
A logic-based event controller for
means-end reasoning in simulation
environments
(accepted version of https://doi.org/10.1177/00375497231157384. Reuse is restricted

to non-commercial and no derivative uses)

Simulation
XX(X):1–34
©The Author(s) 2022
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Audun Stolpe1, Ivar Rummelhoff1 and Jo Erskine Hannay2

Abstract
Simulation games are designed to cultivate expertise and rehearse particular skill sets. In order to yield
longitudinal effects, sequences of events must be crafted to yield intended learning outcomes, sometimes by
focusing on particularly difficult situations and replaying variants. The present paper develops a logic-based
approach for encoding the interrelation between action, events and objects in a manner that allows the resulting
scenario description to immediately be executed in a game development environment. This has the dual effect
of decoupling the description of a scenario from the simulation platform itself, as well as supporting iterative
and flexible development of learning content. To this end, we provide three interrelated components: First, we
develop a scenario description language based on Answer Set Programming. The language is designed to allow
an automated reasoner to deduce a schedule of the future events that are caused by an action taken in a given
simulation environment. Secondly, we define a protocol for exchanging actions and computed futures between,
respectively, the simulation environment and the external automated reasoner. Finally, as a proof of concept, we
develop an API for the Unity Real-Time Development Platform that implements the protocol and offers a software
framework for for connecting the computed future events to concrete game objects. This allows the game to
evolve coherently from the specification. We argue that the resulting system inherits capabilities for artificial
commonsense reasoning from its declarative basis which are useful for reasoning about an evolving emergency
incident or training scenario.

Keywords
Simulation event controller, Scenario specification, Automated reasoning, Serious gaming.

1Norwegian Computing Center, Norway
2Center for Effective Digitalization of the Public Sector, Simula
Metropolitan, Oslo, Norway

Corresponding author:
Audun Stolpe, The Norwegian Computing Center, Pb. 114 Blindern,
NO-0314, Norway. Phone: +47 22852554.
Email: audun.stolpe@nr.no

1 Introduction

Serious games for emergency preparedness are designed
to cultivate and nurture the areas of expertise that
are required for efficiently responding to incidents and
crises. Examples include games for medical training,
information security and cyber defence, and, more
generally, for civilian and military exigencies. Such
games typically target skills in mission planning,

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Simulation XX(X)

operations support and analysis. Common to all, they are
designed to simulate real-world processes and protocols,
usually with a carefully regimented story in mind.

In order to guide the unfolding of the story towards
its intended purposes and desired learning objectives,
a serious game should be based on the concept of
deliberate practice.1 That is, it should offer targeted and
task-centered training based on instructions, including
sequences of events crafted to enhance personalized
learning – e.g. by focusing on particularly difficult
situations, by immediate replays of situations and by
immediate constructive feedback from the environment.
That this is non-trivial is perhaps witnessed by the fact
that simulation-based training often lacks precisely this
form of deliberate scenario design.2

What is called for is a global view of a simulation
scenario and its inherent narrative possibilities broken
down into its causal chains and the courses of
action that are supported by the corresponding means-
end relationships.3 The specification of the simulation
scenario should, moreover, be executable, but at the same
time sufficiently abstract and conceptual to move the
domain-specific aspects of implementing the scenario
from the programmer towards the workflow of the
subject-matter expert.

Model-driven frameworks have been proposed that
fit part of this bill. In particular, they usually offer
an abstract view of simulations, focusing effort on the
conceptual representation of the knowledge and activities
that govern a particular application domain. The most
widely disseminated and studied example of this is the
Discrete Event System Specification (DEVS) of Zeigler
et al.4 which is based on automata theory with mixed-in
features from process modelling and object orientation. In
DEVS a simulation is modelled as either a discrete event
system described by a state transition table, a continuous
state system, described by as set of differential equations,
or as a mixture of the two.

Without disputing the merits of DEVS, or of model
driven development more generally, the present paper
wishes to draw attention to the relative advantages of
a logic-based approach. On the logic-based approach, a
simulation scenario is a calculus of actions and events
that describe the effects of actions and the interaction
between objects in space and time, and hence implicitly
all possible evolutions. In line with established practice

we shall refer to such a calculus as an action description
or a causal theory.5–9 The two terms will be used
interchangeably to emphasise different aspects – the
agentive and the causal respectively – depending on the
surrounding discussion.

The principal advantages of the logic-based approach
can be summed up in four points: First, event
calculi/causal theories are rooted in a long tradition
in declarative artificial intelligence known as default
reasoning10,11 or qualitative uncertain inference.12

Default reasoning is the process of drawing conclusions
on the basis of what is true in typical cases, thereby also
allowing inferences to be altered or retracted should the
situation turn into to an exceptional one. This is a pattern
that fits well with reasoning about cause and effect in
general, and thus with the evolution of an emergency
incident in particular. For example, in a workplace
emergency an incident commander would typically
evacuate people through the designated emergency exits.
But not in the event, say, that the doors remain locked
or that the exit access is blocked by fire or smoke. More
examples are provided in Section 9.

Secondly, we will show that an interesting and useful
range of such causal rules can be expressed in a simple,
fully declarative rule language. Declarativeness empow-
ers the scenario designer to focus exclusively on describ-
ing what happens when without concerning himself with
how those events are to be executed. Accordingly, sce-
nario design becomes neither a software development nor
a systems engineering problem, but rather a specification
task: write rules not processes.* Moreover, this prop-
erty aligns the logic-based approach with model-driven
approaches in that the model/specification becomes an
independent asset decoupled from the simulation environ-
ment itself. The conceptual issues involved in designing a
useful training scenario are separated from the program-
ming logic required to execute it.

∗Granted, domain experts should perhaps not be burdened with knowing
how to express themselves directly in the syntax we are proposing, so the
underlying assumption here is that they will be presented with some sort
of user-friendly interface to assists in composing complex rules from
simple building blocks. A candidate would be BlawX,† a web-based,
visual development environment based on Google’s Blockly. Our action
description language can easily be implemented in BlawX.

Prepared using sagej.cls

3

Thirdly, when cast as a causal theory, in the cur-
rent technical sense of the term, a scenario description
becomes a mathematically well-defined object – ulti-
mately a formula of first-order logic – itself amenable to
logical analysis. Thus, a number of interesting mathemat-
ical questions arise already in the meta-theory about the
causal theory. An example is the precise conditions under
which a causal theory predicts a unique future of events as
the causal consequences of a single action. As explained
in Section 8 this is a necessary condition for a simulation
scenario to evolve predictably as per the decisions of the
designer.

With the aim of leveraging these advantages into
modelling and simulation, the present paper develops an
approach designed to employ a logical description of
a training scenario as an executable specification that
drives the evolution of a simulation scenario. The idea
is to use an off-the-shelf automated reasoning engine as
an external event controller by having the simulation
environment call back to it and query the scenario
specification for the default future of events given the
actions that have been performed in the simulation.

We carry out this program in three steps, that also
represent the novel contributions of this paper: first, we
develop an action description language called ALID.
It is implemented as domain specific language based on
answer set programming,6,8,13 a declarative programming
language that supports default reasoning. ALID is
a generalization of the simpler language AL5,6 that
introduces two new features: first, ALID has durative
actions and events. Secondly,ALID introduces a concept
of inferred time, meaning that the timeline of the default
future is derived from the time indices of the actions that
have been performed in the simulation environment. This
is essential for aligning the computed schedule with the
simulation’s timeline, ensuring that events scheduled for
execution in the simulation environment are plotted on the
simulation’s clock.

In the second step, we define a stateless protocol for
exchanging information between a reasoning engine and
a simulation platform. This protocol is quite abstract, and
can act as an interface between any system that emits
actions and consumes a schedule of future events, on the
one hand, and a system that consumes actions and emits a
schedule on the other.

In the third step we implement the proposed protocol
in a piece of software we refer to as the ScenarioEngine
simulation event controller. It was developed as a proof of
concept specifically for the Clingo‡ answer set solver and
the Unity Real-Time Development Platform.§

The present paper is meant to be a foundational study.
Many important practical topics are put to one side
for now. For instance, we only consider single-player
scenarios, and we do not consider optimizations such
as asynchronous execution of time-consuming reasoning
tasks. Also, empirical user-facing studies are postponed to
future work.

The paper is organized as follows: Section 2 gives
an overview of related work. Section 3 offers a brief
introduction to answer set programming and the stable
model semantics. In Section 4, the general concept of
a causal theory is explained, and a running example is
introduced. Section 5 presents the, for our work seminal,
action description language AL, and argues that it is not
sufficiently expressive for our purposes. Requirements
for a more expressive language are formulated in
Section 6 through the description of a stateless protocol
for communication between a reasoning engine and a
simulation platform. This leads to the definition of the
language ALID in Section 7. Section 8 contains a
brief statement and discussion of the aforementioned
property of determinism. A rigorous formal proof is
relegated to the appendix. Turning to more practical
matters, we elaborate on the running example in Section 9
as an illustration of how to use ALID to represent
and reason about the different events and the possible
lines of evolution that a scenario presents. In Section 10
we describe a C# implementation of the protocol from
Section 6 for Unity and the answer set solver Clingo.
We take stock and discuss some possible lines of further
research in Section 11.

2 Related work
The present research develops a logic-based approach
for specifying and controlling the overall causality and
means-end reasoning of a simulation scenario. Several

‡https://potassco.org/clingo/
§https://unity.com/

Prepared using sagej.cls

https://unity.com/

4 Simulation XX(X)

other approaches relate to our work, and we briefly
discuss their viability for the objectives we have set for
ourselves.

Viewed in the abstract, the principal theme of the
present paper is that of modelling a simulation scenario
as causal means-ends reasoning process. This scenario
concept was first proposed in a paper published in the
Simulation journal in 2022.14 Here, causal theories are
used for assessing the relative merits of different courses
of action a trainee might pursue in his efforts to contain a
situation. The causal theory is used to reason backwards
from a goal to the various ways of achieving it. Each
course of action that accomplishes the goal is assigned
a score that reflects the quality of the trainee’s decision
making and instrumental reasoning. In the present paper,
in contrast, the process is turned around; we reason
forwards from actions to the future state of affairs caused
by them.

There are several non-logical formalisms on offer
with a proven track record in simulation modelling.
The Discrete Event System Specification (DEVS)4 is a
prominent representative for this group. It is a formalism
for modelling and analyzing hybrid continuous state
and discrete event systems. An algorithm for executing
a DEVS specification was proposed in the Simulation
journal in 1987.15 Since then, many extensions and
variants have been explored, for instance P-DEVS16 for
simulation of parallel processes and RT-DEVS17 for
realtime simulation. A DEVS specification is expressed
in a set-theoretical language that fits the general structure
of deterministic, causal systems in classical systems
theory.18 This set-theoretical foundation has many
advantages. To mention but one, mathematical functions
of any kind, for instance differential equations, can
without further ado be incorporated into the framework
to describe the evolution of simulation state.

One property of our logic-based approach that
contrasts favourably with DEVS, is that it furnishes
the specification language with a well-studied8,19–21

formal model theory that induces a concept of logical
consequence: A statement follows from a specification
if it is true in all models of that specification. In logic-
based systems generally, logical consequence forms the
basis for query answering understood as precise request
for information made to a database or information system.
Indeed, the central topic of the present paper of predicting

futures from a causal theory is an example of query
answering. Another example would be to retrieve the
previously mentioned courses of action that accomplish a
given goal.14 It should be emphasized, though, that model
theory is not necessarily a hard line between DEVS and
logic-based approaches. It has been shown that DEVS can
be given a formal semantics in terms of temporal logic.22

That line of research does not appear to be a very active
or developed area at the time of writing, however.

Conversely, DEVS has many interesting features that a
logic-based approach based on answer set programming
would struggle with. For instance, DEVS, through its
internal transition functions, can apply any mathematical
function, including real-valued functions of real variables,
to the transformation of a state. Currently, most
implementations of answer set programming only offer
integers, though external functions defined in Python or
Lua can be called to compute a value. An exception is
the language s(CASP),23 which is essentially Prolog with
answer set semantics. As a dialect of Prolog, s(CASP)
inherits floating point numbers from it. Programming in
s(CASP) is rather different from answer set programming,
however, and a closer comparison must be left for another
occasion.

Beyond DEVS there are semi-formal specification
frameworks such as the high-level architecture (HLA),
which is an object model-based simulation protocol
standard24 that can be implemented in various simulation
frameworks and platforms. HLA is associated with an
abstract specification format called the Base Object
Model (BOM) format,25 and more expressive abstractions
have been proposed in the form of ontology-based
semantic extensions to the BOM format.26 Such
ontologies are currently under development for both
military and civilian domains,27–31 where they are also
studied as prerequisites for the MSaaS vision.32 33 To
enable exercise managers, who may be non-technical
experts, to compose simulations from simulation services,
the services must have semantic and abstract non-
technical, but machine-readable, service descriptions.34,35

All this is for the rapid composition of object simulations
and their interactions across various simulation platforms.

The field of formal specification and verification, also
deserves to be mentioned under the rubric of related
work, and the question arises as to whether any of its
methods apply to our discussion. Traditionally, these

Prepared using sagej.cls

5

methods apply, in some way or another, to deriving
correct programs from formal specifications via provable
stepwise refinement. This is principally different from the
present focus which is to specify scenarios and employ
causal reasoning about them (and not the programs
implementing them). However, there are also underlying
similarities that are worth investigating at a later stage,
and the satisfiability modulo theories (SMT) formalism,
which has greater expressiveness than ASP, has been
used in conjunction with stepwise refinement for B
specifications.36–38

Since our scenario specification concept is based on
declarative logic, it is independent of any particular sim-
ulation platform. Platform and implementation indepen-
dence is a major concern in the modelling and simulation
community, and is essential when combining several
distributed simulations in a shared so-called Life, Virtual,
Constructive (LVC) environment.39,40 Various players on
various simulation systems can play in person (with
instrumentation) or move entities around either as first
person players or as leaders of semi-automated entity
aggregates. The HLA and BOM format mentioned above
are central to this (with the already-mentioned limita-
tions).

On the simulation platform side, software frameworks
such as VR-Forces, Virtual Battle Space (VBS), Calytrix,
MASA Sword and others, support the declaration and
development of highly realistic domain-specific object
behaviour and -interactions.¶ Although there is support
in these frameworks for scripting sequences of events,
and even for expressing such scripts in terms of high-
level and low-level operational commands,44 there is no
inherent notion of causality and means-end relationships.
Hence there is no principled way to reason about the set
of possible evolutions of a scenario as a function of the
possible outcomes of actions.

Finally, the idea of factoring out the logic of a game to
an answer set program is not in itself a novel one. The
ThinkEngine45|| is a framework for integrating an ASP
solver into Unity games, much like our scenario event
controller. The main difference is that ThinkEngine is a

¶Viable technologies for emulating such behaviour include agent-based
models 41, multi-agent systems 42 and probabilistic action networks 43

‖https://github.com/DeMaCS-UNICAL/ThinkEngine

generic framework for delegating reasoning tasks to ASP,
whereas our event controller is specific for the domain
of causal reasoning. Our ScenarioEngine was designed
specifically for supporting an exchange of actions for
schedules of future events that inform the evolution of
the simulation over time, see Section 6. As a domain
specific piece of software the ScenarioEngine can assume
much more about the relationships between the ASP code
and the C# Unity environment. For instance, it is able to
autogenerate an API for any given scenario description
expressed as a causal theory, see Section 10. Moreover,
ThinkEngine uses the generic EmbASP46 framework as
its interface to the answer set solver. We chose instead
to use the Clingo C API, producing code that is both
smaller, faster and (in our experience) easier to integrate
with Unity in an OS-independent way. For this, we drew
some inspiration from an existing library called clingo-
cs.47

3 Answer set programming
Answer set programming (ASP)13,48,49 is a language
for knowledge representation and reasoning based on
the answer set semantics of logic programs. As a
member of the logic programming family of languages,
an answer set program describes a problem with if-then
rules of first-order logic, suitably restricted to ensure
desirable computational properties. Other major logic
programming languages include Prolog and Datalog.

Prolog and its dialect are languages based on
unification, which is the algorithmic process of solving
equations between symbolic expressions by searching
for values to substitute for the variables in a rule. The
computational process in ASP is quite different and
involves two separate steps: first the program is grounded,
which means that variables are systematically replaced
in all rules in all possible ways to yield a variable free
propositional program. Next, the propositional program
is solved by generating all models that satisfy the rules.
Hence, whereas languages based on unification searches
for variable substitutions constrained by the set of rules
of the program, ASP programs are solved by computing
models represented as complete sets of true facts. Solving
a computational problem in ASP thus means computing
the models that satisfy the description of the problem as
expressed by the rules of the program.

Prepared using sagej.cls

6 Simulation XX(X)

Anticipating subsequent sections of this paper, a logic
program in the present paper will always be a description
of a training scenario (a causal theory). The satisfying
models will be sequences, or schedules as we shall call
them, of events that follow logically from that scenario
and a set of actions.

A lauded feature of ASP is that it achieves full
declarativeness, meaning that the programmer does not
need to give instructions on how to generate satisfying
models. The actual computation of models is instead
delegated to a generic answer set solver, which is usually
a suitably modified satisfiability solver for classical first-
order logic. This separation of the description, or the
what, of a computational problem from the how of solving
it is epitomized by Kowalski’s famous motto Algorithm
= Logic + Control.50 Different logic programming
languages have lived up to it to varying degrees.

The semantics of an answer set program is defined
in terms of a carefully selected set of models that
provides a declarative semantics for logic programs with
negation as failure. This is the subset of the classical
first-order models of the program known as its answer
sets or stable models. Negation as failure is the inference
pattern Kowalski describes as “the derivation of negative
conclusions from the lack of positive information”.51

It is crucial for the present paper insofar as it can be
used to express default reasoning. As explained in the
introduction, default reasoning is the process of drawing
conclusions on the basis of what one would reasonably
assume to be true if nothing indicates otherwise. In
colloqial language, it stands for our commonsense habit
of jumping to plausible conclusions in the absence of
evidence to the contrary, knowing that these conclusions
may be rendered invalid by new information.

The present section recapitulates the essentials
of the answer set semantics as first formulated
in.48 The interested reader should consult the list of
references.6,8,19,21

The signature σ of an answer set program consists
of variables, object names (also known as constants or
object constants), function symbols, predicate symbols
and logical connectives. The convention is that variable
symbols are arbitrary strings of letters and numbers that
start with an upper-case letter, while constants, predicate
symbols and function symbols are strings that start with a

lower-case letter. Object and function constants are used
to construct terms, which are defined inductively in the
usual manner:

Definition 1. Term.

1. A variable X is a term.

2. A constant is a term.

3. f(t1, . . . , tn) is a term whenever f is an n-ary
function symbol and t1, . . . , tn are terms.

A term is ground if it contains no variable symbols. An
atom is either the boolean constants or >, or a formula
p(t1, . . . , tn) where t1, . . . , tn are terms. The set of atoms
over a signature σ will be denoted A – the signature
being left implicit. If each term ti is ground, then the
atom is ground. A literal, denoted l, li, . . . is an atom or a
literal prepended either by strong negation ¬ or by weak
negation ‘not‘ aka. negation as failure. A set of literals
is consistent if it does not contain a complementary pair
l,¬l of literals.

When Γ is an ASP program, lit(Γ) denotes the set of
literals contained in Γ. The language of extended logic
programs, consists of rules of form:

l← l1, . . . , lm, not lm+1, . . . , not ln. (1)

If n = 0 then (1) is called a fact. The expression to
the left of ← is the head of a rule and the expression to
the right of ← its body. A rule is ground if each literal
that occurs in it is ground. A program gr(Γ) consisting
of ground instances of all rules in Γ is called the ground
instantiation of Γ. If r is a rule then h(r) denotes its head
and b(r) its body. The comma-separated lists in the body
of the schematic rule (1) denote conjunctions of literals.

Rules with non-empty bodies may be thought of as
production rules: if the body of the rule is deducible from
a program then the head of the rule may be added to the
set of facts.

The difference between strong negation and negation
as failure is important: an explicitly negated atom
¬p(t1, . . . , tn) is deducible from a program if that
literal occurs in the head of some rule. In other
words p(t1, . . . , tn) is asserted to be false under the
conditions stipulated in the body of the rule. In contrast
not p(t1, . . . , tn) is true in absence of evidence to the

Prepared using sagej.cls

7

contrary; that is, it is true if p(t1, . . . , tn) can not be
deduced from the rules of the program. This difference is
often illustrated with the following example attributed to
John McCarthy:49 consider the rule cross← not train
expressing the maxim that “you can cross if you have
no evidence that a train is coming”. The rule cross←
¬train, in contrast, captures the stronger requirement that
“you can cross if you have positive evidence that no train
is coming”.

The semantics of answer set programs is defined for
ground programs, and its full statement requires a fair
bit of technical nomenclature. Suffice it here to outline
the essentials: we start with the classical notion of an
interpretation or model: a model I of a program Γ is a
ground subset of lit(Γ) that is closed under the rules of
Γ, meaning that I satisfies the head of a rule of form (1)
whenever it satisfies its body. The satisfaction relation I �
φ between a model I and a formula φ (rule or conjunction
of complex literals) is defined as:

I � p iff p ∈ I, for an atom p

I � not p iff p /∈ I
I � ¬ p iff ¬p ∈ I
I � φ, ψ iff I � φ and I � ψ

I � φ← ψ iff I 2 ψ or I � φ

The reader should note the difference between the second
and third item on this list.

The answer sets of a program Γ, as mentioned already,
is a particular subset of the set of models defined above
– intuitively it is the set of models that can plausibly be
treated as representations of the beliefs or assumptions
of a rational agent. This view is all but implicit in the
following property of answer sets: An answer set for Γ
is both closed under the rules of Γ and it is such that
every true proposition according to it is derivable by
applications of those rules. In other words, everything that
follows from the rules is believed, and if it doesn’t follow
from the rules it is not believed.

Answer sets are easily identified for certain classes of
simple programs. For instance, if a program has a finite
set of rules and negation as failure does not occur, then
it has a unique minimal model which is also its answer

set–it is the single model that satisfies the set of rules
with no gratuitous information. A program with negation
as failure, on the other hand, may have more than one
minimal model. For example,

Γ =

{
b← not a
a← not b

has two minimal models {a} and {b}.
Answer sets can be characterized as fixpoints equations

of the form

M(ΓI) = I

Here I is a model of Γ and M(ΓI) picks out the set of
minimal models of a program ΓI . The program ΓI is the
reduct of Γ relative to I . By definition, ΓI contains a rule

l← l1, . . . , lm (2)

for every rule of form (1) in Γ such that {lm+1, . . . , ln} ∩
I = ∅. In other words, the reduct ΓI of I is a positive
program obtained from Γ by eliminating all rules whose
weakly negated premises are contradicted by I and
removing all weakly negated premises from the remaining
rules. The result is a program without negation as failure.
Its unique minimal model is an answer set of Γ if it is
consistent:

Definition 2. A model I is an answer set of Γ if
M(ΓI) = I and I is consistent.

Answer sets as such are not in general unique as there
may be more than one model that satisfies the equation of
Definition 2.

Answer sets induce a consequence relation between
extended logic programs and literals:

Definition 3. A program Γ entails a literal l denoted
Γ � l if l is satisfied by every answer set of Γ.

Note that it follows from 3 that Γ � not l if l is not in any
answer set of Γ. Two programs Γ1 and Γ2 are said to be
equivalent if they have the same answer sets.

In the following we shall switch between the abstract
ASP syntax defined in the present section, and a code-
listing format that reflects the concrete syntax of Clingo.
The former will be used in proofs and formal definitions,
whereas the latter will be used to discuss examples of
executable ASP code.

Prepared using sagej.cls

8 Simulation XX(X)

4 The concept of a causal theory
A causal theory, as the term is commonly used in
symbolic AI, 6,8,19,52 is a set of rules that defines a state
transition diagram modelling the effects of actions on
the world (simulated or real). A causal theory views
the world as a dynamic system or automaton whose
paths correspond to courses of action and their ensuing
successive transformations of an initial state of affairs.
The domain specific language in which these diagrams
are defined is commonly called an action description
language. It allows a concise and mathematically accurate
description of a particular system’s states and of its state-
action-state transitions.6

Example 1. A pan without a lid on it is overheating
on a stove in an industrial kitchen. The pan contains
vegetable oil which will ignite and burn if left to itself. An
astute employee who recognizes the danger may attempt
to avert it, but even in a simple scenario such as this,
his success depends on competence and training. Ideally,
he would notice early that the pan is overheating and
simply turn down the stove. But if he is new to the
job, he may not recognize danger until the pan smokes
profusely. There is still time to prevent a fire if, say,
the employee acts quickly and both turns off the stove
and puts a lid on the pan (we are supposing that the
cooking oil has been brought so close to the point of
ignition that the residual heat in the stove will set it off
unless the pan is covered). To complicate matters, some
actions are prudent if performed at the right time but
dangerous otherwise. Take the action of turning on the
fan to dissipate the smoke: if the stove is already turned
off and the pan has a lid on it, then this is a useful thing
to do. However, if the fan is on when the oil catches fire,
the fire spreads to the fan.**

Example 1 is illustrated in the state-transition diagram
in Figure 1. Here, the boxes are states, that is, complete
and consistent sets of facts (relative to answer set
semantics), with a hyphen standing for the strong negation
of a fact. Each arrow/transition is labelled with a pair
consisting of an action and its duration. Either but not
both of these elements can be omitted. When the action

∗∗See 14 for a fuller discussion of this scenario in the context of
simulation-based training.

is omitted, the arrow says that the source state evolves
independent of agency into the target state over the course
of the duration interval. When the duration is omitted, the
arrow expresses that the target state is an instantaneous
effect of performing the given action in the source state.

5 The action description language AL
The present paper adopts the general representational
strategy of the language AL and its dialects.5–7

It will serve as a point of departure for the more general
ALID language in Section 7, which is specifically
tailored for the deductive use of causal theories for
scheduling events. Some features of the full AL
language†† have been omitted for simplicity, since we will
not use these features.

Formally AL is parameterized by a sorted signature
containing

• a set of function symbols partitioned into fluent
symbols, action symbols and the arithmetic addition
operator +

• the set of relation symbols (with associated
arities) < /2, step/1, holds/2, action/1, f luent/1
and occurs/2 .

• a set of constant symbols sorted into object constants
and integers.

An action is a ground term formed from action symbols
and object constants. Similarly, a fluent is a ground term
formed from fluent symbols and object constants. The
former will be denoted a, a1, a2, . . . and the latter with
f, f1, f2,

Conceptually, an AL action description/causal theory
is a calculus axiomatizing the effect of actions in terms of
properties that can be true of an object (or tuple of objects)
at one point in time and false at another. To emphasize
that we are talking about fluctuating property ascriptions
whose truth is relative to a time, we will follow the
established terminology6,9,53 and refer to these properties
as fluents. In AL this relationship between properties,
time points and truth values is reified, meaning that it

††This applis to the distinction between inertial and defined fluents as
well as to the closed world assumption for the latter

Prepared using sagej.cls

9

Figure 1. The kitchen example. The state drawn with a thick line is the initial state.

is stated explicitly, using the binary predicate holds/2.
An atomic formula holds(f, i) states that the property
f , is true at time i, whereas ¬holds(f, i) expresses that
f , is not true at time i. When reasoning about causal
relationships, the times at which a fluent changes from
true to false are of primary interest. It is natural to think of
these changes as events; the event of a property beginning
to hold and the event of a property ceasing to hold.
Any temporally ordered sequence of negative and positive
holds-statements expresses a possibly empty set of events
as so understood. In the following, when we speak of
deducing a schedule of future events, it is such a linear
sequence of positive and negative holds-statements that
we have in mind.

As regards actions, they are intuitively atomic (i.e. non-
complex) doings of an unspecified agent. In analogy to the
treatment of fluents, actions are reified and recorded with
the predicate occurs/2. A formula occurs(a, i) states that
the action denoted by a is performed at time i.

An ASP encoding of an AL causal theory (henceforth,
when we talk about AL we shall mean the ASP encoding
of it) has two parts: a generic part governing th general
causal logic, and a domain specific part axiomatizing the

specific causal relationships that are characteristic of the
application domain. The generic part consists of

• a step declaration step(0..n), where n is an integer.

• positive and negative inertia axioms:

holds(f, i+ 1)←holds(f, i),

not¬holds(f, i+ 1),

f luent(f),

i < n.

(3)

¬holds(f, i+ 1)←¬holds(f, i),
not holds(f, i+ 1),

f luent(f),

i < n.

(4)

The step declaration sets the timeline and horizon for the
causal theory, allowing it to evolve up to and including
step(n), but no further.

The inertia axioms give a formal expression of the
common sense rule that what is true at one point in
time can be assumed to be true in the future unless

Prepared using sagej.cls

10 Simulation XX(X)

evidence to the contrary can be inferred at the preceding
timestep. The absence of evidence to the contrary is
expressed with negation as failure as the unprovability
of the opposite, where the opposite of an assertion is
its strong negation. The combination of strong negation
and negation as failure in the literal not¬holds(f, i+ 1)
can thus be read as a possibility operator saying that
fluent f may, for all we know, hold at step i+ 1. That
is, ¬holds(f, i+ 1) cannot be proved, so holds(f, i+
1) cannot be disproved, whence it is possibly true.
To simplify the formal description, let ±h(f, i) be
any element in {holds(f, i),¬holds(f, i)}. The domain
specific part of a causal theory encoded in AL consists of

• action declarations action(a) for each action term a,

• fluent declarations fluent(f) for each fluent term f ,

• causal laws,

±h(f, i+ 1)← ± h(f1, i), ...,±h(fn, i),

occurs(a, i),

i < n.

(5)

• and, state constraints

± h(f, i)← ±h(f1, i), ...,±h(fn, i). (6)

Causal laws capture the effects of actions on fluents. State
constraints capture atemporal functional relationships
between fluents that do not depend on actions. Since they
are atemporal they do not increment time.

One causal law captures one effect of an action on a
fluent. The action in question appears in the antecedent of
that law, possibly together a context of application for that
action consisting of other fluents. The effect of the action
in this context is deduced by modus ponens by detaching
the fluent statement in the head of the given causal law
and adding it to the stock of inferred facts.

It is important to bear in mind the difference between a
causal theory, on the one hand, and the actions it is applied
to on the other. Although a causal theory axiomatizes
the effect of actions, and thus refers to actions in the
antecedents of domain specific rules, it is not a theory that
says anything about which actions are actually performed.
A causal theory is a set of general rules, action instances
are specific facts. A single causal theory can predict the

consequences of any number of actions on any number of
occasions, provided it contains rules for them of course.
Therefore, in order to actually deduce facts about the
current or future state of the world from a causal theory, a
history of actions must be provided as data for the causal
laws to apply. In the following we shall refer to such
histories of actions as narratives:

Definition 4. A narrative is a sequence of actions
occurs(ai,m), . . . , occurs(ak, n) where m, . . . , n is a
linear ordering of integers.

Note also, that due to the use of the‘for all we know’
locution in the inertia rules, domain specific rules apply
only in the absence of evidence to the contrary. They
are thus exception-allowing rules with a merely tentative
validity in the sense already explained. To take an
example, a pan with vegetable oil sitting on an overheated
stove can be assumed to ignite (default rule) if, say, there
is no evidence that it has a lid on it (exception). AL
was designed to formalize precisely this kind of uncertain
qualitative inference.

Peeking ahead to the next section, we shall exploit the
defeasibility of AL rules, combined with the reification
of fluents and actions, to define a simple protocol for
passing information back and forth between a simulation
environment and an answer set solver.The simulator will
supply the narrative as data for the causal theory, and the
causal reasoner will respond with a schedule containing
future events that spell out the consequences of that
narrative for the simulated scenario or world.

However, AL as it stands is not sufficiently expressive
to support this protocol. In particular, it has three
expressive limitations that must be removed. What they
are will become clearer by describing the protocol from
an abstract point of view.

6 A stateless protocol for simulation
event control

As explained in the previous section, properties of objects
and occurrences of actions at different points in time are
stated explicitly using the two predicates holds/2 and
occurs/2.

In both cases the second argument is an integer that
denotes the timepoint at which a fluent holds or an action
occurs. This technique of reification, as it is commonly

Prepared using sagej.cls

11

called, involves a semantic ascent, one might say, to a
meta-language that talks about properties, actions and
time, allowing general temporally extended relationships
– notably inertia and causality – to be expressed.

One of the principal innovations of the present paper
is to view this pair (holds/2, occurs/2) of predicates
as an interface between, on the one hand, a system
that emits actions and consumes state information, and,
on the other hand, a system that consumes actions and
emits state information. We have chosen Clingo and
Unity for these respective components, but the concept
is perfectly general; any answer set solver and any
simulation platform may in principle be used.

The idea in a nutshell is to have the simulation system
report a narrative in the sense of Definition 4 to the causal
reasoner, upon which the causal reasoner responds with
a schedule containing future events that spell out the
consequences of those actions in the simulated scenario.
For instance, if in a simulation of the kitchen example in
Figure 1, the simulator sends a narrative to the reasoner
according to which an agent first pours water onto a
burning pan and then turns the fan on, then the causal
reasoner will respond with a sequence of events, each
being expressed by a holds-statements, in which there is a
burning fan in the future. The repetition of this exchange
of narratives for schedules constitutes a loop that acts as
the driver for the evolution of the simulation scenario.
Figure 2 provides an illustration.

This protocol is stateless. The causal reasoner is
not expected to remember past actions, but receives
a narrative containing all the actions that have been
performed up to that point from the simulator. Each action
bears a timestamp that indicates on the clock time of
the simulator when that action was performed in the
simulation environment. In general, the entire narrative
is required for the computation of a correct schedule of
events as each action may trigger different causal laws
whose effects provide the context of application for other
actions in turn. After all actions have been applied, the set
of fluents that are detached constitutes a complete history
of how the scenario evolves including a schedule of future
events.

As explained in Section 5, the domain specific rules
of a causal theory are default rules, which means that
the computed schedule of events is a default schedule;
future events will come to pass only if the agent does

not act in a way to prevent it. Returning to the kitchen
example, if the agent turns on the fan, then the fan will
catch fire once the pan is burning. To put it in somewhat
stilted language, there is a burning fan in the agent’s
default future. However, if he next acts with acumen by
putting a lid on the pan in time to prevent the vegetable
oil from igniting, then that future has been changed. In the
following, we shall distinguish between a schedule which
will be understood as a linearly ordered list of the start and
end times of fluents, and the underlying timeline itself.

Anticipating the material in Section 10, the protocol
in Figure 2 is implemented in the following schematized
manner: the ScenarioEngine, which is implemented for
Unity, reads the causal theory and generates a field for
each fluent in a C# event handler object. The value
of that field is a method that changes the state of an
associated game object in the simulation, for instance
by simulating flames in a pan. This method has to be
coded by hand, obviously. The simulation begins when
the ScenarioEngine calls Clingo with a possibly empty
narrative to obtain a schedule of the future events of the
simulation. These events are deduced from the causal
theory and take the form of holds-statements. They
are now associated through the C# handler object with
actual methods on game objects. The timestamp in
the holds-statement tells the ScenarioEngine when the
corresponding method is to be called. Thus, the fluents
in the deduced future in effect assert what should be true
when in the simulation, for instance that the game object
representing the pan ought to be burning two minutes
into the simulation. The ScenarioEngine upholds its part
of the protocol by calling that method at the appropriate
time – unless, that is, that future is overridden by an
intervening action, in which case a new narrative is sent
and a new schedule received.

We said towards the end of Section 5 that AL has
three expressive limitations that makes it unsuitable, as
it stands, for this exchange. These limitations can now be
seen in sharper relief.

The first is that the timeline, as given by the step-
declaration of AL, is postulated a priori. Hence, an AL
theory itself states how long a scenario can go on for
and when it has to end. Clearly, though, a simulation
exercise may in general extend into an arbitrarily distant
future, depending on the speed and acumen with which

Prepared using sagej.cls

12 Simulation XX(X)

Figure 2. A stateless protocol for mediating between ASP scenario specifications and simulation platforms.

the trainee acts. He may choose to loiter indefinitely come
what may, he may make abortive attempts to resolve the
situation or he may pursue futile strategies. It follows that
a suitable causal theory must be agnostic with respect to
how much time the scenario will take to evolve, it cannot
simply postulate a predefined end-point as AL does.

A second and related limitation concerns synchroniza-
tion. A causal theory in AL postulates the timeline and
the final time point independently of what happens in
the simulation. But, the actions of the player in the
simulation environment may fall within this time span
or they may not. If they don’t, then the effects of those
actions won’t either. The point is fairly obvious; it is really
what happens in the simulation that should determine the
timeline of the simulation. Therefore, a causal reasoner
should receive the timeline as an influx from that envi-
ronment. More specifically, it needs infer the timeline
of past and future events from the narrative it receives
from the simulator, where the timestamp of the latest
action in the sequence can plausibly be taken to denote the
present. This entails that time cannot be stipulated ahead
of time as in AL, but must be described by axioms that
relate a narrative to past and future events quite generally.
Only in this way can the deduced default future relate
to and schedule events in terms of the clock time of the
simulation.

The third and final limitation of AL from the
perspective of the proposed protocol is that actions do
not have durations. It is, for instance, not sufficiently
expressive to capture the diagram in Figure 1. In AL all
time increments are uniform; all causal laws increment
time by a single unit, whereas state constraints do not
increment time at all. Clearly, however, the duration of
actions is not a concept that can be abstracted away from
a simulation designed to exercise good judgement and
decision making. Will the fire spread to the cabinets or
the vent shaft first? How long will it take to put out
each of them? Is there time to retrieve both the dry
chemical extinguisher and the powder extinguisher from
the panel on the back wall? If not, which one should the
trainee prioritize, and so on. These choices depend on the
duration of actions and events, which conceptually ought
to be part of the causal theory and the default schedules
deduced from it.

Taking stock, these limitations are be compressed into
the following two desiderata for a more expressive version
ofAL: Firstly, such a language should have the expressive
resources to represent durative actions and events, and
in particular to differentiate continuant and momentary
events.‡‡ Secondly, the language should be axiomatized to

‡‡Although this particular division is not made in the AL language
(which instead has the type defined fluent for fluents that are defined

Prepared using sagej.cls

13

infer time from any narrative that is passed to it. That is,
a causal theory formulated in this language would derive
the schedule of future events from a given narrative and
the durations of events given by ts causal laws.

7 The more general ALID
For ease of reference, our proposed generalization of AL
will be called ALID for “AL with inferred time and
durative actions and events”. The signature of ALID is
a strict superset of that of AL containing the following
additions:

• the fluent symbols are partitioned into three sorts;
inertial and momentary. The former contains a
possibly empty subset called the kinetic fluents,

• the fluent/1 predicate is replaced with fluent/2 to
allow fluent declarations of different sorts. Two new
relations step between/2 and physical object/1
are added to the set of relation symbols, and

• constants inertial,momentary, and kinetic, are
added to the set of constants symbols to act as names
for the corresponding fluent sorts.

The subdivsion of the set of fluents into different sorts
reflects the necessity in any realistic model of a simulation
scenario for distinguishing between, on the one hand,
properties that are subject to the law of inertia, and thus
by default propagated forward in time (e.g. the fan being
on), and properties that do not endure in this way (e.g. a
fire splash).

The subset of inertial fluents called kinetic fluents
is a novelty of the present paper, justified in part for
technical reasons. It serves the purpose of marking
those inertial fluents the simulation environment does
not need to register a handler for (where a handler is
understood as a user defined method on a game object.
See Section 10). Conceptually, a kinetic fluent represents
an object property whose changes are fully accounted for
by the physical simulation of the simulation environment
itself – no need for ASP reasoning. A typical example
(hence the terminology) would be the location of a box

in terms of other fluents), it is a straightforward modification logically
speaking, and a distinction frequently found in the literature.

after it has been moved, or, say, the door angle after a
door has been opened. The simulation environment does
not need to consult the reasoner to infer the new location
of the box or the new angle of the door. Kinetic fluents
are inertial fluents, that is, they are subject to inertia and
are thereby by default propagated into future state of the
simulation by the reasoner. Yet, since they do not need
to be processed by the simulation environment, they will
be filtered out of the schedule and thus are not passed to
the simulation environment. See Section 9 for illustrative
examples.

We defer the discussion of the new step between/2
predicate to the next subsection, as it is best explained in
the context of the generalized inertia axioms of ALID.
For similar reasons, we postpone a detailed discussion of
the predicate physical object/1 to Section 10

7.1 The generic part of an ALID theory
ALID is technically an order-sorted logic,54 that is, it is
a fragment of first-order logic with sorted terms where
the sorts are ordered into a hierarchy. In our case this
hierarchy is expressed by one rule

fluent(inertial, f)← fluent(kinetic, f). (7)

subsuming kinetic fluents under the inertial ones.
To allow the timeline of the default future to be

inferred from the narrative passed to the reasoner, ALID
axiomatizes time replacing the simple step declaration
step(0..n) of AL, with step rules.

• step rules:
step(0). (8)

step(i)← holds(f, i). (9)

step(i)← ¬holds(f, i). (10)

step(i)← occurs(a, i). (11)

Rule (11) extracts timestamps from the narrative that
is passed to the reasoner in the form of a sequence of
occurs-atoms. More specifically, it makes steps out of
the actions indices, that is, it converts action indices into
timepoints represented in the way the reasoner expects.
The effect is to synchronize the schedule deduced by
the reasoner with the clock of the simulation, where the

Prepared using sagej.cls

14 Simulation XX(X)

most recent action represents the current moment. The
rules (9) and (10) ensure that the cumulative effects of
the narrative is propagated into the future by having
(¬)holds-statements induce new timesteps, incrementing
the time index with an arbitrarily long interval reflecting
the duration of the last action and its effects. Finally, (8)
is a ground atom and thus only a rule in a degenerate
sense of course. It is an example of what we shall call a
milestone, which is a ground atom of form step(i) where
i is an integer. A milestone refers to a fixed point in the
timeline of a scenario, most obviously, but not exclusively,
its starting point 0. Milestones are used in connection with
state constraints, and more generally with static causal
laws (definition pending) to schedule events that are not
caused by actions. An example would be a pan sitting on
an overheated stove due to ignite at a predetermined fixed
point in the future unless someone acts to prevent it.

The inertia rules in ALID are generalizations of the
corresponding AL rules where the single unit increments
in the heads of the latter are replaced with a suitably
abstract notion of the next step on the timeline.

• generalized positive inertia axiom:

holds(f, j)←holds(f, i),

not¬holds(f, j),
f luent(inertial, f),

not step between(i, j),

step(j),

i < j.

(12)

• generalized negative inertia axiom:

¬holds(f, j)←¬holds(f, i),
not holds(f, j),

f luent(inertial, f),

not step between(i, j),

step(j),

i < j.

(13)

As can be seen, the ALID rules (12-13) are qualified
to fluents belonging to the sort inertial (this is also the
case in full AL), thus exempting momentary fluents from
being propagated forward to the next timestep.

A suitably abstract notion of a next timestep relative to
i in rules (12-13) is the unique later step j with no step
between it and i. This definition of ‘next’ is encoded as
the absence of a step between them using the following
straightforward remote successor axiom:

• remote successor axiom:

step between(i, k)← step(i),

step(j),

step(k),

i < j,

j < k.

(14)

The conjoined effect of rules (12) and (14), to repeat
the point, is thus remove the +1 increments in the heads
and bodies of rules (3) and (4) and replace it with a
more abstract notion of temporal immediacy. This makes
the inertia rules in ALID agnostic with respect to the
exact duration of the time intervals across which facts are
to be propagated. It thus allows any amount of time to
pass between two successive states in the evolution of the
scenario, depending on the variable duration of actions.

We add one more rule to the generic part of an ALID
theory, namely the closed world assumption for inertial
fluents:

• the closed world assumption:

¬holds(f, 0)←not holds(f, 0),

f luent(inertial, f).
(15)

This rule, which is a singularly well-studied principle in
logic-based symbolic AI,6,8,55,56 converts the absence of
evidence for the truth of a property at time 0 into a proof
for its falsity at time 0. It axiomatizes the assumption
that information about the initial situation is complete;
initially it is known whether a fluent holds or not. If
it holds, it is asserted, if it does not hold, its strong
negation is asserted. The inertia rules propagates positive
and strongly negative facts forward in time, making every
subsequent state complete in this sense as well.

Recall that the inertia rules are themselves defeasible
due to the presence of negation as failure in their
bodies. Therefore, a fact, positive or negative, is only
propagated forward in time if no contradicting evidence

Prepared using sagej.cls

15

can be inferred at the preceding step. The upshot of
this interaction between the closed world assumption and
the inertia rules is that the overall behaviour of strong
negation in domain specific rules simulates negation as
failure. This is not a strictly necessary feature of the
representation, but it cleans up the language and simplifies
the grammar as negation as failure is no longer needed in
the domain specific part.

Default rules are an important and indispensable part
of the protocol described in Section 6, as such rules are
what makes it possible for an agent to interfere with the
unfolding of events and change the future. Some concrete
examples of this will be provided shortly.

7.2 The domain specific part of an ALID
theory

The action declarations of anALID domain specification
are similar to those of AL. Fluent declarations are
generalized to sorts, using the 2-place version of the
fluent predicate:

• a fluent declaration is a formula fluent(s, f) where
s is a constant in {inertial, kinetic,momentary}
and f is a fluent of the corresponding sort.

Object constants in ALID must be explicitly declared
as physical objects. That is,

• an ALID theory has a formula physical object(c)
for every object constant in its signature.

The reason for this has to do with the way the protocol
from Section 6 is implemented. Briefly put, the C#

ScenarioEngine-library needs to know the ontology of a
theory so that it can generate handlers for every event that
takes one or more objects from the domain as arguments.
More about this in Section 10.

Turning now to the form of rules, instead of the AL
distinction between causal laws and state constraints,
ALID draws a distinction between dynamic causal laws
and static causal laws:

• a dynamic causal law is a rule of form

±h(f, i+ k)← ± h(f1, i), ...,±h(fn, i),

occurs(a, i)
(16)

where k is a nonnegative integer.

• a static causal law is a rule of form

± h(f, i+ k)← ±h(f1, i), ...,±h(fn, i) (17)

where k is a nonnegative integer and either i is
declared as a milestone or fj is a momentary fluent
for some j.

The differences between AL causal laws and ALID
dynamic causal laws are small but important. Firstly, the
+1 increments in the causal laws of AL can be replaced
with any integer in a dynamic causal law of ALID,
allowing for the expression of actions and events of
arbitrary duration. Secondly, since the ALID timeline is
an inferred left-closed interval from 0 with no predefined
maximum n, there is no constraint on dynamic causal
laws to stay within an upper bound. Hence, i < n from
rule (5) does not occur in rule (16).

As regards state constraints vs. static causal laws, the
former are meant to capture atemporal logico-functional
relationships, such as e.g. the fact that a box is sitting
on top of a stack of other boxes entails that the former
is above all of the latter.6 In contrast, static causal
laws, though they may be used to encode functional
relationships as well, also cover causal relationships that
do not express agency. These causal relationships, like
actions, may have any duration.

The timestep i in the body of a static causal law is
required to be a milestone whenever f is an inertial fluent
(possibly kinetic). In other words, a static causal law that
governs an inertial fluent requires a context in which there
is a ground atom step(i) declaring the integer i to be a
point on the timeline that is to be deduced by the reasoner.

This has to do with grounding. Most ASP systems
including Clingo compute answer sets by first generating
a ground propositional program that does not contain any
variables but has the same answer sets as the original
program. That program is then passed to a modified
satisfiability solver that computes the models that satisfy
the program.57

When the time index in the body atoms of a static
causal law is a milestone, that rule is already variable-
free. This ensures that all static and dynamic causal laws,
and thus the entire domain specific part of an ALID
theory conforms to a condition called λ-restrictedness.58

Intuitively, λ-restrictedness means that there is a mapping
λ of the predicates of a program to the natural numbers,

Prepared using sagej.cls

16 Simulation XX(X)

called levels, such that all variables in a rule with a
particular predicate in the head occur in the body of that
rule in atoms formed from predicates of a strictly lower
level. Every λ-restricted program is known to have a finite
equivalent ground instantiation, even in the presence of
functions with non-zero arity, such as the +k functions in
the heads of ALID causal rules.

Conversely, if we allow time variables in static causal
laws, they will break the λ-restrictedness condition, which
easily leads to infinite groundings and non-termination
of the computation when the fluent is an inertial one.
A straightforward example of this behaviour will be
provided in the next section.

If the fluent is a momentary one, on the other hand, this
is not an issue since a rule with a momentary fluent in its
body cannot be reapplied to the steps created by the rule
head, thus avoiding an infinite generation of steps. As we
shall see, in this case the restriction to milestones can be
lifted, allowing static causal rules with variables ranging
over timepoints.

One residual question remains, which is the question of
why the time index in the body of a static rule needs to be
declared to be a step when it is a milestone. Why is it not
sufficient to make sure that the rule contains no variables,
when trivially such a rule has a finite grounding? The
answer is that the step declaration itself is not needed for
grounding but for solving: for a static causal law to be
applicable at a timepoint i all the relevant inertial fluents
in the body of that rule must be propagated from the past
up to the point of application i. This is the responsibility
of the inertia rules. Now, the inertia rules propagate fluents
over steps only, not arbitrary indices. Hence if i is merely
an integer then the fluents in the body of the static causal
law will not be propagated to i and hence the rule will
never apply. This fact, which is easy to overlook, will also
be illustrated with examples in the next section.

8 On the form of ALID theories:
Determinism

The language ALID is more powerful than it may
appear, insofar as it can express chance events. Consider
the following pair of rules:

holds(fire(fan), 0)←
¬holds(fire(pan), 0).

(18)

holds(fire(pan), 0)←
¬holds(fire(fan), 0).

(19)

The two rules, which are state constraints, form what
is known as a cycle through negation. For the two-rule
case, this means that the fluent in the head of the one
rule, depends on the negation of the fluent in the head
of the other. As mentioned in Section 3, answer sets are
not in general unique. It is well known6,8,19 that a cycle
through negation may induce non-uniqueness in answer
set semantics. In particular, rules (18 -19) can be satisfied
by two different answer sets; one in which the pan is on
fire when the simulation starts, and one in which the fan
is on fire when the simulation starts.

This pattern can easily be repeated for general
(meaning time-unspecific) causal laws in ALID.
Consider the following pair of rules:

holds(fire(cabinet), T + 1)←
occurs(empty(jug, pan), T),

not¬holds(fire(cabinet), T + 1).

(20)

¬holds(fire(cabinet), T + 1)←
not holds(fire(cabinet), T + 1),

occurs(empty(jug, pan), T).

(21)

They form a negative cycle representing that the cabinet
may or may not catch fire if one pours a jug of water onto
a (presumed) burning pan.

Having the expressive power to model chance events
is arguably a good feature of ALID since it allows
the scenario designer to add to the training-value of an
exercise by introducing an element of unpredictability.
However, chance events should only come from deliberate
design decision. They should certainly not be side-effects
of the causal logic itself. The reason for this is fairly
evident: When a causal reasoner is responsible for driving
the evolution of simulation scenario, it is important to
know the precise conditions under which the current state
will fork into alternative futures and yield several possible
lines of development or plays. The cumulative effect of
unintended indeterminacy across time will, by definition,
be difficult to anticipate and will obfuscate and hamper
the design process.

Prepared using sagej.cls

17

Yet, it is not immediately obvious that unintended
indeterminacy is ruled out by the causal logic of ALID,
because to every causal theory belongs a generic part that
contains a negative cycle. The negative cycle, as the reader
can check for himself, consists of the pair of generalized
negative and positive inertia axioms, (12-13).

Importantly though, the inertia axioms have one feature
that distinguishes them from the cycles we have seen in
this section: Their bodies contain a complementary pair.
That is, the body of the one rule contains the negation
of an atom in the body of the other. This is the pair
holds(f, i),¬holds(f, i). Since they are complementary,
both formulae can not be true simultaneously, so both
inertia rules can never apply simultaneously. Contrast this
with rules (20-21). There is no such pair in their bodies,
so both rules can apply at the same time.

It is possible, though rather involved, to prove that
complementary pairs makes negative cycles safe in this
respect under certain natural conditions. As a particular
instance of this phenomenon, it follows that the inertia
rules will derive one unique future from a set of domain
specific rules, provided the domain specific rules satisfy
those conditions.

The first condition is, rather obviously, that the domain
specific rules must not explicitly be used to model chance
events, as in the examples of the rules (18-19) and
the rules (20-21). If they do, the world will split into
alternative futures. The inertia rules will apply to each
alternative, but will not fuse them together. This is as
it should be. As argued already, it gives the scenario
designer the power to introduce an element of chance
deliberately.

The second condition is that causal rules must not be
retroactive – an action should not be allowed to have an
effect in the past.ALID itself allows this, but for obvious
reasons, such strangeness should never be a necessary
ingredient of any realistic modelling task.

Finally, the causal theory must be consistent. This also,
is not guaranteed by ALID itself, since ALID rules can
have strong negation in heads, viz.:

¬holds(fire(fan), 0)←
holds(fire(pan), 0).

(22)

holds(fire(pan), 0)←
holds(fire(fan), 0).

(23)

The problem with inconsistency is of course not one of too
many futures, but too few; an inconsistent causal theory
does not predict anything.

We shall call a causal theory that satisfies these three
conditions well-founded. Well-founded causal theories are
deterministic in the following precise sense:

Definition 5. A causal theory Γ is deterministic if for
every narrativeA, Γ ∪A has exactly one answer set given
that Γ is consistent.

The proof of this claim is provided in the appendix.

9 Example: Representing the kitchen
scenario

In the present section we represent the kitchen scenario
from Example 1 in ASP, Clingo syntax, to demonstrate
how the different language features of ALID can be
applied in practice.

The example is elaborated a bit to give it a slightly
richer set of features: in addition to Example 1 we are
assuming that there are wooden kitchen cabinets on each
side of the fan. There is a jug of water, and there is a
panel on the back wall with a dry chemical extinguisher
designed to extinguish class A (ordinary combustibles
such as wood), B (flammable liquids and oil), and C
fires (electrical equipment and appliances). There are five
things the trainee can do in this scenario, as represented
by the action declarations in Listing 1

1 action(put(glass_lid, small_pan)).
2 action(turn_on(fan)).
3 action(empty(jug, small_pan)).
4 action(empty(jug, fan)).
5 action(turn_on(fan)).
6 action(apply(drychem), fan).

Listing 1. Actions declarations in the kitchen domain.

The respective effects of these actions are described in
terms of fluents declared in Listing 2 – the typing will be
explained as we go.

Compared with Example 1, an agent now has a slightly
bigger repertoire of prudent and imprudent choices: he
can put out a fan fire using the drychem extinguisher.
Alternatively he can also do so by pouring water over

Prepared using sagej.cls

18 Simulation XX(X)

1 fluent(kinetic, on(
2 glass_lid,
3 small_pan)
4).
5

6 fluent(inertial, on(fan)).
7 fluent(inertial, pan_smoke).
8 fluent(inertial, fire(small_pan)).
9 fluent(inertial, fire(fan)).

10 fluent(inertial, fire(cabinet)).
11

12 fluent(momentary, fire_splash).

Listing 2. Fluent declarations in the kitchen domain.

the fan, but that water will spill onto the pan, so if the
vegetable oil in the pan is burning a fire splash will ensue
that causes the kitchen cabinets to catch fire as well. Of
course, this is also the result if the agent pours water
directly on the burning pan.

The entire set of possible evolutions of the scenario
is axiomatized by the domain specific causal rules in
Listing 3 (’SCL’ and ’DCL’ in the comments are short for
static and dynamic causal laws respectively). There are
two static causal laws conforming to the rule schema (17)
and eight dynamic causal laws conforming to rule schema
(16). Both kinds of rule can be sorted into two kinds;
positive laws that cause a fluent to hold and negative ones
that cause a fluent to cease. For instance, SCL 1 states
the conditions under which the pan catches fire whereas
DCL 1 expresses a sufficient condition for putting it
out. Similarly DCL 3 gives a positive rule for when the
fan will start burning whilst DCLs 4 and 5 gives two
ways of extinguishing it; water and drychem. Momentary
fluents, exemplified here by a fire splash happening, have
only positive rules – DCLs 7 and 8 in this case. Since
momentary fluents are not subject to inertia, they do not
endure through time. Hence, it is not necessary to state the
conditions for their termination.

Both static and dynamic causal laws can be default
rules, meaning that they apply only unless certain
recognized exceptional cases can be inferred to hold. For
instance SCL 1 states that the pan will burn after five
seconds if it is sitting on an overheated stove unless it
has a lid on it. Similarly, DCL 4 states that the drychem

extinguisher will put out a fire in the fan unless the pan is
still burning. DCL 6 is a negative default rule according to
which the fan will dissipate smoke unless the pan is still
burning. All other rules are non-defeasible and express
strict causal relationships for which there is no exception.
This is typically but not necessarily true of kinetic fluents
recording the movement of objects. Thus, according to
DCL 2 putting a lid on the pan invariably causes the lid
to be on the pan. This action could have been modelled as
a default in which case the exceptions would correspond
to unsuccessful attempts at putting on the lid. This is
less plausible for DCLs 3, 7, and 8 that unlike DCL 2
does not model the action directly, but rather the causal
consequences of it: given that the action in question is
performed those consequences invariably ensue.

The ability to represent and reason about default rules
is one of the selling points of Answer Set Programming
in particular and logic programming in general. As
explained in Section 7.1, ALID removes the need for
negation as failure in domain specific rules in favour
of strong negation in order to limit design choices and
make it easier to express the logic of a scenario correctly.
As the reader may recall, this is accomplished by
combining the closed world assumption (15), converting
the unprovability of a fluent into the provability of its
strong negation, with the positive (12) and negative (13)
inertia rules.

Whether strict or defeasible, all domain rules ofALID
can express arbitrary durations. Unlike in AL, the inertia
rules of ALID do not commit to any particular uniform-
length interval between events, but appeal only to an
abstact notion of the next step on the timeline. This next
step is always inferred, not stipulated beforehand, from
the step rules (8-11) among which (9) and (10) create
steps out of the indices in the heads of causal rules,
projecting the effect into an arbitrarily distant future.
This is true of dynamic causal laws, and also of state
constraints and more generally static causal laws as well.
For instance, SCL 2 states that the kitchen cabinet’s
catching fire is a causal process or event that gets going
two seconds after a fire splash erupts from the pan.
Similarly, DCL 6 states that the action of dissipating
smoke using the fan takes 3 seconds. In Listing 3, all
actions and events have been represented as taking some
time. It might be tempting to think of simple actions such
as putting the lid on the pan as instantaneous actions; the

Prepared using sagej.cls

19

1 %Time unit
2 #const second = 1000.
3

4 %Milestone.
5 step(5 * second).
6

7 %SCL 1: smoking pan ignites 5 seconds from start
8 holds(fire(small_pan), 5 * second):-
9 holds(pan_smoke, 5 * second),

10 -holds(on(glass_lid, small_pan), 5 * second).
11

12 %DCL 1: panfire is extinguished by a lid after 1 second.
13 -holds(fire(small_pan), T + 1 * second):-
14 holds(fire(small_pan), T),
15 occurs(put(glass_lid, small_pan), T).
16

17 %DCL 2: putting a lid on the pan takes 1 second.
18 holds(on(glass_lid, small_pan), T + 1 * second):-
19 occurs(put(glass_lid, small_pan), T).
20

21 %DCL 3: turning on fan causes burning fan 5s later if pan is burning.
22 holds(fire(fan), T + 5 * second) :-
23 occurs(turn_on(fan), T),
24 holds(fire(small_pan), T).
25

26 %DCL 4: drychem puts out fan fire after 10s if pan is not burning
27 -holds(fire(fan), T + 10 * second):-
28 -holds(fire(small_pan), T),
29 occurs(apply(drychem, fan), T).
30

31 %DCL 5: water puts out fan fire after 2s if pan is not burning
32 -holds(fire(fan), T + 2 * second):-
33 -holds(fire(small_pan), T),
34 occurs(empty(jug, fan), T).
35

36 %DCL 6: fan dissipates smoke after 3s. if pan is not burning.
37 -holds(pan_smoke, T + 3 * second):-
38 -holds(fire(small_pan), T),
39 occurs(turn_on(fan), T).
40

41 %DCLs 7, 8: pouring water on fan or pan causes fire splash if pan is burning.
42 holds(fire_splash, T + 1 * second):-
43 holds(fire(small_pan), T),
44 occurs(empty(jug, small_pan), T).
45

46 holds(fire_splash, T + 2 * second):-
47 holds(fire(small_pan), T),
48 occurs(empty(jug, fan), T).
49

50 %SCL 2: a fire splash sets the cabinets on fire after 2s.
51 holds(fire(cabinet), T + 2 * second):-
52 holds(fire_splash, T).

Listing 3. Domain rules in the kitchen scenario

Prepared using sagej.cls

20 Simulation XX(X)

lid is on in the instant that it is put on. This is possible, but
it is a temptation better resisted since experience shows
that the risk of inconsistency increases with the number of
instantaneous actions. To see why, consider the following
example: suppose the action of turning on the stove has
been modelled as an instantaneous action; the stove is on
the moment it is turned on. There is an exception, let’s
say, which which is when the fuse is blown. The cause of
a blown fuse is when something draws too much power
from the circuit. Suppose this too has been modelled as
an instantaneous event; if all appliances are on at the
same time, then the fuse is blown. It follows that if all
appliances but the stove is on at a given point in time,
then turning on the stove will cause it to be on and off at
the same time.

The two rules SCL 1 and SCL 2 highlights the different
treatment of respectively inertial and momentary fluents
in static causal laws. Since according to Listing 2 the
pan’s burning is an inertial fluent, it follows by the
provisos to rule (17) that the time index of SCL 1 has to be
a ground step. It has to be declared as such, i.e. the integer
in question must explicitly declared to be a step, since
the inertia rules do not propagate fluents over integers
generally. Compare SCL 1 with the flawed version in
Listing 4: the latter does not license the inference to the
burning of the pan, even if the lid is not on the pan. This
is due to the fact that in this representation when the
statement in Listing 4 line 2 and 3 are evaluated, T is just
an integer, not a step. Therefore, the negative inertia rule
will not propagate the absence of a lid from 0 to T for the
simple reason that T is not yet a step.

As explained in the previous section, the milestone
trivially makes SCL 1 λ-restricted, ensuring that it can
only be instantiated in a finite number of ways (one way
in fact, since it is already a ground rule).

SCL 2, in constrast, is not λ-restricted. Obviously there
is no level mapping, i.e. no function, that assigns two
different integers to the holds predicate, and therefore not
true that every variable in the head of the rule is bound
by a predicate from a strictly lower level in the body. Yet,
since the time variable in the head of SCL 2 is the time
index of a momentary fluent fire splash in the body of
that rule – in conformity to the proviso of rule (17) – SCL
2 still has a finite grounding.

9.1 Deducing schedules
In accordance with the protocol described in Section 6,
it is the responsibility of the answer set solver to pass a
schedule to the simulation environment to be used as a
schedule for future events. Based on the domain specific
causal rules of anALID theory, that schedule is deduced
by calculating the moments at which fluents begin and/or
cease to hold. To that end, the predicate begins/2 in
Listing 5 states that a fluent begins to hold at a particular
point if it holds at that time and does not hold at the
immediately preceding step. The predicate starts/2, is a
thin veneer on top of begins/2 that filters out kinetic
fluents.

Recall from the previous section, that kinetic fluents is a
subtype of inertial fluent that the simulation environment
does not need to register a handler for. An example from
Listing 3 is the fluent on(glass lid, small pan): if an
agent performs the action of putting a lid on the pan in
the simulation environment at a particular time T, then,
as per the protocol, the simulation environment sends
occurs(put(glass lid, small pan), T) to the ASP reasoner
as part of a narrative recording all actions from the start of
the simulation. The simulation environment does not need
to wait to be told by the ASP reasoner that this places the
lid on the pan – and then place it there – since the physical
simulation takes care of this on its own.

The duals to the predicates begins/2 and starts/2
is the pair of predicates ceases/2 and stops/2. Their
definitions, which are obvious from the positive duals,
have been omitted. They represent the negative future
understood as the sequence of steps at which fluents cease
to hold.

1 starts(F, T):-
2 begins(F, T),
3 not fluent(kinetic, F).
4

5 begins(F, T2):-
6 holds(F, T2),
7 not holds(F, T1),
8 not step_between(T1, T2),
9 step(T1),

10 T1 < T2.

Listing 5. The commencement of fluents.

Prepared using sagej.cls

21

1 holds(fire(small_pan), T):-
2 holds(pan_smoke, T),
3 -holds(on(glass_lid, small_pan), T),
4 T = 5 * second.

Listing 4. Flawed default rule

Now, in order to actually extract the schedule, and only
the schedule, from the answer set of the ALID theory
in question, we use Clingo #show-directives to query
the answer set for the information we are after. Briefly
put, a #show-directive instructs Clingo to return only
the specified elements of the answer set and suppress all
others. Hence, the simple query in Listing 6 returns the
schedule that is implicit in the answer set.

9.2 Some sample plays
We have distinguished between narratives, which are
sequences of actions linearly order by time, and schedules
which are lists of assertions saying when fluents start to
hold and cease to hold. In the protocol from Section 6,
a narrative is passed from the simulation environment to
the ASP reasoner, while the scheduled induced by it is
returned to the simulation software. Henceforth, we shall
refer to the union of a narrative and the schedule it induces
as a play.

Even simple domain specifications such as that of
Listing 3 may give rise to a large number of narratives
and schedules. If the ALID-theory in question is
deterministic (cf. Section 8), then the number of narratives
is an upper bound on the number of schedules. This upper
bound is given by the following formula: where n is any
finite number of inferred steps and a the number of action
declarations in the domain specification, it is

|a|∑
i=0

((
a

i

)
×
(
n

i

)
× i!

)
From the point view of simulation-based training,

very few of these plays will be interestingly different.
Rather, it is natural to consider uniqueness only up to
some equivalence relation, for instance up to sameness of
schedule. That is, one may treat two plays as essentially
similar (or perhaps equally good?) if the respective
narratives induce the same schedule.

Of the 1545 plays induced by Listing 3 on a five step
time-line, there are 205 different schedules. Many of those
schedules in turn differ only with respect to the intervals
between events, but not with respect to their ordering.
In general, which plays one considers “the same” will
depend on the uses to which one puts an ALID theory.

For the purposes of driving application state in a
simulation environment, it does not matter much. As
long as an ALID theory is deterministic in the sense
of Definition 5, each narrative induces one and only
one play by deduction from the domain specification
and the generic causal logic. That deduction is typically
computationally inexpensive, as it essentially amounts to
forward chaining (most of which is accomplished already
at the grounding stage by a technique known as partial
evaluation21).

Listing 7 selects five of the plays induced by the
domain specification in Listing 3 that exemplify features
ofALID-causal rules that we have discussed. All of them
presuppose that the pan is producing smoke when the
simulation begins, which is here assumed to be at time
0. In this play the pan starts burning after five seconds
due to the milestone in line 2 of Listing 3 and the static
causal rule SCL 1, which, being static, applies irrespective
of agency. Since the agent refrains from doing anything,
the pan simply continues to burn.

Since SCL 1 is a default rule, it is possible for an agent
to interfere with the forecasted default future and prevent
the panfire. In play 2, he does so in the best way possible:
he puts a lid on the pan before it ignites, and he turns on
the fan to dissipate the smoke afterwards. Due to the strict
causal rule DCL 1, the panfire never breaks out, which in
turn means that the default rule DCL 6 applies, the only
exception to it being a burning pan. Hence, the pan stops
smoking.

Time is of the essence. In play 3 the agent puts the lid
on too late, and the panfire has time to erupt. The agent
then makes the further mistake of starting the fan before

Prepared using sagej.cls

22 Simulation XX(X)

1 #show starts/2.
2 #show stops/2.

Listing 6. A query that generates a schedule.

Play 1: The agent does nothing.

starts(pan_smoke, 0).
starts(fire(small_pan), 5000).

Play 2: The agent puts lid on before pan catches fire, then turns on fan.

starts(pan_smoke, 0).
occurs(put(glass_lid, small_pan),4000).
occurs(turn_on(fan), 20000).
stops(pan_smoke, 23000).

Play 3: Too late with the lid, too quick with the fan.

starts(pan_smoke, 0)
starts(fire(small_pan), 5000).
occurs(turn_on(fan), 10000).
starts(fire(fan), 15000)
occurs(put(glass_lid, small_pan), 20000 second).
stops(fire(small_pan), 21000).

Play 4: The fan fire cannot be extinguished while pan is burning.

starts(pan_smoke, 0).
starts(fire(small_pan), 5000).
occurs(turn_on(fan), 10000).
starts(fire(fan), 15000).
occurs(empty(jug, fan), 30000 second).
starts(fire_splash, 32000).
starts(fire(cabinet), 34000).
occurs(apply(drychem, fan), 40000).

Play 5: Put out the panfire first, then apply drychem.

starts(pan_smoke, 0).
starts(fire(small_pan), 5000).
occurs(turn_on(fan), 10000).
starts(fire(fan), 15000).
occurs(put(glass_lid, small_pan), 30000).
stops(fire(small_pan), 31000).
occurs(apply(drychem, fan), 40000).
stops(fire(fan), 50000)).

Listing 7. Some plays with their narratives and timelines.

Prepared using sagej.cls

23

putting out the fire. Due to the strict causal rule DCL 3,
this causes the fan to start burning. When eventually he
does put a lid on the pan, the panfire stops, but the fan
continues to burn.

In play 4, the agent again allows the panfire to erupt
and then turns on the fan. The fan then starts burning. The
fan grabs his attention and he doesn’t think about putting
out the panfire. Instead he concentrates on extinguishing
the fire in the fan, deciding to pour water over it. Due
to DCL 5, this would normally work except (line 30) in
circumstances when the pan is still burning, as it is in
this play. Therefore, water spills onto the pan creating a
fire splash that causes the wooden cabinets on either side
of the fan to catch fire. Still attempting to put out the
fire in the fan, the agent decides to apply the drychem
extinguisher to it, which again, would normally work due
to the default rule DCL 4, except when the pan is burning.
Thus the fan continues to burn, and so does the pan and
the cabinets.

On a side note, the fire splash is never explicitly
asserted to stop. This is a momentary fluent which as such
is assumed to be transient. In particular, it can in general
not be assumed to last until the next inferred step, since
the next step can come in an arbitrarily distant future. Of
course, one could add a step rule to make all momentary
fluents last, say, a millisecond, if the ending times of
momentary fluents were of interest.

Note also, still with regard to play 4, that DCL 7 and
8 implement two ways of causing a fire splash; the agent
can pour water onto the pan or on the fan whilst the pan
is burning. Swapping one action for the other in play 4
yields a play that is equivalent up to schedules in the
aforementioned sense.

In play 5, the agent changes his routine a bit. Although
he does not succeed in preventing the pan from catching
fire, and although he makes the mistake of turning on the
fan, he realizes at that point that extinguishing the panfire
is priority number one. He puts a lid on the pan, gets the
drychem extinguisher and applies it to the fan. Since the
pan is no longer burning, the fire in the fan is quelched
too (due to the default rule DCL 4), and the situation is
contained.

9.3 Taking stock
Recent studies of game-based learning show that a key
feature determining learning value is the story being
played.59–61 The examples above should serve to illustrate
that ALID offers a powerful high-level abstraction
for describing precisely this aspect of a game. Being
carefully restricted, ALID rules are syntactically simple
and easy to design. Since ALID is a fully declarative
language, it abstracts away the control flow constructs
required for software to perform an action or an event,
allowing the scenario designer to focus exclusively on
expressing the rules that govern the salient events.
Although syntactically simple, ALID has the expressive
power to describe complex scenarios. The combination
of durative actions and default rules, in particular, is a
powerful feature that makes it possible to describe a
multiplicity of possible stories implicit in an initial scene
very succinctly.

10 Integrating Clingo and Unity—an
implementation of the stateless
protocol

In this section, we describe an implementation of the
stateless protocol of Section 6. In technical terms, this is
handled by a piece of software we refer to as the Scenario-
Engine simulation event controller. It was developed
specifically for the Clingo answer set solver and the Unity
Real-Time Development Platform, a prominent platform
for developing computer games. Whereas the engine itself
is written in C++, games are usually programmed in C#

using Unity’s scripting API. One can also import and
reference .NET assemblies and native libraries, which is
how we have implemented the ScenarioEngine.

10.1 Usage overview
We start with an overview of the steps one must take to
integrate ScenarioEngine into a Unity game/project:

First, obtain the native Clingo library for the
relevant platforms. This comes bundled with the Clingo
distributions for Linux and MacOS, and a corresponding
version for Windows can be built from the available
source code quite easily.

Next, obtain the ScenarioEngine .NET assembly. It
is easily built from the source code, which is available

Prepared using sagej.cls

24 Simulation XX(X)

through git at https://code.nr.no/scm/git/
ScenarioEngine.

Then, create an empty .NET library project for
the scenario with the ScenarioEngine assembly as a
compiler platform source generator, and add an ASP file
named ontology.lp to the scenario project containing the
declarations of physical objects, fluents and actions of the
ALID theory, see Section 7.2.

Build the scenario project; create a Unity project if
it does not exist already; and import the native Clingo
libraries, the ScenarioEngine assembly and the scenario
assembly into the Unity project.

Create a text asset in the Unity project named
causal laws containing both the dynamic and the static
causal laws of theALID theory, see Section 7.2 (this text
asset will contain ASP code, but adding the suffix .lp to its
name will confuse Unity.).

Integrate ScenarioEngine into the Unity project by (i)
calling the appropriate method in the scenario assembly
when the player performs an action and (ii) registering
handlers for every potential event. This will be explained
in more detail below.

10.2 Example scenario
The code for the ScenarioEngine has been made public as
part of this publication, see the git address above. We have
also implemented a proof-of-concept Unity project that
simulates the kitchen scenario in the running example.
Due to its use of licensed Unity content, it cannot be
published along with the ScenarioEngine, but here is
a brief description: The Unity scene consists of a 3D
kitchen with the by now familiar pan on a stove, a lid,
and a fan, see Figure 3. A first person controller (FPC)
allows the player to move around in the room and interact
with these objects. Interactable objects are indicated by a
hand icon that appears over an object when hit by the ray
from the FPC.

Listing 8 shows the contents of ontology.lp for this
example. The causal rules were shown in Listing 3.

10.3 Program structure
Figure 4 shows the native Clingo library and the two
.NET assemblies imported for our example scenario.
The ScenarioEngine assembly contains a static class
Asp, which handles the communication between C#

Figure 3. The kitchen example in Unity

and the native library using the .NET P/Invoke API.
The ScenarioEngine also contains code for generating
scenario-specific assemblies at compile time. The
KitchenScenario assembly is generated in this manner.
Its source code only contains the scenario-specific ASP
file ontology.lp (Listing 8), but the project file specifies
that ScenarioEngine is to be used as a .NET compiler
platform source generator. Thus, the classes and enum
type in the KitchenScenario assembly are generated
based on the contents of ontology.lp. Observe that in order
to pull this off, ScenarioEngine not only calls Clingo at
runtime, but at compile time as well. The code responsible
for the compile time code generation is located in the
namespace Gen. The version of ScenarioEngine imported
into Unity can be built without this namespace.

The entry point to the simulation event controller from
the Unity scripting API is the class ActionHandlerBe-
haviour, which inherits from a class MonoBehaviour of
the Unity framework. It does three things:

• It loads the ASP text asset causal laws from the
surrounding Unity project.

• It provides access to an instance of the scenario-
specific class ActionHandler.

• It handles the scheduling of future events using
Unity’s event loop.

10.4 Unity integration
The controller is integrated into the Unity game as
follows: Whenever the player performs an action, a
corresponding method on the ActionHandler object must
be called. Conversely, handlers must be defined for

Prepared using sagej.cls

https://code.nr.no/scm/git/ScenarioEngine
https://code.nr.no/scm/git/ScenarioEngine

25

lid(glass_lid).
pan(small_pan).
physical_object(X) :- lid(X).
physical_object(X) :- pan(X).
physical_object(fan).
physical_object(cabinet).
physical_object(drychem).
physical_object(jug).

fluent(kinetic, on(Lid, Pan)):- lid(Lid), pan(Pan).
fluent(kinetic, on(fan)).
fluent(inertial, fire(Pan)) :- pan(Pan).
fluent(inertial, fire(fan; cabinet)).
fluent(inertial, pan_smoke).

action(put(glass_lid, small_pan)).
action(turn_on(fan)).
action(empty(jug, small_pan)).
action(empty(jug, fan)).
action(apply(drychem, fan)).
action(no_action).

Listing 8. Example ontology.lp

KitchenScenario (.NET)
ScenarioEngine (.NET)

Clingo (native)

Scenario

Asp Gen

ResponseHandler

�ASP�
ontology.lp

�enum�
PhysicalObject

ActionHandler

ActionHandlerBehaviour

�ASP�
generic.lp

ActionHandlerBase

Model

Figure 4. Architecture of a ScenarioEngine simulation event controller instance

Prepared using sagej.cls

26 Simulation XX(X)

every possible result event by setting the corresponding
static properties of the ResponseHandler class. Listing 9
shows the signatures of these methods and properties
in our example. Some of these take arguments from
the enum type PhysicalObject, which contains these
elements: glass lid, small pan, fan, cabinet, drychem,
jug. ScenarioEngine also supports integer and string
arguments.

When an action handler method is invoked, the
ScenarioEngine reconsiders the events that are scheduled
to happen in the future. First, every future event currently
scheduled is cancelled. Next, Clingo is invoked in order
to compute the new future of events that are caused by
the narrative obtained by appending the new action to
the history of previously performed actions. Unity sends
everything Clingo needs to know in order to make this
deduction. This is:

• the generic part of the causal theory, consisting of
the causal logic in generic.lp and the ontology of
objects, fluents and actions in ontology.lp,

• the domain specific causal laws and state constraint
specified in the text asset causal laws,

• the narrative consisting of the current and all
previous actions encoded as occurs/2-facts.

The causal laws should be chosen so that this theory has
one and only one model, cf. Section 8, in which case
the action handler method ends by scheduling new future
events based on the starts/2 and stops/2 facts in this
model. Otherwise, an error is signalled.

10.5 Clingo interface
Potassco, who develops Clingo, does not provide a .NET
API, but it is straightforward to invoke their C API via
.NET P/Invoke. Since ScenarioEngine only needs a small
part of this API, we implemented the communication
from scratch rather than building on the existing systems
discussed in Section 2.

Each stable model we get from the C API is essentially
a list of abstract syntax trees representing literals. We
preserve this structure on the .NET side using a form
of Scott encoding so that we can process the models
using pattern matching and a limited form of unification.
We found this approach to be more flexible than the

object-relational mappings used by EmbASP.

10.6 Taking stock
The core functionality of the ScenarioEngine is to
generate a scenario specific .NET interface to the
reasoning engine, which is easily integrated into the
control flow of Unity 3D games and simulations. The
interface is generated at compile time based on the
ASP code alone. No “boiler-plate” code is needed for
the integration; and if there are changes to the ASP
scenario description that affect the interface, it will
be discovered by the Unity programmers at compile
time. This facilitates iterative scenario development by
reducing the risk of introducing bugs.

On a higher level the function of the ScenarioEngine
is to separate core game structures into those that have to
do with the physical simulation and those that have to do
with designing the story or stories that an initial scene can
evolve into. More specifically, the ScenarioEngine factors
the logic governing the evolution of a scenario out of the
simulation development environment itself, making it an
asset that can be managed, maintained and reasoned about
independently. The idea is not unlike the decomposition
expressed in Bob Kowalski’s slogan algorithm = logic
+ control.50 At the risk of overassimilation perhaps, one
may think of a simulation scenario in terms of a similar
equation simulation = scenario + physical simulation. By
allowing the scenario designer to ignore all aspects having
to do with the physical simulation, the ScenarioEngine
does not require that person to know how to program in
the simulation environment. Conversely, developers of the
simulation environment are free to focus exclusively on
the physical simulation and the behaviour of its objects,
not needing to anticipate the twists and turns that a story
may take. This can reasonably be expected to reduce the
amount of programming it takes to configure a scene, and
to increase the reuse value of that scene.

11 Concluding remarks and future work
In this paper we have developed a three-part concept
for specifying and executing training scenarios on
simulation- and game development platforms.

First, we have defined an action description language
calledALID, implemented in Answer Set Programming,

Prepared using sagej.cls

27

void Do__put(PhysicalObject x, PhysicalObject y)
void Do__turn_on(PhysicalObject x)
void Do__empty(PhysicalObject x, PhysicalObject y)
void Do__apply(PhysicalObject x, PhysicalObject y)
void Do__no_action()

static Action Starts__pan_smoke { get; set; }
static Action Stops__pan_smoke { get; set; }
static Action<PhysicalObject> Starts__fire { get; set; }
static Action<PhysicalObject> Stops__fire { get; set; }

Listing 9. Generated handler methods and properties

for commonsense default reasoning about actions and
events in a simulation scenario. The language ALID
is designed to support the computation of schedules of
future events that are to be executed by some simulation
platform.

Secondly, we have defined a stateless protocol to allow
the computed schedule to be sent to the simulation
platform for execution. The schedule contains a default
future of events, understood as what will unfold given
the actions taken so far in the simulation environment,
and provided that nothing more is done. New actions can
change the default future, propelling the evolution of the
story along different lines.

Thirdly, we have implemented an efficient simulation
event controller in the form of a C# library Scenario-
Engine. It implements our stateless protocol using the
ASP system Clingo62 for causal reasoning. As a C#

library it is suitable for use with the Unity 3D game
development platform.

On the theoretical side, we have proved a theorem
in the meta-theory of the proposed action description
language that states that the schedule deduced from an
ALID scenario description and an arbitrary narrative is
unique, provided that the scenario description satisfies
certain natural constraints; in a nutshell that 1) the
domain specific rules do not express choice using cycles
through negation, 2) that there are no retroactive domain
specific rules that change the past, and 3) that the domain
description is consistent. Determinism in this sense does
not deprive the scenario designer of the means to model
chance events and alternative future. It merely ensures
that such events are not unintended side effects of the

causal logic.

Future work divides into theoretical and practical. On
the theoretical side it remains to prove that every ALID
theory has a finite grounding. All our experimental work
so far indicates that this is the case, but we have no proof
to offer yet. The property is easy to prove for the domain
specific part of an ALID theory, for reasons adduced
above. It is not equally clear how to prove it for the generic
part, since the generic part is not λ-restricted.

Still on the theoretical side, the computational
complexity of checking whether anALID theory is well-
founded has yet to be determined. We conjecture that
an algorithm can be found which is at least fast for the
theories that will occur in practice.

Future work of a practical implementation-oriented
nature includes optimizing the current implementation of
the ScenarioEngine. In the current implementation every
call to Clingo from Unity happens synchronously. This
can cause the user interface to become unresponsive if
the scenario is complex. Calling Clingo from a separate
thread, which is what ThinkEngine does, is one possible
solution. However, as this introduces a new set of
challenges, it would perhaps be better to reduce the work
Clingo has to perform. For example, we could remember
the full state at the time of the previous user action rather
than all the actions leading up to it, an approach that might
perhaps be fruitfully combined with Clingo’s support for
incremental computation.

Finally, some stretch-goals naturally suggest them-
selves once one has a protocol and API for integrating
ASP reasoning in a game development platform. What

Prepared using sagej.cls

28 Simulation XX(X)

ought to be a fairly low-hanging fruit is to use a causal
theory to reason abductively from goals to the means
of achieving them, instead of, as we do in this paper,
deductively from actions to the resulting states. This could
be used to extract plans for computer controlled agents
to enable them to manipulate objects in a purposeful and
goal-oriented way based on a means-end analysis of the
scene.

Appendix: Proof of determinism
The notion of a well-founded causal theory was described
informally in Section 8. Here we provide a mathematical
definition and we prove that well-founded causal theories
are deterministic in the sense given by Definition 5.

The proof exploits a well-know property of extended
logic programs called local stratification,19 which is a
sufficient condition for the uniqueness of models.

11.1 Stratification
Let Γ be an extended logic program, let Γ′ be its ground
instantiation (as defined in Section 3) and define >+

and >− to be the least binary relations on the set
of literals in Γ′ such that for every ground rule l←
l1, . . . , lm, not lm+1, . . . , not ln in Γ′:

• l >+ li for every i ∈ {1, . . . ,m}

• and l >− li for every i ∈ {m+ 1, . . . , n} .

Now let

> = > ∗
+ ; >− ; > ∗

+

where ∗ is is the reflexive and transitive closure operation
and ‘;’ is relation composition. We say that Γ is locally
stratified if > is a well-founded relation in the sense that
there is no infinite decreasing chain

l0 > l1 > l2 >

If Γ is locally stratified, then > must be acyclic. The
converse holds if the set of literals in Γ′ is finite. A normal
logic program is an extended logic program which does
not contain strong negation (¬). The following result is
well-known:19

Theorem 1. If Γ is a locally stratified normal logic
program, then Γ has exactly only answer set.

This carries over to extended logic programs as follows.
First, observe that strong negation can be emulated in
logic programs with constraints by considering P and ¬P
to be separate predicate symbols and including constraints
⊥← P,¬P for every P . Next, observe that if Γ is a
normal logic program and Γ′ is a set of constraints, then
the answer sets for Γ ∪ Γ′ are by definition the answer
sets for Γ that satisfy each contraint in Γ′ (meaning that
for every ground instance of the constraint, at least one of
the premises should not hold in the answer set).

Since we do not allow (other) constraints in extended
logic programs, we get:49

Theorem 2. Let Γ be an extended logic program, and
let −Γ be the normal logic program where every strongly
negated predicate symbol ¬P in Γ has been replaced by a
corresponding new predicate symbol −P . Then a subset
I ⊆ lit(Γ) is an answer set for Γ iff −I is an answer set
for −Γ and −I does not contain any contradictory pairs
{P,−P}.

We shall say that an answer set for −Γ is sound if it
does not contain any such contradictory pairs. Listing 10
shows that −Γ may have both sound and unsound answer
sets. Also observe that the way we have defined local

1 P :- not Q.
2 Q :- not P.
3 ¬Q :- not P.

Listing 10. Extended logic program Γ such that −Γ has two
answer sets, {P} and {Q,−Q}

stratification, it applies to extended logic programs Γ in
general – not only normal logic programs – and that Γ is
locally stratified if and only if −Γ is locally stratified.

11.2 Well-founded causal theories
In this section a narrative will be any logic program con-
sisting entirely of ground facts of the form occurs(f, t)
where t is a nonnegative integer. Thus,−A = A for every
narrative A. The following is a generalization of ALID
theories:

Definition 6. We shall say that an extended logic
program Γ is a causal theory if Γ = Γb ∪ Γi ∪ Γc where:

Prepared using sagej.cls

29

1. Γb does not contain any (weak or strong)
negation or any instances of the predicates ‘step’,
‘step between’, ‘holds’ and ‘occurs’;

2. Γi consists of the generic part of any ALID theory,
i.e. the rules pertaining to steps, inertia and the
closed world assumption described in Section 7.1;

3. Γc consists of rules whose heads/conclusions
all have the form ‘step(t)’, ‘holds(f, t)’ or
‘¬holds(f, t)’.

We shall refer to the rules in Γc as the causal rules of Γ.
It is easy to see that every ALID theory Γ is a causal

theory in the above sense, with Γb containing the action
and fluent declarations and Γc containing the causal laws,
both dynamic and static.

For a causal theory Γ to be deterministic, the causal
rules must be constrained. For this we need a new
construct: Let Γ be a causal theory, let Γ′ be its ground
instantiation, let F be its set of ground fluents, and let−F
be a disjoint “mirror set” where each fluent is preceded
by −. We define a labeled graph on F ∪ −F with edges
+⇐, −⇐ and !⇐ :

First, we have f
!⇐ −f and −f !⇐ f for all f .

Next, let l← l1, . . . , lm, not lm+1, . . . , not ln be a rule
in Γ′ which is an instance of a rule in Γc and
where l ∈ {holds(f, t),¬holds(f, t)} for some f . If li ∈
{holds(g, t),¬holds(g, t)} for some i and g (and the same
t as in the head), then

• f ′ +⇐ g′ if i ∈ {1, . . . ,m}, and

• f ′ −⇐ g′ if i ∈ {m+ 1, . . . , n},

where

f ′ =

{
−f if l is strongly negated,
f otherwise.

g′ is defined similarly (in terms of g and li).

Definition 7. A causal theory Γ will be called well-
founded if its causal rules have the following properties:

1. There are no premises of the form ‘not step(t)’.

2. Every timestamp in the body of a causal rule must be
less than or equal to the timestamp in the head.

3. If the premises with timestamps in a causal rule are
all weakly negated (with ‘not’), then the timestamp
in its head must be a nonnegative constant.

4. Whenever we have an infinite path

x0
u0⇐ x1

u1⇐ x2 . . .

in the graph defined above and it contains an infinite
number of edges labelled ‘−’ or ‘!’, the path must
contain both f

!⇐ −f and −f !⇐ f for some f .

In this definition property 1 prevents conflicts with
the basic rules for step, 2 expresses that no effect
can happen before its causes, and 3 ensures that we
do not have to consider negative timestamps. More
importantly, property 4 puts restrictions on the negative
dependencies in causal rules. This ensures that we avoid
non-determinism even though we are using not to express
default reasoning.

It is easy to see that every ALID theory has
properties 1, 2 and 3. However, the following loop from
the first example in Section 8 shows that 4 does not hold
in general:

fire(fan)
+⇐ −fire(pan)

!⇐ fire(pan)
+⇐ −fire(fan)

!⇐ fire(fan)

Remarks: As stated, property 2 of Definition 7
implicitly assumes that the ground instantiation of a
causal theory will only have numeric constants at the
positions of t and t′ in atoms of the forms occurs(f, t),
holds(f, t), step(f, t) and step between(t, t′). For this to
be true, the timestamp in the head of each causal rule
must be an arithmetic expression of numeric constants
and timestamp variables so that the grounding algorithm
will not introduce symbolic expressions at these positions.
The arithmetic functions available will vary between ASP
solvers. A max-function is convenient to ensure that every
causal rule satisfies property 2. Example:

holds(contract valid, max(T1, T2)) :-

occurs(buyer signed, T1),

occurs(seller signed, T2).

Prepared using sagej.cls

30 Simulation XX(X)

Let Γ is a causal theory with a finite number of
rules before grounding that only involve the arithmetic
functions +, min and max. It is beyond the scope of this
text but intuitively clear that it is decidable whether Γ
is well-founded: Conditions 1 and 3 are trivial to check,
condition 2 involves checking a finite number of cases,
and condition 4 involves checking the finite set of loops

x0
u0⇐ x1 . . .

un⇐ x0 .

However, it is not clear whether checking conditions 2
and 4 is computationally efficient in general. Hopefully,
an algorithm can be found which is fast for most causal
theories that occur in practice.

11.3 The proof
We now set out to prove the following:

Theorem 3. Every well-founded causal theory is
deterministic.

Let A be a narrative, let Γ be a well-founded causal
theory. By Theorem 2 (and the role of grounding in the
semantics of logic programs) we only have to prove that

if ∆ has a sound answer set,
then this is its only answer set,

where ∆ is the ground instantiation of −(Γ ∪A).

This will follow easily from two lemmas concerning
∆�n , which we define as the subset of ∆ consisting of the
(facts and) rules where all the timestamps are less than n.

Lemma 1. Let n be a natural number. If I is an answer
set for ∆ or ∆�k for some k ≥ n, then the restriction I�n
of I to timestamps less than n is an answer set for ∆�n .

Proof. Let I be an answer set for ∆. It is easy to verify
that it is sufficient to show that for every rule R ∈ ∆ \
∆�n the head ofR does not occur in ∆�n . IfR is a causal
rule, then this follows from condition 2 of the assumption
that Γ is well-founded; and it is easy to see that the other
rules in a causal theory also have this property.

The case when I is an answer set for ∆�k is similar if
k > n and trivial if k = n.

Next, we will show that each ∆�n has the property we
want for all of ∆:

Lemma 2. Let n be a natural number. If ∆�n has a
sound answer set, then this is its only answer set.

Proof. The proof is by induction on n.
The grounding algorithm will ensure that all time-

stamps in ∆ are nonnegative since we have assumed con-
ditions 2 and 3 of Definition 7 and only allow nonnegative
timestamps in narratives. (If in doubt, it is also easy to
verify that removing all rules with negative timestamps
from ∆ yields a ground theory with the same answer
sets.) Consequently, ∆�0 does not contain any rules with
timestamps. This leaves the (instances of) the facts and
rules in Γb and the narrative A. Since these do not contain
weak or strong negation, ∆�0 has a unique answer set
which is necessarily sound.

Now assume that the lemma holds for some n. We shall
prove that it also holds for n+ 1, but first observe that

every rule R ∈ ∆�n+1\∆�n
must have the timestamp n in its head.

Since R 6∈ ∆�n , it must contain at least one such
timestamp. When R is a causal rule, condition 2 of
Definition 7 means that this must also be the head
timestamp; and (as mentioned in the proof of the previous
lemma) it is easy to verify that the other rules of Γ also
have this property.

Let I be a sound answer set for ∆�n+1 . Then I�n is an
answer set for ∆�n by Lemma 1; and it is sound since it
is a subset of I . Thus, it is the unique answer set for ∆�n
by the induction hypothesis. Next, we consider the cases
step(n)∈I and step(n) 6∈I separately.

First, assume that step(n) 6∈ I . Since Γ includes the
rules (9) to (11), the timestamp n does not occur in I ,
and we have I = I�n . Let J be another answer set for
∆�n+1 . Then J�n = I�n by Lemma 1 and the induction
hypothesis. Suppose that step(n) ∈ J . Since J is the
minimal model for the reduct (∆�n+1)J , it contains an
atom a with timestamp n which is the head of a rule
in ∆�n+1\∆�n where each premise is true in J and no
positive premise has timestamp n. Since the premises
of this rule must also hold in I , we get a ∈ I , which
contradicts the fact that I does not contain timestamp n.
Thus, step(n) 6∈ J and J = J�n = I�n = I .

Now, assume that step(n) ∈ I , and let E be the
least ground extended logic program with the following
properties:

Prepared using sagej.cls

31

(i) I�n ⊆ E (included as facts),

(ii) step(n) ∈ E (also included as a fact),

(iii) For every rule

l← l1, . . . , lp, not lp+1, . . . , not lq

in ∆�n+1\∆�n such that

li ∈ I�n iff i ≤ p
for each li that does not contain the timestamp n

E contains a rule which is identical except that we have
dropped each premise (li or not li) that is either step(n) or
does not contain n.

If we can show that E is locally stratified and that every
answer set for ∆�n+1 is an answer set for E, then I is the
unique answer set of ∆�n+1 by Theorem 1.

Let J be an answer set for ∆�n+1. First, we see that
J is a model for E. (i) J�n = I�n (which is sound)
by Lemma 1 and the induction hypothesis. (ii) If J is
sound and step(n)6∈J , then J is the unique answer set
for ∆�n+1 by the argument above, constradicting the
assumption that step(n)∈I . If J is not sound, then the
contradictory pair in J must contain the timestamp n;
and thanks to rules (9) to (11) we also have step(n)∈J .
(iii) J satisfies each remaining rule in E since J satisfies
the corresponding rule in ∆�n+1 as well as every premise
that was removed, cf. (i) and (ii). There is a similar
relationship between the reducts of E and ∆�n+1 with
respect to J . Thus, J is an answer set for E by induction
on the construction of the minimal model M

(
∆�n+1

J
)

.
Now assume that E is not locally stratified, which

means that we have an infinite decreasing chain like this:

a0,0 >+ . . . >+ a0,n0 >−

a1,0 >+ . . . >+ a1,n1 >−

a2,0 >+ . . . >+ a2,n2 >− . . .

where we have emphasized each instance of>−. We want
to show that this contradicts property 4 of Definition 7, but
first we must identify the predicate symbols in this chain.

Since the >+ and >− are both generated by the rules
in E, each element ai,j must contain the timestamp n.
Strong negation is only ever used with holds; and there

can be no occurs in the chain since every rule in E with
occurs in the head must be a fact. Similarly, there can
be no step between since the instances of rule (14) have
been reduced to facts in E. By construction, step(n) is
not a premise of any rule in E; and not step(t) is not
even a premise of any rule in Γ (by property 1). Thus,
step does not occur in the chain either. We allow other
predicate symbols in Γb , but their rules do not contain not
(nor predicates with rules that do). Hence, these symbols
may not occur either, and we are left with holds(f, n) and
−holds(f, n) for ground fluents f .

Next, we define a corresponding labelled path with
nodes

xi,j =

{
f if ai,j = holds(f, n),
−f if ai,j = −holds(f, n).

If ai,ni
>− ai+1,0 because of an inertia rule or closed

world assumption in E, rules (12), (13) and (15), then
we include the edge xi,ni

!⇐ xi+1,0 . It is easy to see that
every other step ai,j >s ai′,j′ (where s ∈ {+,−}) must
be due to a ruleR ∈ E which is the result of deleting zero
or more premises from a ground causal rule. Thus, we
may include the corresponding edge xi,j

s⇐ xi′,j′ in the
path.

Since we now have a path with an infinite number
of edges marked − or !, it contains both f

!⇐ −f and
−f !⇐ f for some f by property 4. This means that
E contains instances of both inertia rules for the pair
(f, n), possibly replacing the negative inertia rule with
the corresponding closed world assumption if n = 0. For
the positive inertia rule instance to be included in E,
we know that I�n must contain holds(f, k) where k =
max {i | step(i)∈I�n} . Thus, n > 0 and I�n must also
contain −holds(f, k). Since this contradicts the fact that
I�n is sound, there is no such infinite decreasing chain.
Thus, E is locally stratified.

Assume that I and J are answer sets for ∆ and that I
is sound. In order to complete the proof of Theorem 3, we
must show that I = J . From Lemma 1 we see that I�j and
J�j are both answer sets for ∆�j for every j. Also, I�j
must be sound since it is a subset of I . Thus I�j = J�j
for every j by Lemma 2; and since every atom in I is a
member of I�j for some j (and J has the same property),
we get I = J . This concludes the proof of the theorem.

Prepared using sagej.cls

32 Simulation XX(X)

Funding

This research was funded by the Research Council
of Norway under project no. 282081 (MixStrEx) and no.
329062 (ASCERT).

References

1. Ericsson KA. An introduction to Cambridge Handbook
of Expertise and Expert Performance: Its development,
organization, and content. In Ericsson KA, Charness N,
Feltovich PJ et al. (eds.) The Cambridge Handbook of
Expertise and Expert Performance, chapter 1. Cambridge
Univ. Press, 2006. pp. 3–20.

2. Hannay JE and Kikke Y. Structured crisis training with
mixed reality simulations. In Proc. 16th Int’l Conf.
Information Systems for Crisis Response and Management
(ISCRAM). pp. 1310–1319.

3. Papineau D. Philosophy of science. In Bunnin N and Tsui-
James EP (eds.) The Blackwell Companion to Philosophy.
Blackwell Publishing, 1996. pp. 286–317.

4. Zeigler BP, Praehofer H and Kim TG. Theory of Modeling
and Simulation. 2nd ed. Academic Press, 2000.

5. Baral C and Gelfond M. Reasoning agents in dynamic
domains. In Logic-based artificial intelligence. Springer,
2000. pp. 257–279.

6. Gelfond M and Kahl Y. Knowledge Representation,
Reasoning, and the Design of Intelligent Agents: The
Answer-Set Programming Approach. Cambridge University
Press, 2014.

7. Baral C, Gelfond G, Pontelli E et al. An action language
for multi-agent domains. Artificial Intelligence 2022; 302:
103601.

8. Lifschitz V. Answer set programming. Springer Heidelberg,
2019.

9. Giunchiglia E, Lee J, Lifschitz V et al. Nonmonotonic
causal theories. Artificial Intelligence 2004; 153(1): 49–
104. Logical Formalizations and Commonsense Reasoning.

10. Makinson D. General patterns in nonmonotonic reasoning.
In Handbook of Logic in Artificial Intelligence Nad Logic
Programming, Vol. Iii. Oxford: Clarendon Press, 1994. pp.
35–110.

11. Schlechta K. Coherent systems. Elsevier, 2004.
12. Makinson D. A tale of five cities. In David Makinson on

Classical Methods for Non-Classical Problems. Springer,
2014. pp. 19–32.

13. Gebser M, Kaminski R, Kaufmann B et al. Answer
set solving in practice. Synthesis lectures on artificial
intelligence and machine learning 2012; 6(3): 1–238.

14. Stolpe A and Hannay JE. Quantifying means-end reasoning
skills in simulation-based training: a logic-based approach.
Simulation 2022; 98(10): 933–957.

15. Zeigler BP. Hierarchical, modular discrete-event modelling
in an object-oriented environment. Simulation 1987; 49(5):
219–230.

16. Chow ACH and Zeigler BP. Parallel devs: A parallel,
hierarchical, modular modeling formalism. In Proceedings
of Winter Simulation Conference. IEEE, pp. 716–722.

17. Cho SM and Kim TG. Real-time devs simulation:
Concurrent, time-selective execution of combined rt-devs
model and interactive environment. In SCSC-98. pp. 410–
415.

18. Vangheluwe H. The discrete event system specification
(devs) formalism. tech rep 2001; .

19. Baral C. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
2003.

20. Pearce D. Equilibrium logic. Annals of Mathematics and
Artificial Intelligence 2006; 47(1): 3.

21. Gebser M, Kaminski R, Kaufmann B et al. Answer Set
Solving in Practice. Morgan & Claypool Publishers, 2012.

22. Cristiá M. Formalizing the semantics of modular devs
models with temporal logic. In Proceeedings of 7me
Conférence Internationale de Modélisation, Optimisation et
Simulation des Systemes: Communication, Coopéeration et
Coordination (MOSIM 08).

23. Arias J, Carro M, Salazar E et al. Constraint answer set
programming without grounding. Theory and Practice of
Logic Programming 2018; 18(3-4): 337–354.

24. IEEE Standards Association. 1516-2010 – IEEE
Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA), 2010.

25. Simulation Interoperability Standards Organization. SISO-
STD-003-2006 – Standard for Base Object Model (BOM)
Template Specification, 2006.

26. Mojtahed V, Andersson B, Kabilan V et al. BOM++,
a semantically enriched BOM. In Proc. 2008 Spring
Simulation Interoperability Workshop (SIW). Simulation
Interoperability Standards Organization.

27. De Nicola A, Melchiori M and Villani ML. Creative design
of emergency management scenarios driven by semantics:
An application to smart cities. Information Systems 2019;

Prepared using sagej.cls

33

81: 21–48.
28. Steel J, Iannella R and Lam HP. Using ontologies for

decision support in resource messaging. In Proc. 5th
Int’l Conf. Information Systems for Crisis Response and
Management (ISCRAM). pp. 189–196.

29. Bénaben F, Hanachi C, Lauras M et al. A metamodel
and its ontology to guide crisis characterization and its
collaborative management. In Proc. 5th Int’l Conf.
Information Systems for Crisis Response and Management
(ISCRAM). pp. 189–196.

30. Singapogu SS, Gupton K and Schade U. The role of
ontology in C2SIM. In Proc. 21st International Command
and Control Research and Technology Symposium (ICCRTS
2016). The International Command and Control Institute.
Paper 12.

31. Simulation Interoperability Standards Organization. The
Command and Control Systems – Simulation Systems
Interoperation (C2SIM) Product Development Group
(PDG) and Product Support Group (PSG), 2019. Accessed
December 19, 2019.

32. van den Berg TW, Huiskamp W, RobertSiegfried et al.
Modelling and Simulation as a Service: Rapid deployment
of interoperable and credible simulation environments –
an overview of NATO MSG-136. In Proc. 2018 Winter
Simulation Innovation Workshop.

33. Kasım B, Çavdar AB, Nacar MA et al. Modeling and
simulation as a service for joint military space operations
simulation. The Journal of Defense Modeling and
Simulation 2021; 18(1): 29–38.

34. Hannay JE, van den Berg T, Gallant S et al. Modeling
and Simulation as a Service infrastructure capabilities
for discovery, composition and execution of simulation
services. J Defense Modeling and Simulation: Applications,
Methodology, Technology 2020; 1(4): 5–28.

35. Hannay JE and van den Berg TW. The NATO MSG-
136 Reference Architecture for M&S as a Service. In
Proc. NATO Modelling and Simulation Group Symp.
on M&S Technologies and Standards for Enabling
Alliance Interoperability and Pervasive M&S Applications
(STO-MP-MSG-149). NATO Science and Technology
Organization. Paper 13.

36. Mentré D, Marché C, Filliâtre JC et al. Discharging
proof obligations from Atelier B using multiple automated
provers. In Derrick J, Fitzgerald J, Gnesi S et al. (eds.)
Abstract State Machines, Alloy, B, VDM, and Z. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 238–251.

37. Abrial JR. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

38. Morris K, Snook C, Hoang TS et al. Formal verification
and validation of run-to-completion style state charts using
Event-B. Innovations in Systems and Software Engineering
2022; 18(4): 523–541.

39. Gao Y, Zhang Y, Zhou X et al. Overview of simulation
architectures supporting live virtual constructive (lvc)
integrated training. In 2021 6th International Conference on
Control, Robotics and Cybernetics (CRC). IEEE, pp. 333–
338.

40. Hodicky J, Prochazka D and Prochazka J. Automation in
experimentation with constructive simulation. In Mazal J
(ed.) Modelling and Simulation for Autonomous Systems.
Cham: Springer International Publishing, pp. 566–576.

41. Grigoryan G, Etemadidavan S and Collins AJ. Computer-
ized agents versus human agents in finding core coalition in
glove games. SIMULATION 2022; 98(9): 807–821.

42. Løvlid RA, Bruvoll S, Brathen K et al. Modeling the
behavior of a hierarchy of command agents with context-
based reasoning. J Defense Modeling and Simulation:
Applications, Methodology, Technology 2018; 15(4): 369–
381.

43. Zakaria N. Action network: a probabilistic graphical model
for social simulation. SIMULATION 2022; 98(4): 335–346.

44. Simulation Interoperability Standards Organization. SISO-
STD-011-2014 – Standard for Coalition Battle Manage-
ment Language (C-BML) Phase 1, Version 1.0, 2014.

45. Angilica D, Ianni G and Pacenza F. Tight integration of
rule-based tools in game development. In Alviano M, Greco
G and Scarcello F (eds.) AI*IA 2019 – Advances in Artificial
Intelligence. Cham: Springer International Publishing, pp.
3–17.

46. Calimeri F, Fuscà D and Germano S. Fostering the use
of declarative formalisms for real-world applications: The
embasp framework. New Generation Computing 2019;
37(1).

47. Azpiazu RA. clingo-cs, 2021. URL https://github.

com/NEKERAFA/clingo-cs. Original-date: 2020-01-
15T16:57:14Z.

48. Gelfond M and Lifschitz V. The stable model semantics for
logic programming. In Kowalski R, Bowen and Kenneth
(eds.) Proceedings of International Logic Programming
Conference and Symposium. MIT Press, pp. 1070–1080.

49. Gelfond M and Lifschitz V. Classical negation in logic
programs and disjunctive databases. New Generation

Prepared using sagej.cls

https://github.com/NEKERAFA/clingo-cs
https://github.com/NEKERAFA/clingo-cs

34 Simulation XX(X)

Computing 1991; 9: 365–385.
50. Kowalski R. Algorithm = logic + control. Commun ACM

1979; 22(7): 424–436.
51. Kowalski R. Computational logic and human thinking: how

to be artificially intelligent. Cambridge University Press,
2011.

52. Giunchiglia E, Lee J, Lifschitz V et al. Nonmonotonic
causal theories. Artificial Intelligence 2004; 153(1–2): 49–
104.

53. Mueller ET. Chapter 17 event calculus. In van
Harmelen F, Lifschitz V and Porter B (eds.) Handbook
of Knowledge Representation, Foundations of Artificial
Intelligence, volume 3. Elsevier, 2008. pp. 671–708.

54. Oberschelp A. Order sorted predicate logic. In Bläsius KH,
Hedtstück U and Rollinger CR (eds.) Sorts and Types in
Artificial Intelligence. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 7–17.

55. Mueller ET. Commonsense reasoning: an event calculus
based approach. Morgan Kaufmann, 2014.

56. Reiter R. On closed world data bases. In Webber BL
and Nilsson NJ (eds.) Readings in Artificial Intelligence.
Morgan Kaufmann, 1981. pp. 119–140.

57. Kaufmann B, Leone N, Perri S et al. Grounding and solving
in answer set programming. AI magazine 2016; 37(3): 25–
32.

58. Gebser M, Schaub T and Thiele S. Gringo: A new grounder
for answer set programming. In International Conference
on Logic Programming and Nonmonotonic Reasoning.
Springer, pp. 266–271.

59. Breien FS and Wasson B. Narrative categorization in digital
game-based learning: Engagement, motivation & learning.
British Journal of Educational Technology 2021; 52(1): 91–
111.

60. Subhash S and Cudney EA. Gamified learning in higher
education: A systematic review of the literature. Computers
in Human Behavior 2018; 87: 192–206.

61. Campos N, Nogal M, Caliz C et al. Simulation-based
education involving online and on-campus models in
different european universities. International Journal of
Educational Technology in Higher Education 2020; 17(1):
8.

62. Gebser M, Kaminski R, Kaufmann B et al. Clingo = asp +
control: Preliminary report, 2014.

Author biographies
Audun Stolpe is a senior researcher at the Norwegian
Computing Center. His current research explores applica-
tions of declarative knowledge representation and logic
pro- gramming for simulation based training, information
security, decision support and planning. A doctor of
philosophy his general research interests fall in the
intersection of pure and applied logic, philosophy and
information science.

Ivar Rummelhoff is a senior research scientist at the
Norwegian Computing Center, mostly working within
the area of digital transformation. Ivar has a PhD in
mathematical logic.

Jo Erskine Hannay is a senior researcher at the Center
for Effective Digitalization of the Public Sector at Simula
Metropolitan Center for Digital Engineering. He conducts
research in simulation-based training with a particular
focus on training judgement and decision making in crisis
management and in health care collaboration. He also
conducts research on benefits estimation and evaluation
of IT systems and services, both from the perspective
of systems development and from the perspective of
stakeholders affected by such systems and services.

Prepared using sagej.cls

	Introduction
	Related work
	Answer set programming
	The concept of a causal theory
	The action description language
	A stateless protocol for simulation event control
	The more general
	The generic part of an theory
	The domain specific part of an theory

	On the form of theories: Determinism
	Example: Representing the kitchen scenario
	Deducing schedules
	Some sample plays
	Taking stock

	Integrating Clingo and Unity—an implementation of the stateless protocol
	Usage overview
	Example scenario
	Program structure
	Unity integration
	Clingo interface
	Taking stock

	Concluding remarks and future work
	Stratification
	Well-founded causal theories
	The proof

