
Citation: Wickstrøm, K.K.; Løkse, S.;

Kampffmeyer, M.C.; Yu, S.; Príncipe,

J.C.; Jenssen, R. Analysis of Deep

Convolutional Neural Networks

Using Tensor Kernels and

Matrix-Based Entropy. Entropy 2023,

25, 899. https://doi.org/10.3390/

e25060899

Academic Editor: Jerry D. Gibson

Received: 25 April 2023

Revised: 31 May 2023

Accepted: 2 June 2023

Published: 3 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Analysis of Deep Convolutional Neural Networks Using Tensor
Kernels and Matrix-Based Entropy
Kristoffer K. Wickstrøm 1,* , Sigurd Løkse 1 , Michael C. Kampffmeyer 1,2 , Shujian Yu 1,3,4 ,
José C. Príncipe 3 and Robert Jenssen 1,2,5

1 Machine Learning Group, Department of Physics and Technology, UiT The Arctic University of Norway,
NO-9037 Tromsø, Norway; sigurd.lokse@uit.no (S.L.); michael.c.kampffmeyer@uit.no (M.C.K.);
s.yu3@vu.nl (S.Y.); robert.jenssen@uit.no (R.J.)

2 Norwegian Computing Center, Department of Statistical Analysis and Machine Learning, 114 Blindern,
NO-0314 Oslo, Norway

3 Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611, USA; principe@cnel.ufl.edu

4 Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
5 Department of Computer Science, University of Copenhagen, Universitetsparken 1,

2100 Copenhagen, Denmark
* Correspondence: kristoffer.k.wickstrom@uit.no

Abstract: Analyzing deep neural networks (DNNs) via information plane (IP) theory has gained
tremendous attention recently to gain insight into, among others, DNNs’ generalization ability.
However, it is by no means obvious how to estimate the mutual information (MI) between each
hidden layer and the input/desired output to construct the IP. For instance, hidden layers with many
neurons require MI estimators with robustness toward the high dimensionality associated with such
layers. MI estimators should also be able to handle convolutional layers while at the same time
being computationally tractable to scale to large networks. Existing IP methods have not been able to
study truly deep convolutional neural networks (CNNs). We propose an IP analysis using the new
matrix-based Rényi’s entropy coupled with tensor kernels, leveraging the power of kernel methods
to represent properties of the probability distribution independently of the dimensionality of the data.
Our results shed new light on previous studies concerning small-scale DNNs using a completely new
approach. We provide a comprehensive IP analysis of large-scale CNNs, investigating the different
training phases and providing new insights into the training dynamics of large-scale neural networks.

Keywords: information theory; deep learning; information plane; kernels methods

1. Introduction

Although deep neural networks (DNNs) are at the core of most state-of-the art sys-
tems in computer vision, the theoretical understanding of such networks is still not at a
satisfactory level [1]. In order to provide insight into the inner workings of DNNs, the
prospect of utilizing the mutual information (MI), a measure of dependency between two
random variables, has recently garnered a significant amount of attention [1–8]. Given
the input variable X and the desired output Y for a supervised learning task, a DNN is
viewed as a transformation of X into a representation that is favorable for obtaining a good
prediction of Y. By treating the output of each hidden layer as a random variable T, one
can model the MI I(X; T) between X and T. Likewise, the MI I(T; Y) between T and Y can
be modeled. The quantities I(X; T) and I(T; Y) span what is referred to as the information
plane (IP). Several works have unveiled interesting properties of the training dynamics
through IP analysis of DNNs [4,7,9–11]. Figure 1, produced using our proposed measure,
illustrates one such insight that is similar to the observations of [1], where training can be
separated into two distinct phases: the fitting phase and the compression phase.
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Figure 1. IP obtained using our proposed measure for a small DNN averaged over 5 training runs.
The solid black line illustrates the fitting phase while the dotted black line illustrates the compression
phase. The iterations at which early stopping would be performed assuming a given patience
parameter are highlighted. Patience denotes the number of iterations that need to pass without
progress on a validation set before training is stopped to avoid overfitting. For low patience values,
training will stop before the compression phase. For the benefit of the reader, a magnified version of
the first four layers is also displayed.

The claim of a fitting and compression phase has been highly debated as subsequent
research has linked the compression phase to the saturation of neurons [5] or clustering of
the hidden representations [9]. Recent studies [1,5,7,9] have been focused on small-scale
networks or non-convolutional networks, as the current MI estimators cannot tackle the
tensor representations produced by convolutional layers or do not scale well to convolu-
tional layers with many filters [6]. This severely limits the scope of IP analysis, as most
real-world applications rely on large-scale CNNs. In this work, we continue the IP line
of research through a new matrix-based entropy functional [6,7,12]. We provide insights
on this functional by linking the functional to well-understood measures from the kernel
literature and propose a new kernel tensor-based approach to the matrix-based entropy
functional. Furthermore, we give a new formulation of the matrix-based entropy that is
closely connected to measures from quantum information theory. Using the proposed
estimator, we provide an analysis of large-scale DNNs and give a new information theo-
retic understanding of the training procedure of DNNs. Using the proposed measure, we
investigate the claim of [3] that the entropy H(X) ≈ I(T; X) and H(Y) ≈ I(T; Y) in high
dimensions (in which case MI-based analysis would be meaningless). The contributions of
this work can be summarized as:

• We propose a kernel tensor-based approach to the matrix-based entropy functional that
is designed for measuring MI in large-scale convolutional neural networks (CNNs).

• We provide new insights on the matrix-based entropy functional by showing its con-
nection to well-known quantities in the kernel literature such as the kernel mean
embedding and maximum mean discrepancy. Furthermore, we show that the matrix-
based entropy functional is closely linked with the von Neuman entropy from quan-
tum information theory.

• Our results indicate that the compression phase is apparent mostly for the training
data and less so for the test data, particularly for more challenging datasets. When
using a technique such as early stopping to avoid overfitting, training tends to stop
before the compression phase occurs (see Figure 1).
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2. Related Work

Analyzing DNNs in the IP was first proposed by [13] and later demonstrated by [1].
Among other results, the authors studied the evolution of the IP during the training process
of DNNs and noted that the process was composed of two different phases. First, there is
an initial fitting phase where I(T; Y) increases, which is followed by a phase of compression
where I(X; T) decreases. These results were later questioned by [5], who argued that the
compression phase is not a general property of the DNN training process but rather an
effect of different activation functions. However, a recent study by [4] seems to support
the claim of a compression phase regardless of the activation function. The authors argue
that the base estimator of MI utilized by [5] might not be accurate enough and demonstrate
that a compression phase does occur, but the amount of compression can vary between
different activation functions. Another recent study by [10] also reported a compression
phase but highlighted the importance of adaptive MI estimators. They also showed that
when L2 regularization was included in the training, compression was observed regardless
of the activation function. In addition, some recent studies have discussed the limitations
of the IP framework for analysis and optimization for particular types of DNN [14,15].
Furthermore, ref. [16] investigated similarities between hidden layers and between hidden
layers of different networks, but they did so only for the representation obtained after the
networks were fully trained. The dynamics of large-scale DNNs was investigated [17]
using MINE [18]. A number of information plane-related studies have also been discussed
in [19].

On a different note, Ref. [3] proposed an evaluation framework for DNNs based on
the IP and demonstrated that MI can be used to infer the capability of DNNs to recognize
objects for an image classification task. Furthermore, the authors argue that when the
number of neurons in a hidden layer grows large, I(T; X) and I(Y; T) barely change
and are, using [3] terminology, approximately deterministic, i.e., I(T; X) ≈ H(X) and
I(T; Y) ≈ H(Y). Therefore, they only model the MI between X and the last hidden layer—
that is, the output of the network—and the last hidden layer and Y.

Ref. [7] investigated a matrix-based measure of MI for analyzing different data pro-
cessing inequalities in feed-forward stacked autoencoders (SAEs), concluding that the
compression phase in the IP of SAEs is determined by the values of the SAE bottleneck
layer size and the intrinsic dimensionality of the given data. In follow-up work, a simplistic
analysis of small convolutional neural networks (CNNs) was provided in [6]; however, it
was based on a multivariate extension [20] of matrix-based Renyi entropy that does not
scale well numerically or computationally in the number of feature maps. The interested
reader can find additional information on the multivariate extension by [20] in Appendix A.

Recently, the information plane of quantized neural networks was modeled [8], which
allowed for an exact analysis of its dynamics. In addition, log-determinant entropy has
been used for information plane analysis [11]. Lastly, information plane analysis has also
been used to improve the understanding of graph convolutional neural networks [21].

In this paper, we continue the recent trend of leveraging the new matrix-based mea-
sures of entropy. We contribute both new insight to the definition of these measures (see
Section 3.2.1), and importantly, we extend matrix-based measures of entropy to exploit
tensor kernels to enable the first IP analysis of large-scale CNNs by treating feature maps
as tensors (Section 3.3).

3. Materials and Methods
3.1. Preliminaries on Matrix-Based Information Measures

For the benefit of the reader, we review in this section first the theory underlying
the recent matrix-based measures of entropy and mutual information. Thereafter, we
contribute a new special case interpretation of the definition of matrix-based Renyi entropy
(Section 3.2.1) and give new insights on the link to other measures in the kernel literature
before presenting our new tensor-based approach.
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3.1.1. Matrix-Based Entropy and Mutual Information

The matrix-based measure of entropy, originally proposed by [12], is built on kernel
matrices obtained from raw data, involving no explicit density estimation or binning
procedure:

Definition 1 ([12]). Let xi ∈ X , i = 1, 2, . . . , N denote data points and let κ : X × X 7→ R
be an infinitely divisible positive definite kernel [22]. Given the kernel matrix K ∈ RN×N with

elements (K)ij = κ(xi, xj) and the matrix A, (A)ij =
1
N

(K)ij√
(K)ii(K)jj

, the matrix-based Rényi’s

α-order entropy is given by

Sα(A) =
1

1− α
log2

(
tr(Aα)

)
=

1
1− α

log2

[
N

∑
i=1

λi(A)α

]
.

(1)

Here, λi(A) denotes the ith eigenvalue of the matrix A. Equation (1) is a measure of
an entropy-like quantity that satisfies Renyi’s axiomatic characterization of entropy [23],
which is referred to as matrix-based Renyi entropy. In addition to the matrix-based entropy,
ref. [12] also defined the matrix-based joint entropy between x ∈ X and y ∈ Y as

Sα(AX , AY ) = Sα

(
AX ◦AY

tr(AX ◦AY )

)
, (2)

where xi and yi are two different representations of the same object and ◦ denotes the
Hadamard product. Finally, the MI is, similar to Shannon’s formulation, defined as

Iα(AX ; AY ) = Sα(AX ) + Sα(AY )− Sα(AX , AY ). (3)

The properties of these quantities were analyzed in detail in [12], but we want to
highlight some important properties and provide links with other measures in the kernel
literature.

Information theoretic measures are developed in such a way that they satisfy certain
axioms. The measures presented above satisfy the axioms put forth by [23] and are closely
connected with quantum information theory [24]. In quantum statistical mechanics, the
Von Neumann’s entropy [24] is defined as

S(ρ) = − tr(ρ log ρ), (4)

where ρ is a density matrix that described a quantum mechanical system. If ρ is written in
terms of its eigenvalues, λi(ρ), then Equation (4) can also be formulated as

S(ρ) = −
N

∑
i=1

λi(ρ) log[λi(ρ)]. (5)

In addition, the quantum extensions of Renyi’s entropy [25] that is defined as

Sα(ρ) =
1

1− α
log[tr(ρα)], (6)

bears a close resemblance to the matrix-based definition of entropy in Equation (1). While
some properties of Equations (4) and (6) can also be extended to Equation (1), it is important
to note that the two approaches are very different since the matrix-based framework is built
around kernel matrices obtained directly from raw data.
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3.1.2. Bound on Matrix-Based Entropy Measure

Not all measures of entropy have the same properties. Many of the estimators used
and developed for Shannon suffer from the curse of dimensionality [26]. In contrast,
Renyi’s entropy measures have the same functional form of the statistical quantity in a
reproducing kernel Hilbert space (RKHS), thus capturing properties of the data population.
Essentially, we are projecting marginal distribution to an RKHS in order to measure entropy
and MI. This is similar to the approach of maximum mean discrepancy and the kernel
mean embedding [27,28]. The connection with the data population can be shown via the
theory of covariance operators. The covariance operator G : H → H is defined through the
bilinear form

G( f , g) = 〈 f , Gg〉 =
∫
X
〈 f , ψ(x)〉〈ψ(x), g〉dPX (x)

= EX { f (X), g(Y)}
(7)

where PX is a probability measure and f , g ∈ H. Based on the empirical distribution
PN = 1

N ∑N
i=1 δxi (x), the empirical version Ĝ of G obtained from a sample xi of size N is

given by: 〈
f , ĜNg

〉
= Ĝ( f , g) =

∫
X
〈 f , ψ(x)〉〈ψ(x), g〉dPX (x)

=
1
N

N

∑
i=1
〈 f , ψ(xi)〉〈ψ(xi), g〉

(8)

By analyzing the spectrum of Ĝ and G, Ref. [12] showed that the difference between
tr(G) and tr(Ĝ) can be bounded, as stated in the following proposition:

Proposition 2. Let PN = 1
N ∑N

i=1 δxi (x) be the empirical distribution. Then, as a consequence of

Proposition 6.1 in [12], tr
[
Ĝα

N
]
= tr

[(
1
N K
)α]

. The difference between tr(G) and tr(Ĝ) can be
bounded under the conditions of Theorem 6.2 in [12] and for α > 1, with probability 1-δ

∣∣tr(Gα)− tr
(
Ĝα

N
)∣∣ ≤ αC

√
2 log 2

δ

N
(9)

where C is a compact self-adjoint operator.

3.2. Analysis of Matrix-Based Information Measures

In this section, we present new theoretical insights into the Matrix-Based Information
Measures.

3.2.1. A New Special-Case Interpretation of the Matrix-Based Renyi Entropy Definition

In previous works, the α in Equation (1) has been ad hoc set to a value of 1.01 in
order to approximate Shannon’s entropy [6,7]. For α = 1, both the denominator and the
numerator become zero, so Equation (1) cannot be used directly in this case. However,
as a contribution to the matrix-based Renyi entropy theory, we show here that for the
case α→ 1, Equation (1) can be expressed similarly to the matrix-based Von Neumann’s
entropy [24], resembling Shannon’s definition over probability states and expressed as

lim
α→1

Sα(A) = −
N

∑
i=1

λi(A) log2[λi(A)]. (10)

Equation (1) can be proved using L’Hôpital’s rule as follows:

Proof.

lim
α→1

Sα(A) = lim
α→1

1
1− α

log2

(
n

∑
i=1

λα
i

)
→ 0

0
, (11)
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since ∑N
i=1 λi = tr(A) = 1. L’Hôpital’s rule yields

lim
α→1

Sα(A) = lim
α→1

∂
∂α log2[∑

n
i=1 λi(A)α]

∂
∂α (1− α)

= − 1
ln 2

lim
α→1

∑n
i=1 λi(A)α ln[λi(A)]

|∑n
i=1 λi(A)α|

= −
n

∑
i=1

λi(A) log2[λi(A)].

(12)

3.2.2. Link to Measures in Kernel Literature and Validation on High-Dimensional
Synthetic Data

An interesting aspect of the matrix-based measure of entropy is the special case
connection with the theory of maximum mean discrepancy and Hilbert–Schmidt norms via
covariance operators [29]. Let G be the covariance operator (see [28] for details), then, for
the particular case of α = 2, the empirical trace of the covariance operator, tr(G2), is given
by tr(A2). Furthermore,

tr(G2) =

〈∫
X

κ(·, x)dPX (x),
∫
X

κ(·, y)dPX (y),
〉

= ||µX ||2K,
(13)

where µX =
∫
X κ(·, x)dPX (x) is the kernel mean map [30], i.e., an embedding of the proba-

bility measure PX (x) in a reproducing kernel Hilbert space (RKHS). Thus, the matrix A
can be related to an empirical covariance operator on embeddings of probability distribu-
tions in an RKHS. Moreover, ref. [12] showed that under certain conditions, Equation (1)
converges to the trace of the underlying covariance operator, as shown in Proposition 2 in
Section 3.1.2. Notice that the dimensionality of the data does not appear in Proposition 2.
This means that Sα(A) captures properties of the distribution with a certain robustness
with respect to high-dimensional data. This is a beneficial property compared to KNN and
KDE-based information measures used in previous works [5,10], which have difficulties
handling high-dimensional data [26]. Some measures of entropy developed for measuring
the Shannon entropy suffer from the curse of dimensionality [26]. In addition, there is no
need for any binning procedure utilized in previous works [1], which are known to struggle
with the ReLU activation function commonly used in DNNs [5]. While Equation (13) is not
explicitly used in the remainder of our manuscript, we believe that these insights provides
a deeper understanding of the inner workings of the matrix-based entropy measure.

To examine the behavior of the matrix-based measures described in Section 3.1, we
have conducted a simple experiment on measuring entropy and mutual information in high-
dimensional data following a normal distribution with known mean and covariance matrix.
In the particular case of the normal distribution, the entropy and mutual information can
be calculated analytically. The entropy can be calculated as:

H(N0) =
1
2

log
(
(2πe)d det(Σ0)

)
, (14)

where N0 denotes a normal distribution with mean vector µ0 covariance matrix Σ0, and
dimensionality d. For mutual information, we use the experimental setup considered
in [31]. Let Z have a d + 1 dimensional Gaussian distribution with covariance matrix Σz.
Next, let X = (Z1, . . . , Zd) and Y = Zd+1. Then, their mutual information satisfies:

I(X, Y) = I(Z1, . . . , Zd+1)− I(Z1, . . . , Zd) (15)

= −1
2

log
(

det(Σz)

det(Σx)

)
, (16)
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where Σx is the covariance matrix of X. We consider five cases of (d + 1)-dimensional Gaus-
sian distributions with mean zero, unit variance, and an increasing amount of dependence.
The unit variance covariance matrices for the five cases are given as follows:

ΣA(i, j) = 0.1, for i 6= j,
ΣB(i, j) = 0.25, for i 6= j,
ΣC(i, j) = 0.5, for i 6= j,
ΣD(i, j) = 0.75, for i 6= j,
ΣE(i, j) = 0.9, for i 6= j.

The left plot in Figure 2 displays the entropy of a 100-dimensional normal distribution with
zero mean and isotropic covariance matrix, which is calculated using Equation (14). The
right plot in Figure 2 displays the estimated entropy using Equation (1) on 500 randomly
drawn samples from N0, which are computed on all 500 samples and in batches of 100.
The results show how the estimated entropy follows the same trend as the analytically
computed entropy. We quantitativly evaluate the correlation between the analytic quantity
and the estimated quantity by calculating Pearson’s correlation coefficient and find that
that both the full data and batch-wise estimation are highly correlated with the analytic
calculation (correlation ≈ 0.99, p-value ≤ 0.01). For mutual information, we generate
500 samples from a 100 + 1 dimensional Gaussian distribution and compare the exact
and estimated mutual information, which are both based on all 500 samples and in the
batch-wise setting. The left plot of Figure 3 shows the mutual information between X
and Y calculated using Equation (16) for the five cases described above. The right part of
Figure 3 shows the estimated mutual information using Equation (3), which is computed
on all 500 samples and in batches of 100. Again, the result shows how the estimated
values follow the same trend as the exact mutual information values. Similarly as with the
entropy, we quantitativly evaluate the correlation between the analytic quantity and the
estimated quantity by calculating Pearson’s correlation coefficient and find that that both
the full data and batch-wise estimation are highly correlated with the analytic calculation
(correlation ≈ 0.99, p-value ≤ 0.01). Note that the exact value of both the entropy and
mutual information is different between the exact and estimated quantities. This is expected,
as the matrix-based entropy estimators measure information theoretic quantities in RKHS
without the need for explicit PDF but with similar properties as common information
theoretic measures. The kernel width was selected by taking the median distance between
all samples.
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Figure 2. The leftmost plot shows the entropy calculated using Equation (14) of a 100-dimensional
normal distribution with zero mean and an isotropic covariance matrix for different variances.
The variances are given along the x-axis. The rightmost plot shows the entropy estimated using
Equation (1) for the same distribution. The plots illustrated that the analytically computed entropy
and the estimated quantity follow the same trend.
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Figure 3. The leftmost plot shows the mutual information calculated using Equation (16) between
a standard 100-dimensional normal distribution and a normal distribution with a mean vector of
all ones and an isotropic covariance matrix with different variances. The variances are given along
the x-axis. The rightmost plot shows the mutual information estimated using Equation (3) for the
same distributions. The plots illustrated that the analytically computed mutual information and the
estimated quantity follow the same trend.

3.3. Novel Tensor-Based Matrix-Based Renyi Information Measures

To invoke information theoretic quantities of features produced by convolutional
layers and to address the limitations discussed above, we introduce in this section our
novel tensor-based approach for measuring entropy and MI in DNNs. This enables for the
first time an IP analysis of large-scale CNNs.

3.4. Tensor Kernels for Measuring Mutual Information

The output of a convolutional layer is represented as a tensor Xi ∈ RC ⊗RH ⊗RW

for a data point i. As discussed above, the matrix-based Rényi’s α-entropy cannot include
tensor data without modifications. To handle the tensor-based nature of convolutional
layers, we propose to utilize tensor kernels [32] to produce a kernel matrix for the output
of a convolutional layer. A tensor formulation of the radial basis function (RBF) kernel can
be stated as

κten(Xi,Xj) = e−
1

σ2 ‖Xi−Xj‖2
F , (17)

where ‖ · ‖F denotes the Hilbert–Frobenius norm [32] and σ is the kernel width parameter.
In practice, the tensor kernel in Equation (17) can be computed by reshaping the tensor into
a vectorized representation while replacing the Hilbert–Frobenius norm with a Euclidean
norm. We compute the MI in Equation (3) by replacing the matrix A with

(Aten)ij =
1
N

(Kten)ij√
(Kten)ii(Kten)jj

=
1
N

κten(Xi,Xj).

(18)

While Equation (17) provides the simplest and most intuitive approach for using
kernels with tensor data, it does have its limitations. Namely, a tensor kernel that simply
vectorizes the tensor ignores the inter-component structures within and between the re-
spective tensor [32]. For simple tensor data, such structures might not be present and a
tensor kernel as described above can suffice; however, other tensor kernels do exist, such as
for instance the matricization-based tensor kernels [32]. In this work, we have chosen the
tensor kernel defined in Equation (17) for its simplicity and computational benefits, which
come from the fact that the entropy and joint entropy are computed batch-wise by finding
the eigenvalues of a kernel matrix, or the eigenvalues of the Hadamard product of two
kernel matrices, and utilizing Equation (1). Nevertheless, exploring structure-preserving
kernels can be an interesting research path in future works. In Appendix C, we have
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included a simple example toward this direction, where the tensor kernel described in this
paper is compared to a matricization-based tensor kernel.

3.4.1. Choosing the Kernel Width

With methods involving RBF kernels, the choice of the kernel width parameter, σ,
is always critical. For supervised learning, one might choose this parameter by cross-
validation based on validation accuracy, while in unsupervised problems, one might use a
rule of thumb [33–35]. However, in the case of measuring MI in DNNs, the data are often
high dimensional, in which case unsupervised rules of thumb often fail [34].

In this work, we choose σ based on an optimality criterion. Intuitively, one can make
the following observation: a good kernel matrix should reveal the class structures present
in the data. This can be accomplished by maximizing the so-called kernel alignment loss [36]
between the kernel matrix of a given layer, Kσ, and the label kernel matrix, Ky. The kernel
alignment loss is defined as

A(Ka, Kb) =
〈Ka, Kb〉F
‖Ka‖F‖Kb‖F

, (19)

where ‖ · ‖F and 〈·, ·〉F denote the Frobenius norm and inner product, respectively. Thus,
we choose our optimal σ as

σ∗ = arg maxσ A(Kσ, Ky).

To stabilize the σ values across mini batches, we employ an exponential moving average,
such that in layer ` at iteration t, we have

σ`,t = βσ`,t−1 + (1− β)σ∗`,t,

where β ∈ [0, 1] and σ`,1 = σ∗`,1.

4. Results

We evaluate our approach by comparing it to previous results obtained on small
networks by considering the MNIST dataset and a Multilayer Perceptron (MLP) architecture
that was inspired by [5]. We further compare to a small CNN architecture similar to that
of [4] before considering large networks, namely VGG16, and a more challenging dataset,
namely CIFAR-10. Note that unless stated otherwise, we use CNN to denote the small
CNN architecture. Details about the MLP and the CNN utilized in these experiments
can be found in Appendix D. All MI measures were computed using Equations (2), (3)
and (10) and the tensor approach described in Section 4, which amounts to setting α = 1.
Furthermore, the MI estimates showed in all plots are averages across multiple training runs.
Code is available online (https://github.com/Wickstrom/InformationTheoryExperiment,
accessed on 1 June 2023).

Since the MI is computed at the mini-batch level, a certain degree of noise is present.
To smooth the MI measures, we employ a moving average approach where each sample
is averaged over k mini-batches. For the MLP and CNN experiments, we use k = 10, and
for the VGG16, we use k = 50. We use a batch size of 100 samples and determine the
kernel width using the kernel alignment loss defined in Equation (19). For each hidden
layer, we chose the kernel width that maximizes the kernel alignment loss in the range
0.1 and 10 times the mean distance between the samples in one mini-batch. Initially, we
sample 75 equally spaced values for the kernel width in the given range for the MLP and
CNN and 300 values for the VGG16 network. During training, we dynamically reduce
the number of samples to 50 and 100, respectively, to reduce computational complexity,
which is motivated by the fact that the kernel width remains relatively stable during the
latter part of training (illustrated in Section 5). We chose the ranges 0.1 and 10 times the
mean distance between the samples in one mini-batch to avoid the kernel width becoming

https://github.com/Wickstrom/InformationTheoryExperiment
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too small and to ensure that we cover a wide enough range of possible values. For the
input kernel width, we empirically evaluated values in the range 2–16 and found consistent
results for values in the range 4–12. All our experiments were conducted with an input
kernel width of 8. For the label kernel matrix, we want a kernel width that is as small as
possible to approach an ideal kernel matrix while at the same time large enough to avoid
numerical instabilities. For all our experiments, we use a value of 0.1 for the kernel width
of the label kernel matrix.

Comparison to previous approaches First, we study the IP of the MLP similar to the
one examined in previous works on DNN analysis using information theory [4,5]. We
utilize stochastic gradient descent, a cross-entropy loss function, and repeat the experiment
5 times. Figure 1 displays the IP of the MLP with a ReLU activation function in each hidden
layer. MI was measured using the training data of the MNIST dataset. A similar experiment
was performed with the tanh activation function, obtaining similar results. The interested
reader can find these results in Appendix E.

From Figure 1, one can clearly observe a fitting phase, where both I(T; X) and I(Y; T)
increase rapidly, followed by a compression phase where I(T; X) decrease and I(Y; T)
remains unchanged. In addition, note that I(Y; T) for the output layer (layer 5 in Figure 1)
stabilizes at an approximate value of log2(10). The following analysis shows that this is to
be expected. When the network achieves approximately 100% accuracy, I(Y; Ŷ) ≈ S(Y),
where Ŷ denotes the output of the network, since Y and Ŷ will be approximately identical
and the MI between a variable and itself is just the entropy of the variable. The entropy
of Y is measured using Equation (10), which requires the computation of the eigenvalues
of the label kernel matrix 1

N Ky. For the ideal case, where (Ky)ij = 1 if yi = yj and zero
otherwise, Ky is a rank K matrix, where K is the number of classes in the data. Thus, 1

N Ky

has K non-zero eigenvalues which are given by λk(
1
N Ky) =

1
N λk(Ky) =

Nck
N , where Nck is

the number of datapoints in class k, k = 1, 2, . . . , K. Furthermore, if the dataset is balanced,
we have Nc1 = Nc2 = . . . = NcK ≡ Nc. Then, λk

(
1
N Ky

)
= Nc

N = 1
K , which gives us the

entropy measure

S
(

1
N

Ky

)
= −

K

∑
k=1

λk

(
1
N

Ky

)
log2

[
λk

(
1
N

Ky

)]

= −
K

∑
k=1

1
K

log2

[
1
K

]
= log2[K].

(20)

Next, we examine the IP of a CNN, similar to that studied by [4], with a similar
experimental setup as for the MLP experiment. Figure 4 displays the IP of the CNN with
a ReLU activation function in all hidden layers. A similar experiment was conducted
using the tanh activation function and can be found in Appendix F. While the output layer
behaves similarly to that of the MLP, the preceding layers show much less movement. In
particular, no fitting phase is observed, which we hypothesize is a result of the convolutional
layers being able to extract the necessary information in very few iterations. Note that the
output layer is again settling at the expected value of log2(10), similar to the MLP, as it also
achieves close to 100% accuracy.

Increasing DNN size We analyze the IP of the VGG16 network on the CIFAR-10
dataset with the same experimental setup as in the previous experiments. To our knowledge,
this is the first time that the full IP has been modeled for such a large-scale network.
Figures 5 and 6 show the IP when measuring the MI for the training dataset and the test
dataset, respectively. For the training dataset, we can clearly observe the same trend as for
the smaller networks, where layers experience a fitting phase during the early stages of
training and a compression phase in the later stage. Note that the compression phase is
less prominent for the testing dataset. Note also the difference between the final values of
I(Y; T) for the output layer measured using the training and test data, which is a result
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of the different accuracy achieved on the training data (≈100%) and test data (≈90%).
Ref. [3] claims that I(T; X) ≈ H(X) and I(Y; T) ≈ H(Y) for high-dimensional data, and
they highlight particular difficulties with measuring the MI between convolutional layers
and the input/output. However, this statement is dependent on their particular measure
for the MI, and the results presented in Figure 5 and 6 demonstrate that neither I(T; X)
nor I(Y; T) is deterministic for our proposed measure. Furthermore, other measures of
MI have also demonstrated that both I(T; X) ≈ H(X) and I(Y; T) ≈ H(Y) evolve during
training [4,18].

Another type of widely used DNNs is residual networks [37]. While these networks
typically have less parameters than the VGG16, they usually have more layers. This increase
in the number of layers is enabled by skip-connections that allow data to flow through the
network without loss of information. This complicates the information theoretic analysis,
as the dynamics between the layers change and information do not need to decrease in
between the layers. While our proposed estimator is computationally capable of handling
residual networks, an extensive analysis would be required to understand the added
complexity that is introduced by the lossless flow of information in these networks. We
consider such an analysis as outside the scope of this paper but an interesting avenue of
future research.

Figure 4. IP of a CNN consisting of three convolutional layers with 4, 8 and 12 filters and one fully
connected layer with 256 neurons and a ReLU activation function in each hidden layer. MI was
measured using the training data of the MNIST dataset and averaged over 5 runs.

Figure 5. IP of the VGG16 on the CIFAR-10 dataset. MI was measured using the training data and
averaged over 2 runs. Color saturation increases as training progresses. Both the fitting phase and
the compression phase is clearly visible for several layers.
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Figure 6. IP of the VGG16 on the CIFAR-10 dataset. MI was measured using the test data and
averaged over 2 runs. Color saturation increases as training progresses. The fitting phase is clearly
visible, while the compression phase can only be seen in the output layer.

Effect of early stopping We also investigate the effect of using early stopping on the
IP described above. Early stopping is a regularization technique where the validation
accuracy is monitored and training is stopped if the validation accuracy does not increase
for a set number of iterations, which is often referred to as the patience hyperparameter.
Figure 1 displays the results of monitoring where the training would stop if the early
stopping procedure was applied for different values of patience. For a patience of five
iterations, the network training would stop before the compression phase takes place for
several of the layers. For larger patience values, the effects of the compression phase can
be observed before training is stopped. Early stopping is a procedure intended to prevent
the network from overfitting, which may imply that the compression phase observed in
the IP of DNNs can be related to overfitting. However, recent research on the so-called
double descent phenomenon has shown that longer training might be necessary for good
performance for overparameterized DNNs [38,39]. In such settings, early stopping might
not be as applicable. We describe the double descent phenomenon and investigate its
possible connection with the IP in Appendix H.

Data processing inequality The data processing inequality (DPI) is a concept in infor-
mation theory which states that the amount of information cannot increase in a chain of
transformations. A good information theoretic estimator should tend to uphold the DPI.
DNN consists of a chain of mappings from the input through the hidden layers and to
the output. One can interpret a DNN as a Markov chain [1,7] that defines an information
path [1], which should satisfy the DPI [40]:

I(X; T1) ≥ I(X; T2) ≥ . . . ≥ I(X; TL), (21)

where L is the number of layers in the network. An indication of a good MI measure is
that it tends to uphold the DPI. Figure 7 illustrates the mean difference in MI between
two subsequent layers in the MLP and VGG16 networks. Positive numbers indicate that
MI decreases, thus indicating compliance with the DPI. We observe that our measure
complies with the DPI for all layers in the MLP and all except one in the VGG16 network.
Furthermore, we also model the DPI for a simple MLP using the EDGE MI estimator, which
has shown encouraging results on several MI estimation tasks [4]. The DPI for the EDGE
estimator is shown in Figure A4 of Appendix G, which shows that the EDGE estimator
also upholds the DPI. This agrees with our results with regard to the information flow in
neural networks. However, a limitation of the EDGE estimator is that it is not differentiable,
which can be beneficial if MI estimates are to be included in the training [41].
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Figure 7. Mean difference in MI of subsequent layers ` and ` + 1. Positive numbers indicate
compliance with the DPI. MI was measured on the MNIST training set for the MLP and on the
CIFAR-10 training set for the VGG16.

5. Kernel Width Sigma

We further evaluate our dynamic approach of finding the kernel width σ. Figure 8
shows the variation of σ in each layer for the MLP, the small CNN and the VGG16 net-
work. We observe that the optimal kernel width for each layer (based on the criterion in
Section 3.4.1) stabilizes reasonably quickly and remains relatively constant during training.
This illustrates that decreasing the sampling range is a useful approach to decreasing
computational complexity.

Figure 8. Evolution of kernel width as a function of iteration for the three networks that we considered
in this work. From left to right, plots shows the kernel width for the MLP, CNN, and VGG16. The plots
demonstrate how the optimal kernel width quickly stabilizes and stays relatively stable throughout
the training.

6. Discussion and Conclusions

In this work, we propose a novel framework for analyzing DNNs from an information
theoretic perspective using a tensor-based measure of the matrix-based approach of [12].
Our experiments illustrate that the proposed approach scales to large DNNs, which allows
us to provide insights into the training dynamics. We observe that the compression phase in
neural network training tends to be more prominent when MI is measured on the training
set and that commonly used early-stopping criteria tend to stop training before or at the
onset of the compression phase. This could imply that the compression phase is linked to
overfitting. However, recent research on the double descent phenomenon has shown that
a longer training time might be beneficial for generalization [38,39]. In Appendix H, we
perform a preliminary study that examines a potential connection between the compression
phase and the recent epoch-wise double descent phenomenon. Furthermore, we showed
that for our tensor-based approach, the claim that H(X) ≈ I(T; X) and H(Y) ≈ I(T; Y)
does not hold. We believe that our proposed approach can provide new insight and
facilitate a more theoretical understanding of DNNs.
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Appendix A. Preliminaries on Multivariate Matrix-Based Renyi’s
Alpha-Entropy Functionals

The matrix-based Rényi’s α-order entropy functional is not suitable for estimating the
amount of information of the features produced by a convolutional layer in a DNN as the
output consists of C feature maps, each represented by their own matrix, that characterize
different properties of the same sample. Ref. [20] proposed a multivariate extension of
the matrix-based Rényi’s α-order entropy, which computes the joint entropy among C
variables as

Sα(A1, . . . , AC) = Sα

( A1 ◦ . . . ◦AC
tr(A1 ◦ . . . ◦AC)

)
, (A1)

where

(A1)ij = κ1(x
(1)
i , x(1)j ), ..., (AC)ij = κC(x

(C)
i , x(C)j ). (A2)

Ref. [6] also demonstrated how Equation (A1) could be utilized for analyzing the
synergy and redundancy of convolutional layers in DNN, but they noted that this formu-
lation can encounter difficulties when the number of feature maps increases, such as in
more complex CNNs. Difficulties arise due to the Hadamard products in Equation (A1),
given that each element of Ac, c ∈ {1, 2, . . . , C} takes on a value between 0 and 1

N , and the
product of C such elements thus tends toward 0 as C grows.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure A1. Different approaches for calculating kernels based on tensor data. The first row shows
results when using the multivariate approach of [20], the second row depicts the tensor kernel
approach used in this paper, and the third row displays the kernel obtained using matricization-based
tensor kernels [32] that preserve the structure between channels. Bright colors indicate high values,
while dark values indicate low values in all the kernel matrices.

Appendix B. Tensor-Based Approach Contains Multivariate Approach as Special Case

Let xi(`) ∈ RHWC denote the vector representation of data point i in layer ` and let
x(c)i (`) ∈ RHW denote its representation produced by filter c. In the following, we omit the
layer index for ease of notation but assume it is fixed. Consider the case when κc(·, ·) is an

RBF kernel with kernel width parameter σc. That is, κc(x
(c)
i , x(c)j ) = e

− 1
σ2

c
‖x(c)i −x(c)j ‖

2

. In this

case, Ac =
1
N Kc and

A1 ◦ . . . ◦AC
tr(A1 ◦ . . . ◦AC)

=
1
N K1 ◦ . . . ◦ 1

N KC

tr( 1
N K1 ◦ . . . ◦ 1

N KC)

=
1
N

K1 ◦ . . . ◦KC,

(A3)

since tr(K1 ◦ . . . ◦KC) = N. Thus, element (i, j) is given by(
A1 ◦ . . . ◦AC

tr(A1 ◦ . . . ◦AC)

)
ij
=

1
N

C

∏
c=1

(Kc)ij

=
1
N

e
−∑C

c=1
1

σ2
c
‖x(c)i −x(c)j ‖

2

.

(A4)

If we let σ = σ1 = σ2 = . . . = σC, this expression is reduced to

1
N

e−
1

σ2 ∑C
c=1 ‖x

(c)
i −x(c)j ‖

2
=

1
N

e−
1

σ2 ‖xi−xj‖2

=
1
N

κten(Xi,Xj).
(A5)

Accordingly, Sα(Aten) = Sα(A1, . . . , AC), implying that the tensor method is equivalent
to the multivariate matrix-based joint entropy when the width parameter is equal within
a given layer, assuming an RBF kernel is used. However, the tensor-based approach
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eliminates the effect of numerical instabilities one encounters in layers with many filters,
thereby enabling the training of complex neural networks.

Figure A2. IP of an MLP consisting of four fully connected layers with 1024, 20, 20, and 20 neurons
and a tanh activation function in each hidden layer. MI was measured using the training data of the
MNIST dataset and averaged over 5 runs.

Figure A3. IP of a CNN consisting of three convolutional layers with 4, 8 and 12 filters and one
fully connected layer with 256 neurons and a tanh activation function in each hidden layer. MI was
measured using the training data of the MNIST dataset and averaged over 5 runs.

Appendix C. Structure Preserving Tensor Kernels and Numerical Instability of
Multivariate Approach

As explained in Appendix A, the multivariate approach of [20] Equation (A1) struggles
when the number of channels in an image tensor becomes large as a result of the Hadamard
products in Equation (A1). To illustrate this instability, we have conducted a simple
example. A subset of 50 samples is extracted from the MNIST dataset. Then, each image
is duplicated (plus some noise) C times along the channel dimension of the same image,
i.e., going from a grayscale image of size (1, 1, 28, 28) to a new image of size (1, C, 28, 28).
Since the same image is added along the channel dimension, the kernel matrix should
not change dramatically. Figure A1 displays the results of the experiment just described.
The first row of Figure A1 shows the kernel matrices based on the multivariate approach
proposed by [20]. When the tensor data only have one channel (first column), the kernel
obtained is identical to the results obtained using the tensor kernel described in this paper.
However, as the number of channels increases, the off-diagonal quickly vanishes and the
kernel matrix tends toward a diagonal matrix. This is a result of vanishing Hadamard
products, as described in Appendix A. Theoretically, the multivariate approach should
yield the same kernel as with the tensor kernel approach, as explained in Section 3.3, but
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the off-diagonal elements decrease so quickly that they fall outside numerical precision.
The second row of Figure A1 depicts the kernel matrices obtained using the tensor kernel
approach described in Section 3.3. The kernel matrices in this row are almost unchanged
as the number of channels increases, which is to be expected. Since the same image is
added along the channel dimension, the similarity between the samples should not change
drastically, which is what this row demonstrates. The third row of Figure A1 displays the
kernel matrices obtained using so-called matricization-based tensor kernels [32], which
are tensor kernels that preserve structure between the channels of the tensor. In this case,
this approach produces similar results to the tensor kernel used in this paper, which is to
be expected. Since the same image is added along the channel dimension, there is little
information to extract between the channels. We hypothesize that for small images with
centered objects, such as with MNIST and CIFAR10, the structured tensor kernel does not
capture much more information than the tensor kernel described in Section 3.3. However,
for more complex tensor data, exploring the potential of such structure-preserving tensor
kernels is an interesting avenue for future studies.

Appendix D. Detailed Description of Networks from Section 4

We provide a detailed description of the architectures utilized in Section 4 of the main
paper. Weights were initialized according to [42] when the ReLU activation function was
applied and initialized according to [43] for the experiments conducted using the tanh
activation function. Biases were initialized as zeros for all networks. A learning rate of 0.09
was used for the gradient descent algorithm. All networks were implemented using the
deep learning framework Pytorch [44].

Appendix D.1. Multilayer Perceptron Used in Section 4

The MLP architecture used in our experiments is inspired by the architecture utilized
in previous studies on the IP of DNN [4,5] but with batch normalization [45] included after
the activation function of each hidden layer and an extra hidden layer. Specifically, the
MLP in Section 5 includes (from input to output) the following components:

1. Fully connected layer with 784 inputs and 1024 outputs.
2. Activation function.
3. Batch normalization layer.
4. Fully connected layer with 1024 inputs and 20 outputs.
5. Activation function.
6. Batch normalization layer.
7. Fully connected layer with 20 inputs and 20 outputs.
8. Activation function.
9. Batch normalization layer.
10. Fully connected layer with 20 inputs and 20 outputs.
11. Activation function.
12. Batch normalization layer.
13. Fully connected layer with 784 inputs and 10 outputs.
14. Softmax activation function.

Appendix D.2. Convolutional Neural Network Used in Section 4

The CNN architecture in our experiments is a similar architecture to the one used
by [4]. Specifically, the CNN in Section 5 includes (from input to output) the following
components:

1. Convolutional layer with 1 input channel and 4 filters, filter size 3× 3, stride of 1 and
no padding.

2. Activation function.
3. Batch normalization layer.
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4. Convolutional layer with 4 input channels and 8 filters, filter size 3× 3, stride of 1 and
no padding.

5. Activation function.
6. Batch normalization layer.
7. Max pooling layer with filter size 2× 2, stride of 2 and no padding.
8. Convolutional layer with 8 input channels and 16 filters, filter size 3× 3, stride of 1

and no padding.
9. Activation function.
10. Batch normalization layer.
11. Max pooling layer with filter size 2× 2, stride of 2 and no padding.
12. Fully connected layer with 400 inputs and 256 outputs.
13. Activation function.
14. Batch normalization layer.
15. Fully connected layer with 256 inputs and 10 outputs.
16. Softmax activation function.

Appendix E. IP of MLP with Tanh Activation Function from Section 4

Figure A2 displays the IP of the MLP described above with a tanh activation function
applied in each hidden layer. Similarly to the ReLU experiment in the main paper, a fitting
phase is observed, where both I(T; X) and I(Y; T) increase rapidly, which is followed
by a compression phase where I(T; X) decreases and I(Y; T) remains unchanged. In
addition, note that similar to the ReLU experiment, I(Y; T) stabilizes close to the theoretical
maximum value of log2(10).

Appendix F. IP of CNN with Tanh Activation Function from Section 4

Figure A3 displays the IP of the CNN described above with a tanh activation function
applied in each hidden layer. Just as for the CNN experiment with the ReLU activation
function in the main paper, no fitting phase is observed for the majority of the layers, which
might indicate that the convolutional layers can extract the essential information after only
a few iterations.

Appendix G. Data Processing Inequality with EDGE MI Estimator

Figure A4 displays the DPI of a simple MLP using the EDGE estimator as described
by [4]. Results indicate that the EDGE estimator upholds the DPI. This agrees with our
results with regard to the information flow in neural networks.

Figure A4. Mean difference in MI of subsequent layers ` and ` + 1. Positive numbers indicate
compliance with the DPI. MI was measured on the MNIST training using the EDGE MI estimator on
a simple MLP [4].
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Appendix H. Connection with Epoch-Wise Double Descent

One of the fundamental questions of deep learning is how heavily overparameterized
models generalize well to unseen data. Recent studies have empirically demonstrated that
having many more parameters than training points can be beneficial for generalization,
which have been analyzed from the perspective of the double descent phenomenon [38,39].
The double descent phenomenon was proposed to qualitatively describe the behavior
of complex models when the number of parameters is much larger than the number
of samples, which is the heavily overparametrized regime that DNNs often operate in.
Moreover, ref. [39] showed that overparametrized models can also exhibit epoch-wise
double descent. Epoch-wise double descent refers to a phenomenon where the test error
initially decreases and then increases before finally decreasing again and stabilizing. Such
a behavior bears resemblance to the information flow discussed in this paper, where the
information initially increases before decreasing.

To investigate the potential connection between our information theoretic analysis
of DNNs and the epoch-wise double descent phenomenon, we train a heavily over-
parametrized neural network on a subset of the MNIST dataset (10,000 samples) inspired
by [38]. The overparametrized network consists of one hidden layer and the output layer,
where the hidden layer contains 50,000 neurons with a ReLU activation function. The
training and analysis of this network is carried out in a similar manner as all the other
reported experiments. Figure A5 displays training and test loss together with the MI
between the input and each layer of the network. First, notice that the epoch-wise double
descent phenomenon is clearly visible, as the test loss initially decreases, which is followed
by an increase, and toward the end, there is another period of decrease. Simultaneously,
the start of compression in MI(X, Ŷ) seems to coincide with the increase of the test loss,
and it ends when the test loss stabilizes after going down again. These results suggests
that there might be a link with the compression phase of DNNs and the epoch-wise double
descent phenomenon, and that information theory can be used to gain new insights into
the generalization capabilities of DNNs.

Figure A5. Training and test loss of neural network with one hidden layer with 50,000 neurons
on a subset of the MNIST dataset. The figure also shows the MI between the input/labels and the
hidden/output layer. The epoch-wise double descent phenomenon is visible in the test loss, and it
seems to coincide with the start of the compression of MI between the input and output layer. Notice
the different labels on the left and right y-axis. Curves represent the average over 3 training runs.
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