state and a deformed state. Constraints are 
applied to horizon geometry in both states: It should be as flat as possible 
in the restored state and should match the observed data in the deformed 
state. When horizon geometry is one of the unknowns to be fit for in the 
inversion, it is possible to parameterize it in either the deformed or 
restored state, with the fault kinematic model then used to find the 
horizon geometry in the other state. We have experimented with both 
methods: a restoration-based approach in which horizon geometry is fit 
in the deformed state and then restored, and a forward modeling 
approach in which horizon geometry is fit in the restored state and is 
then deformed. Based on the results of our synthetic model, both 
methods work well. 

Restoration is widely used in the field of fault kinematics. It provides 
a simple method to test the validity of a model constructed from 
observed present-day data. In such an approach, there is an iterative 
process of constructing the present-day model and then restoring it. EKI 
replaces such iteration on a single model with an automated iterative 
process using an ensemble of possible models. One advantage of the 
restoration approach is that it is easier to use informative priors since 
prior information is more available for the deformed state, but in the 
forward modeling approach, we were able to get around this limitation 
by kinematically restoring an ensemble of deformed-state prior models 
to create an informative restored-state prior. 

The forward modeling approach provides the advantage of greater 
simplicity. It requires fewer model parameters because the restored- 
state horizon geometry is continuous without the need to parame-
terize multiple fault blocks. In addition, the hierarchical parameteriza-
tion of the horizons in terms of a Gaussian random field means that the 
prior mean for each horizon is a flat surface. Since the deformed state 
surface is more irregular than the restored state surface, the inversion 
does not have to move as far from the prior mean when modeling ho-
rizons in the restored state as when doing so in the deformed state. 
Another advantage of forward modeling, which is specific to the kine-
matic model of Georgsen et al. (2012), is that the equations (Eq. (4) and 
B1-B5) do not have an analytical inverse, and thus the computation of 
the forward deformation is computationally simpler. A potential draw-
back of the forward modeling approach that we observed with the 
Emerald Field is that it is more likely to better fit the expected planar 
restored state at the expense of the directly observed deformed-state 
data, although giving a lower uncertainty to the deformed-state data 
can reduce this issue. When trying to simultaneously solve for fault ki-
nematics and produce a model that interpolates between observed data, 
our results suggest that forward modeling-based approaches as well as 
restoration may be useful, and they are likely to be somewhat simpler. 

5.3. Limitations of the proposed method 

We have considered three types of data to constrain our models: 
deformed-state horizon geometries, deformed-state fault geometries, 
and restored-state horizon misfits from an originally planar geometry. 
Deformed-state horizon and fault geometry data can be derived from 
seismic reflection images or well logs and are subject to uncertainty in 
the interpretation of these datasets (Bond, 2015). The requirement for a 
planar restored state is based on the assumption of originally horizontal 
stratigraphy and may be subject to uncertainties due to inaccuracies of 
the kinematic model used for restoration or to the presence of a more 
complicated regional trend than the planar one we have used. 
Non-conformable beds in the restored state (e.g. growth strata) may be 
present, and we have not considered that. In all cases, values for the data 
uncertainties must be prescribed. The α term in Eq. (2) can help to 
mitigate the effect of potentially underestimated uncertainties, but the 
ratios between the uncertainties of different data types remain un-
changed. The need to estimate at least the relative uncertainty of the 
different data types is thus a limitation of the proposed method. In 
particular, when a model cannot both exactly fit present-day data and 
restore perfectly flat, there is a tradeoff between those two constraints. 
We have also not considered correlation of the data, which may be 
present, for instance due to effects of time-to-depth conversion. 

Some aspects of model uncertainty are also not considered in our 
current approach. For instance, the number of faults in the model, the 
order in which they truncate each other, and the order in which they 
slip, are all prescribed. Such problems are an area of ongoing work in 
other forms of geological modeling as well (Godefroy et al., 2019), and 
developing ways to consider uncertainty in these issues could be a target 
of future work. EnKF and EKI require a fixed-dimension parameter 
space, which makes changing the number of faults difficult. One option 
would be to give each fault an existence parameter, corresponding to the 
probability of its inclusion in the model, as in Cherpeau et al. (2012). 
Alternatively, the reversible jump MCMC method could be used, as has 
been done for stratigraphic modeling (Charvin et al., 2009), although as 
with other MCMC methods, this will likely require more model evalu-
ations than does EKI. 

5.4. Future directions 

The methods that we have developed can be straightforwardly 
applied to other kinematic models, besides the Georgsen et al. (2012) 
model used here. Three-dimensional trishear models (Cristallini and 
Allmendinger, 2001; Cristallini et al., 2004; Cardozo, 2008), for 
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instance, require specifying how the fault slip, propagation rate, and 
trishear angle vary along strike, and EKI would provide a way to invert 
for those spatially variable parameters without requiring simplistic as-
sumptions such as a linear gradient. Trishear parameters may also 
change over time (Allmendinger, 1998; Allmendinger et al., 2004), but 
such parameters are usually held constant in inversions, or at most a 
single change is inverted for (Oakley et al., 2018). With EKI being suited 
to many-parameter models, complex variations of trishear parameters 
with time, as well as in space, could be inverted for. 

As noted in section 2.3, the EnKF is already widely used in reservoir 
simulations and history matching, but uncertainty in the structural ge-
ology is often not considered. In studies such as Seiler et al. (2010a, b) 
and Irving et al. (2014) that have considered this uncertainty, an 
ensemble of structural models is first created statistically, and then used 
as the prior for history matching using the EnKF, in which the structural 
model is updated as dynamic fluid flow data are assimilated. These 
methods do not use the EnKF to match fault and horizon geometry data 
or ensure that the structural models are kinematically restorable. A 
possible future direction is, therefore, to combine our methods with 
EnKF-based history-matching methods, either by using the results of the 
structural restoration EKI as the prior ensemble for a reservoir modeling 
EnKF, or by simultaneously fitting structural data and reservoir pro-
duction data in a single large inversion. Such a methodology could also 
be combined with the use of software such as RMS and Havana to create 
prior geostatistical realizations, which are then improved through ki-
nematic restoration, and then further used to model fluid flow with 
consideration of the uncertainty in structural features such as fault ge-
ometry and across-fault juxtapositions. Seiler et al. (2010a, 2010b) have 
shown that joint updating of the flow and structural models using flow 
data can improve both, and including structural data and structural 
balancing constraints would likely offer further improvements. Under-
standing fault throw is particularly important in history matching since 
it controls unit juxtaposition and flow across faults (Seiler et al., 2010b), 
and as shown in Fig. 11, our proposed methods can help to quantify 
throw and its uncertainty. 

Another potential use for the EKI is with more computationally 
intensive methods such as geomechanical restoration (e.g., Stockmeyer 
et al., 2018). In the examples that we have shown, the number of 
evaluations of the forward model is in the 100s to low 1000s, which is 
much less than MCMC requires for even simple kinematic models (e.g., 
Oakley and Fisher, 2015). EKI has already been applied to geophysical 
inversions (e.g. Muir and Tsai, 2020; Tso et al., 2021), and in structural 
geology it could likely also be applied to physics-based modeling 
methods as an alternative to kinematic ones. 

A final possibility for future work is to incorporate uncertainty in 
time-to-depth conversions into the modeling workflow presented here. 
For instance, a stochastic depth conversion method could be used to 
create the data realizations, rather than assigning an uncertainty to 
already depth-converted data, which would help to account for corre-
lations and spatial variation in the uncertainty. Further, depth conver-
sion could be incorporated into the forward model with interval 
velocities as parameters for the EKI to fit for. Different velocity models 
could be validated through kinematic restoration or by area-depth-strain 
analysis (Totake et al., 2017), with the EKI providing estimates of the 
most likely velocity model and its uncertainty. 

6. Conclusions 

Ensemble Kalman Inversion is a promising tool for stochastic 
modeling in structural geology. Using this tool, we were able to simul-
taneously invert for horizon geometries, fault geometries, displacement 
on faults, and parameters of a kinematic model in order to create an 
ensemble of kinematically restorable models. The method can be 
applied to three-dimensional models, rather than just cross sections, and 
to cases involving multiple faults. It is thus applicable to models of much 
greater complexity than were possible with previous attempts to apply 
data inversion to fault kinematic modeling. EKI also allows uncertainty 
in model parameters to be estimated, but it is necessary to mitigate 
ensemble collapse using methods such as covariance inflation for the 
uncertainty estimates to be reliable. In addition to the applications 
demonstrated here, possible future directions for the use of EKI in 
structural modeling include applications to other kinematic models, 
allowing the use of more physically realistic but computationally 
intensive mechanical methods, and linking kinematic modeling work-
flows with others such as history matching and depth conversion. 
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Appendix A. The EKI algorithm 

The EKI algorithm is similar to the EnKF, but not identical. Traditional formulations of the EnKF, such as that given by Aanonsen et al. (2009), 
involve a matrix H, which linearly relates measurements to model parameters and often makes use of an augmented state vector that combines u and G 
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(u). They are also developed for time-varying systems, in which the state vector includes both time-varying state variables and other unknown pa-
rameters (Aanonsen et al., 2009), in place of our vector u. For inversion, rather than data assimilation, Iglesias et al. (2013b) derive a simpler 
formulation for updating u directly, which with the addition of αn (Iglesias, 2016) is given in Eq. (2). Eq. (2) is basically the same formula as Ma and Bi 
(2019, their Eq. 63), and it is closely related to the ensemble smoother with multiple data assimilation (Emerick and Reynolds, 2013). 

The empirical covariance matrices in Eq. (2) can be calculated by the formulas 

CuG
n =

1
N − 1

∑N

j=1

(
u(j)

n − un
)
⊗
(
G(j)

n − Gn
)
, (A1)  

and 

CGG
n =

1
N − 1

∑N

j=1

(
G(j)

n − Gn
)
⊗
(
G(j)

n − Gn
)
, (A2)  

where G(j)
n is the vector of forward model results G(u(j)

n ), un and Gn denote averages over all ensemble members, and ⊗ denotes the Kronecker product. 

The term CuG
n (CGG

n + αnΓ)− 1 in Eq. (2) is the Kalman-type gain matrix, K (Iglesias et al., 2013). To calculate K, we make use of a subspace 
pseudo-inverse method described by Evensen (2004, 2009), which makes the calculation faster and is especially helpful when working with many 
model parameters and data. 

To choose the regularizing term αn, we use the EKI-DMC method of Iglesias and Yang (2021). In this method, one first calculates the least-squares 
misfit-functional, Φn, for each ensemble member at each iteration: 

Φn =

{
1
2

⃦
⃦
⃦Γ− 1

2
(
d − G

(
u(j)

n

))⃦⃦
⃦

2
}N

j=1
. (A3) 

The value of αn is then calculated as: 

α− 1
n =min

{

max

{
M

2〈Φ〉n
,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
M

2〈Φ,Φ〉n

√ }

, 1 − tn

}

, (A4)  

where M is the number of data points, 〈Φ〉n and 〈Φ,Φ〉n are the mean and variance of Φn, respectively, and tn is given by the following equation: 

tn =

⎧
⎪⎨

⎪⎩

∑n− 1

j=0
α− 1

j if n ≥ 1

0 if n = 0.

(A5) 

The algorithm stops when α− 1
n = 1 − tn, in order to fulfill the requirement that the sum of αn over all iterations equals 1. 

Appendix B. Fault Displacement Model 

The elliptical displacement model takes the form: 

dellipse(u, v)= 2dmax(1 − r(u, v))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 + r(u, v))2

4
− r(u, v)2

√

, (B1)  

and: 

r(u, v)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

u − u0

lu

)2

+

(
v − v0

lv

)2
√

. (B2) 

The contour of zero displacement μ0 = 0 (or r = 1) is used to define the faut tip line. 
The equations for the three-dimensional displacement field are: 

Du(u, v,w)= 0 (B3)  

Dv(u, v,w)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ • d(u, v) •
[

1 −
|w − f (u, v)|

R

]2

, f (u, v) ≤ w ≤ f (u, v) + R

(γ − 1) • d(u, v) •
[

1 −
|w − f (u, v)|

R

]2

, f (u, v) − R ≤ w < f (u, v)

0,w < f (u, v) − R or w > f (u, v) + R

(B4)  

Dw(u, v,w)= f (u, v+Dv(u, v,w)) − f (u, v). (B5) 

Thus, we assume no strike-slip displacement (Du is zero everywhere). These equations produce deformation in both the hanging wall and footwall, 
with displacement decreasing away from the fault and towards the tip line. The structure contours of Fig. 2b illustrate this pattern of displacement by 
the offset of a horizon that was originally at 1100 m depth but is now deeper in the hanging wall and shallower in the footwall. 
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Appendix C. Equations for Localization and Covariance Inflation 

In the localization method of Zhang and Oliver (2010), bootstrap resampling of the ensemble of model parameters, predictions, and observed data 
is used to create NB realizations of the Kalman gain matrix K. From these realizations, a bootstrap estimate of the variance in each element of K is 
calculated: 
(

σ∗
Ki,j

)2
=

1
NB

∑NB

n=1

(
K∗

n,i,j − Ki,j

)2
, (C1)  

where K∗
n is the nth bootstrapped K, and (i,j) are the indices of matrix elements. From this equation, the terms of the localization, or screening matrix, 

S, are calculated as: 

Si,j =
1

1 + V2
i,j

(
1 + 1

σ2
S

) , (C2)  

where V is the squared coefficient of variation: 

V2
i,j =

(
σ∗

Ki,j

)2

K2
i,j

. (C3) 

S is then used to calculate a screened Kalman gain matrix (KS) by the multiplication: 

KS =S∘K, (C4)  

where ∘ denotes the Hadamard or Schur (i.e., elementwise) product. This method does include one user-chosen value, σS, which determines the 
strength of the localization. Zhang and Oliver (2010) suggest a value of 0.6, which we follow. 

For localization by the method of Evensen (2009a,b), Nt vectors of N elements each are drawn from a standard normal distribution and then shifted 
and scaled if necessary, so that the mean and standard deviation of each vector are exactly 0 and 1, respectively. These dummy parameters are then 
added to the matrix of model parameter realizations and updated using Eq. (2). After updating, the standard deviation of each dummy parameter is 
calculated as: 

σt,i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

j=1

(
ti,j − ti

)2

√
√
√
√ , (C5)  

where i is the index for each of the Nt dummy parameters, j is the index for each of the N ensemble members, and ti denotes the average of ti,j over all j 
values. The inflation factor is then: 

ρ= 1

1
Nt

∑Nt

i=1
σt,i

. (C6) 

The updated ensemble of model parameters from Eq. (2) is inflated by changing its variance while keeping its mean constant through the update 
equation: 

u(j)
n+1 = ρ

(
u(j)

n+1 − un+1

)
+ un+1 (C7)  
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