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Abstract: The age determination of fish is fundamental to marine resource management. This task
is commonly done by analysis of otoliths performed manually by human experts. Otolith images
from Greenland halibut acquired by the Institute of Marine Research (Norway) were recently used to
train a convolutional neural network (CNN) for automatically predicting fish age, opening the way
for requiring less human effort and availability of expertise by means of deep learning (DL). In this
study, we demonstrate that applying a CNN model trained on images from one lab (in Norway) does
not lead to a suitable performance when predicting fish ages from otolith images from another lab
(in Iceland) for the same species. This is due to a problem known as dataset shift, where the source
data, i.e., the dataset the model was trained on have different characteristics from the dataset at test
stage, here denoted as target data. We further demonstrate that we can handle this problem by using
domain adaptation, such that an existing model trained in the source domain is adapted to perform
well in the target domain, without requiring extra annotation effort. We investigate four different
approaches: (i) simple adaptation via image standardization, (ii) adversarial generative adaptation,
(iii) adversarial discriminative adaptation and (iv) self-supervised adaptation. The results show
that the performance varies substantially between the methods, with adversarial discriminative and
self-supervised adaptations being the best approaches. Without using a domain adaptation approach,
the root mean squared error (RMSE) and coefficient of variation (CV) on the Icelandic dataset are as
high as 5.12 years and 28.6%, respectively, whereas by using the self-supervised domain adaptation,
the RMSE and CV are reduced to 1.94 years and 11.1%. We conclude that careful consideration
must be given before DL-based predictors are applied to perform large scale inference. Despite that,
domain adaptation is a promising solution for handling problems of dataset shift across image labs.

Keywords: fish age determination; Greenland halibut; deep learning; dataset shift; domain adaptation

1. Introduction

Otoliths are small calcium carbonate structures that form part of the balance organ
in the inner ear of fish [1]. Due to their rich content of various information, they could be
referred to as the “tachograph” of the fish. Fish otolith sciences have evolved in a range of
research fields, from paleontology to stock discrimination and fish age determination. For
example, the isotopic fingerprints of fish otoliths have proven to give insight into the water
bodies which have been previously occupied by fish [2]. In this area, fish otoliths as old as
172 million years have been used [3]. Otoliths have also been used to distinguish different
species. This has been, for instance, useful for studying the diet of sea mammals [4] or
seabirds [5] by examining otoliths from feces samples. Other interesting studies have been
carried out for long-lived fish in the Pacific [6], where radio-carbon data obtained from
otoliths have provided valuable information on carbon flux in the oceans and have also
been used to validate fish age.
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When it comes to fish age determination, otolith images from captured fish are man-
ually read, with in the order of a million images read every year [7]. Age-readers count
age zones analogous to counting age rings in a tree, typically using a microscope or high-
resolution images. However, this process is challenging and time-consuming [8]. During
the last decades, automatic techniques have been proposed to automate this tedious activity
(e.g., [9]). More recently, the use of deep learning (DL) has received more and more attention
with promising results shown for Greenland halibut [10,11], snapper and hoki [12], red
mullet [13] and Atlantic salmon [14].

However, the construction of DL systems can be challenged and hindered by several
factors. The developed system trained at one otolith image lab where it works well, may
not necessarily work well when applied to otolith images from another lab for the same
species. In such cases, the system may have trouble generalizing to unseen data from
another lab, due to data characteristics that are different from those at the training stage.

The discrepancy between data coming from different labs may have a range of explana-
tions. From personal communication with reader experts the following was noted: different
countries manage stocks that might have otoliths with varying readabilities due to different
fish environments and catch seasons. Ages may also be read using thin sectioning of
otoliths in some labs instead of reading the whole otolith (e.g., for Greenland halibut). The
conservation and preparation of the otoliths might influence the age readability as well, one
option being the storage of the otolith in an envelope and another being to freeze the otolith
in water [15]. Camera quality, lighting conditions and other imaging setup conditions may
also affect image characteristics, in addition to the magnifying glass equipment.

Acquiring new annotations such that it is possible to train the DL system with a more
diverse dataset can also be challenging, both in terms of effort and availability of expertise.
This process requires trained age-reading experts. Multiple methods are employed to
minimize error, such as age-reading workshops where age determined by different readers
from various labs are compared [16]. Reference otoliths are also used in training and are
periodically reread by readers to ensure consistency [17]. Lack of highly trained age-reading
experts can nevertheless lead to backlogs of otoliths that have not been annotated.

To address those challenges and increase the willingness to automate the age-reading
using DL, it could be of interest to show that an already trained system could generalize to
novel otolith images coming from other labs, while not requiring extra annotation effort.

The challenging situation where we observe different characteristics between the data
the model was trained on and the data used at test stage is often referred to as dataset
shift [18,19]. Training a classifier which performs well in this scenario can be addressed
using domain adaptation (DA) [20], i.e., adapting models trained on data from a source
domain to a different domain, known as the target domain. DA is typically carried out in a
setting where the training data from the source domain is labelled, but little or no labels are
available from the target domain. The case where we do not have labels at all in the target
domain is commonly described as unsupervised domain adaptation (UDA). As we could
more frequently face the scenario where we would like to test trained models on unlabeled
otolith images, in this paper, we will consider solving a UDA task for automating fish age
determination across different image labs, using DL.

There has been an effort made to develop deep neural networks that could handle
UDA. In a recent review study, Zhao et al. [21] divided UDA approaches into four categories:
(i) discrepancy-based, (ii) adversarial discriminative methods, (iii) adversarial generative
methods and (iv) self-supervised methods. The approaches from the two adversarial
categories were said to score best on performance and have been very popular. The
discrepancy-based approaches were said to have lower performance and be less applicable
to complex datasets, while the self-supervision-based methods represented a class of newer
approaches that were shown to be robust and applicable to complex datasets.

Based on this, the aim of this work has been to investigate different UDA approaches
from categories (ii)–(iv). We intended to see how they performed for the problem of
generalizing a model trained for fish age prediction on otolith images from a lab in one
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country, to do prediction on images from a different lab in a different country, without new
manual annotation.

The experiments were carried out based on otolith images from Greenland halibut
acquired by the Institute of Marine Research (Norway) and the Marine and Freshwater
Research Institute (Iceland). We adapted a trained network using otolith images and labels
from the Norwegian lab (source domain) to otolith images coming from the Icelandic lab
(target domain).

2. Materials and Methods
2.1. Data

The source and target datasets were collected by the Institute of Marine Research
(Norway) and by the Marine and Freshwater Research Institute (Iceland), respectively.

The source dataset was a subset of the one described in Moen et al. [10], it consisted
of 4109 images of paired right and left otoliths (collected between 2006 and 2017) having
a resolution of 2596 × 1944 pixels. Each otolith pair was separated leading to 8218 single
right and left otolith images, with labeled ages ranging from 1 to 26 years. Only ages read
by two experienced readers from the same lab were used and only one reader for each
otolith. Co-readings between the two readers revealed a negligible between-reader bias,
independent of age.

The target dataset was composed of 3501 right otolith images, that were obtained
from images of paired right and left otoliths having a resolution of 2048 × 1536 pixels.
The otoliths were collected between 2015 and 2020 from the Icelandic autumn ground fish
survey [22] and labeled ages ranged from 1 to 20 years. The ages were determined by a
single reader.

Examples of image variation across the Norwegian and the Icelandic lab are shown
in Figure 1, where one can observe some differences in terms of background, lighting
conditions and magnification. The age distribution estimated by readers for the Icelandic
dataset was such that the age label space was inside the range of the label space estimated
by the Norwegian lab (Figure 2).

Figure 1. Examples of otolith images (resized to 224 × 224 pixels) corresponding to different ages
(4–16 years) predicted by human readers. (a) Images acquired and annotated by the Norwegian lab;
(b) Images acquired and annotated by the Icelandic lab.
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Figure 2. Age frequency distribution of predicted ages by human readers in the Norwegian dataset
(gray) and the Icelandic dataset (blue).

2.2. UDA for Age Classification

We considered three different UDA approaches (Figure 3) to adapt an existing age
classification system for otolith images to a new target domain, such that we could still
have a suitable classification performance. For that, we exploited images from a source
domain DS and a target domain DT as well as labels only from DS. Common for the
three approaches was a weight sharing constraint between a feature extractor for the DS
images and the DT images, allowing us to learn a domain-invariant feature space. Another
common module was the classifier learned from the DS data. Since the output of the feature
extractor was supposed to be domain-invariant after being optimized during the training
process, we expected that using that module together with the classifier could produce
meaningful age predictions on images from DT .

2.2.1. Adversarial Generative Adaptation

The first method we used was a generative adversarial adaptation (Figure 3a), based
on the coupled generative adversarial networks (CoGAN) proposed by Liu and Tuzel [23].
It consists of a pair of GANs and the idea of using more than one GAN was compelling to
us by its originality. Moreover, the method showed promising results on UDA tasks when
it was introduced [23].

Our CoGAN had generators that synthesized images by taking as input a 100-dimensional
noise vector. We used the same networks as proposed in the implementation taken
from [24].

Feature extractors were used to output feature representations for the discriminators.
The architecture of the feature extractors was based on the commonly used convolu-
tional neural network (CNN) ResNet [25] and took images with the default input size of
224 × 224 pixels. Those networks were initialized using the weights from the source-CNN
(excluding the last classification layer), i.e., the CNN model trained to classify otolith ages
using images and labels from DS. The discriminator models were simply estimating the
probabilities that the generated images were real or synthesized for each of the domains.

Following [23], we tied the weights of the first few layers of the generators as well as
the weights from the feature extractors. This weight sharing allowed us to learn a domain-
invariant feature space, without requiring the existence of any pairs of corresponding
images in the two domains. For classifying otolith ages, the classifier was added to the
feature extractor and corresponded to the last layer of the ResNet model.

We trained the whole architecture by jointly solving the CoGAN learning problem
(CoGAN related loss [23]), involving images from DS and DT and the age classification
problem in DS (cross-entropy classification loss).
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Figure 3. Illustration of the different UDA architectures utilized for automatic age determina-
tion of otoliths across Norwegian (source) and Icelandic (target) labs. (a) Adversarial genera-
tive adaptation (CoGAN); (b) Adversarial discriminative adaptation (CDAN); (c) Self-supervised
adaptation (SimCLR).

2.2.2. Adversarial Discriminative Adaptation

The second method was an adversarial discriminative adaptation (Figure 3b) and dif-
fered from the previous approach in that it did not require generators. The implementation
followed the state-of-the-art method conditional adversarial domain adaptation (CDAN)
proposed by Long et al. [26]. As in the previous approach, the feature extractor was initial-
ized with the weights of the source-CNN model (taking input images of size 224 × 224)
and therefore shared the same architecture (excluding the last classification layer). The
classifier predictor corresponded to the last layer of the ResNet model. The discriminator
was a multilayer perceptron with two hidden layers having ReLU as a non-linear activation
function. It received an input x defined as a joint variable of the extracted feature represen-
tations and the classifier predictions. This network architecture ( x → 1024 → 1024 → 2)
was used to classify whether the input was coming from DS or DT . The size of the hidden
layers was chosen to match the default implementation of CDAN available from [27].
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This architecture was trained to solve a minimax optimization problem. The term to
be minimized included the cross-entropy classification loss (using data and labels from
DS), combined with the adversarial loss derived from the discriminator which tried to
match the distribution of the source and target domains involving images from DS and DT
(we followed [26] and fixed the combination parameter to 1). This last term relating to the
discriminator was the one that was also maximized in the minimax optimization problem
(see [26] for further details).

2.2.3. Self-Supervised Adaptation

The last method we chose to test for UDA used self-supervision (Figure 3c) and differed
from the previous approach in that the discriminator component was replaced by a pretext
network. In self-supervised learning, a supervised task is created out of the unlabeled
original data. Typically, the original images are transformed and the pretext network needs
to learn how to predict certain aspects related to the transformations. Predicting image
rotations [28], solving a jigsaw puzzle [29], retrieving colors from grayscale images [30] are
examples of pretext tasks. The idea of including the pretext network was to be able to learn
again a domain invariant feature representation using unlabeled otolith images from the
source and target domains.

We based our implementation on the generic method proposed by Xu et al. [31] and
available from [32]. As carried out in [31], we initially experimented with image rotation
prediction as a pretext task. However, the pretext network was rapidly finding the solution
during training and the learned feature representations from the otolith images did not
help for DA. We decided instead to select a more challenging pretext task, using the
simple framework for contrastive learning of visual representation (SimCLR) proposed
by Chen et al. [33]. This method was chosen for its simplicity of implementation and its
good performance that achieved significant advances in state-of-the-art self-supervised
learning. In SimCLR, the pretext network is trained to recognize positive samples, i.e.,
different augmented views of the same image and distinguish them from the negatives,
i.e., augmented views of other images from the dataset. We followed the recommendations
from [33] and used random cropping, resizing, color distortions and Gaussian blur as data
augmentations. The pretext network was a multilayer perceptron with one hidden layer
having a ReLU as non-linearity. The network received as input extracted features x from
the ResNet model feature extractor and outputted a 26-dimensional feature representation
( x → 512→ 512 → 26). The size of the hidden layer and the output were chosen to
match the default implementation of SimCLR available from [34]. As for the adversarial
approaches, the feature extractor was initialized with the weights of the source-CNN model.

The architecture of the self-supervised adaptation was trained to learn jointly the
pretext task (using unlabeled images from DS and DT) and the age classification task,
where the classifier predictor received images and labels from DS. The losses relating to
each of the tasks were added and minimized during training. The pretext task loss was
the InfoNCE loss [35], which is a popular choice of loss function for contrastive learning
aiming to pull feature representations that are close and push away representations that
are different. As pointed out by [33], learning such a task benefits from having large batch
sizes such that a large number of negative samples is obtained for comparison with every
single positive sample. To be able to use contrastive learning to our advantage for DA, the
feature extractor took as input images of size 96× 96 pixels (instead of 224× 224), ensuring
a sufficiently large batch size.

2.2.4. Implementation Details

We implemented the above methods using the PyTorch framework on a single GTX
1080 Ti GPU with 11 GB memory. For a fair comparison, we used the same ResNet
architecture for the feature extractors. Given our hardware resources, we chose a ResNet18
to be able to choose a large batch size for the self-supervised adaptation. For the layers that
were not part of the feature extractors (initialized using the Source-CNN), the initialization
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was done using random values scaled according to the method proposed in [36]. For each
of the models, we ran five trials where different random number generators were used for
the initialization. This helped in building a certain confidence in the performance of the
different algorithms when comparing them, by checking whether or not the results were
obtained by chance (consistency of the model).

For all the approaches, we followed Moen et al. [10] and used a constant learning rate
of 0.0004 and the Adam optimizer [37]. For adversarial DA approaches, we checked the
default parameters from the CoGAN implementation taken from [38] and chose a batch
size of 64. As self-supervised learning benefits from large batch sizes [33], we chose a
batch size of 512 (according to our computing resources). For all the methods, a number of
200 epochs was selected.

2.3. Other Considered Classifiers

To better understand how the three UDA approaches performed, we considered
comparing them with other classifiers, all defined by a ResNet18 architecture that was
trained either on image data acquired from the Norwegian lab or the Icelandic lab.

First, we considered ResNet18 networks trained on otolith images acquired and
annotated by the Norwegian lab. The models classified ages into one of the 26 categories
(from 1 to 26 years as defined by the labels from the source dataset) and the classification was
performed on two versions of resized images: 224 × 224 and 96 × 96. We directly deployed
these models on otolith images from the Icelandic lab, without any adaptation or finetuning.
These experiments were referred to as the lower performance bound, as we expected them
not to perform that well on the target data given the observed image variation across
the Norwegian and the Icelandic lab (Figure 1). We also applied these models on the
Norwegian source data and we denoted the experiments as the Norwegian bound.

Next, we considered ResNet18 networks trained on the Icelandic data, where during
training, we used the age labels provided by Iceland. This provided us with a higher
performance bound, as we expected to have better results than not using labels from Iceland
at all. These models classified ages into one of the 20 categories (from 1 to 20 years as
defined by the labels from the target dataset).

Finally, we considered a model where we performed a simpler domain adaptation
via a standardization preprocessing step. This was a semi-automatic approach derived by
practitioners with the aim of reducing the variability in background and resolution between
labs. The approach was based on a semi-automatic thresholding to remove the background.
Then, images were resized so that the vertical extension of the otolith covered 90% of the
vertical extension of the image. After standardizing the otolith images, we trained the
ResNet18 models on the Norwegian dataset (images of size 224 × 224 and 96 × 96) and
deployed them on the preprocessed images from Iceland. This provided us with another
domain adaptation approach denoted standardization. It was simpler than the three other
considered UDA methods (Figure 3) that required both images from the Norwegian and
the Icelandic labs when training. Examples of standardized images are shown in Figure 4.

For all the above models, a small validation set was used to choose the batch size
(128) and to control when to terminate the training process, setting a maximum number
of epochs of 150, as done in Moen et al. [10]. For the experiments denoted as lower
performance bound, Norwegian bound and the standardization approach, the validation
set was extracted from the source dataset, whereas for the higher performance bound
we used a validation set extracted from the target data. We chose the same learning
rate/optimizer as for the UDA approaches and we ran five trials for each of the models.
For each trial, different random number generators were used for the initialization of the
networks that also followed the method from [36].

A summary of the different experiments carried out in this study, with their corre-
sponding characteristics is reported in Table 1.
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Figure 4. Examples of otolith images where the standardization preprocessing step was applied.
(a) Standardized version of images from Figure 1a acquired and annotated by the Norwegian lab;
(b) Standardized version of images from Figure 1b acquired and annotated by the Icelandic lab.

Table 1. Summary of the different experiments with their associated characteristics.

Experiment Training
Labels

Training
Images Test Images Resolution Image Pre-

processing
Considered

as DA

Norwegian bound 224 Nor. Nor. Nor. 224 No No
Norwegian bound 96 Nor. Nor. Nor. 96 No No

Lower performance 224 Nor. Nor. Ice. 224 No No
Lower performance 96 Nor. Nor. Ice. 96 No No

Higher performance 224 Ice. Ice. Ice. 224 No No
Higher performance 96 Ice. Ice. Ice. 96 No No

Standardization 224 Nor. Nor. Ice. 224 Yes Yes
Standardization 96 Nor. Nor. Ice. 96 Yes Yes

Adv. generative (CoGAN) Nor. Nor. and Ice. Ice. 224 No Yes

Adv. discriminative
(CDAN) Nor. Nor. and Ice. Ice. 224 No Yes

Self-supervised (SimCLR) Nor. Nor. and Ice. Ice. 96 No Yes

2.4. Performance Measurement

For assessing the performance of the different classifiers, we considered as carried out
in [11] the root mean squared error (RMSE) between age prediction and read age, as well as
the mean coefficient of variation (CV) of independent estimators (human and DL system)
calculated for each given otolith. For both metrics, the lower the values the better.

3. Results

The results from our experiments are summarized in Tables 2 and 3 and also illustrated
in Figures 5–7. Rows 1 and 2 of Table 2 report the performance of age prediction by



Fishes 2022, 7, 71 9 of 16

experimenting with the Norwegian bound, where models were trained and tested on
otolith images acquired and annotated by the Norwegian lab. The classification was
performed on the two versions of resized images: 224 × 224 and 96 × 96. Reasonably
good RMSE/CV results were obtained considering five different trials (with relatively
low variation over these splits ≤ 0.10 for the RMSE) and were comparable to the earlier
study of Moen et al. [10] (RMSE = 1.65 years. and CV = 9%), although they tested on a
smaller dataset. Resizing the images to different resolutions had a very limited effect on
the performance.

Table 2. Summary of the performances achieved on the experiments that are not considered as domain
adaptation, i.e., Norwegian bound and lower/higher performance bounds. For each experiment, the
ResNet18 model was trained 5 times (using 5 different random number generators) and we reported
the averaged RMSE/CV together with standard deviation over the 5 trials (quantity after ± sign).

Experiment RMSE (Years) CV (%)

Norwegian bound 224 2.08 ± 0.05 10.09 ± 0.63
Norwegian bound 96 2.18 ± 0.10 10.4 ± 0.35

Lower performance 224 5.12 ± 0.58 28.6 ± 2.3
Lower performance 96 5.95 ± 1.3 31.3 ± 4.9

Higher performance 224 1.50 ± 0.036 8.14 ± 0.12
Higher performance 96 1.48 ± 0.037 7.99 ± 0.28

Table 3. Summary of the performances achieved on the experiments that are considered as domain
adaptation, i.e., simple standardization approach and the UDA methods. For each experiment,
the model was trained 5 times (using 5 different random number generators) and we reported the
averaged RMSE/CV and standard deviation over the 5 trials.

Experiment RMSE (Years) CV (%)

Standardization 224 3.57 ± 0.26 19.6 ± 1.2
Standardization 96 3.18 ± 0.28 17.1 ± 1.4

Adv. generative (CoGAN) 3.57 ± 0.72 21 ± 6.0

Adv. discriminative (CDAN) 2.18 ± 0.08 12.7 ± 0.54

Self-supervised (SimCLR) 1.94 ± 0.11 11.1 ± 0.62

Rows 3 and 4 of Table 2 report the results on the lower performance bound exper-
iments, showing that without any DA involved, the performance on the Icelandic data
was considerably lower than for the Norwegian data. In addition, a larger variation in
performance was observed over the different trials (≥0.5 for the RMSE). The last two rows
of Table 2 correspond to the higher performance bound. They demonstrated the potential
for using a DL system to predict ages on the target data from the Icelandic lab, where good
levels of RMSE/CV together with low variations over the five trials (≤0.04 for the RMSE)
were achieved when training on these data. These observations were supported by the
age-bias plots of Figure 5 displaying the age predictions (median over the five trials) of the
lower and higher performance bounds (using images of size 224 × 224) against the human
annotated age for the Icelandic data. We could observe that the lower performance bound
(Figure 5a) completely overestimated the ages. The higher performance bound results were
satisfactory (Figure 5b), although we noticed an underestimation for the older age groups,
similar to that which was previously observed for the Norwegian data [10,11].
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Figure 5. Model age predictions vs. human annotated age obtained on the Icelandic data for the
lower and higher performance experiments (using images of size 224 × 224). For each model, the age
predictions correspond to the calculated median from the predicted ages obtained over the 5 different
trials. The scatters have an area proportional to the probability density of data. (a) Age predictions
for the lower performance bound; (b) age predictions for the higher performance bound.

Figure 6. Visualization of the spread of the performance results obtained on the Icelandic data
for the methods that are considered as domain adaptation. Each dot corresponds to one of the
5 trials. The red dashed lines delimiting the gray bars correspond to the higher (left) and lower (right)
averaged performance bounds obtained with designated resolution (depending on the experiment).
(a) Performance measured in terms of RMSE (years); (b) performance measured in terms of CV (%).
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Figure 7. Age predictions of different adaptation models vs. human annotated age obtained from the
Icelandic data. For each model, the age predictions correspond to the calculated median from the
predicted ages obtained over 5 different trials. The scatters have an area proportional to the probability
density of data. (a) Age predictions for the simple standardization approach (image resolution
96 × 96 pixels); (b) age predictions for the adversarial generative adaptation; (c) age predictions for
the adversarial discriminative adaptation; (d) age predictions for the self-supervised adaptation.

In Table 3, we report the performance results obtained for the DA task, i.e., involving
models trained on otolith images and labels from the Norwegian lab adapted to images
from the Icelandic lab. For the different methods, we also visualize in Figure 6 the spread
of the results for each of the five trials, represented as black dots. To be able to visualize the
gap between domain adaptation methods and the higher and lower performance bounds
that were tested on Icelandic images, each experiment was represented inside a gray bar.
This was delimited to the left by the averaged RMSE/CV from the higher performance
bound and to the right by the averaged results of the lower performance bound. In addition
to this, a closer inspection of the age predictions for the different methods is presented in
the age-bias plots of Figure 7.

From both Table 3 and Figure 6, we observed that the simple standardization approach
improved on the lower performance bound and the results were comparable to those from
the more complex adversarial generative approach. Similar patterns of age predictions
were noticed when comparing the two approaches (Figure 7a,b). However, we found that
the variation in performance was much lower for the standardization approach. For this
case, we also noted that the performance for the low-resolution images was slightly better
than for the high-resolution images.

The method based on the adversarial discriminative approach showed better perfor-
mances than the generative approach both in terms of average RMSE/CV and associated
variations. The best results were nonetheless obtained with self-supervised adaptation. It
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achieved the lowest average RMSE/CV and got closest to the higher performance bound,
while the variations were on a level with that of the adversarial discriminative approach
(Figure 6). When comparing the predicted ages from the two approaches (Figure 7c,d),
less underestimation was observed with the self-supervised adaptation. This, despite
the fact we used a resolution of only 96 × 96 pixels compared to the 224 × 224 used by
adversarial approaches.

4. Discussion

Since the emergence of DL, several studies have been demonstrated to perform well
on automatically predicting fish age from otolith images [10–14]. An important topic of this
work was to assess whether a suitable performance from a DL system could be maintained
on data from the same species but acquired in a different lab.

Using otolith images from Greenland halibut, we showed evidence in this paper that
a DL system trained on data from a lab in Norway had difficulties, at test stage (Table 2,
Figure 5a), for generalizing to novel otolith images from another lab in Iceland (lower
performance bound model). The reason was a dataset shift, i.e., the images across the labs
had different characteristics, although with a simple visual inspection (Figure 1) one could
not have expected the bad performance obtained at test stage. By directly training a new
system with data and labels from Iceland (higher performance bound model), we obtained
a suitable classification performance (Table 2, Figure 5b). However, this required asking for
manual annotations, which was not the optimal solution as the process had a cost in terms
of effort and expertise.

For both lower and higher performance bounds, reducing the input image size from
224 × 224 to 96 × 96 pixels did not affect the performance. This finding was consistent
with a previous study [11] showing that the internal structure of the otolith was not an
important attribute for DL systems to determine accurately most of the ages. Thus, using
lower-resolution images in those models was not problematic.

To address the performance challenges due to dataset shift, we investigated three
different strategies of UDA to adapt the existing classifier trained on the Norwegian data
to the Icelandic data, without requiring extra labeling effort from Iceland when training.
The performance of the adversarial generative approach (CoGAN, Figure 7b) varied quite
substantially compared to the adversarial discriminative approach (CDAN, Figure 7c)
and the self-supervised approach (SimCLR, Figure 7d). The results from CoGAN were
the worst and exhibited a higher variation across different runs of the model (Table 3,
Figure 6), indicating the instability of this GAN-based approach. This contrasted with
the review study of Zhao et al. [21] where generative approaches scored well in terms of
performance. A possible explanation could be that in this study, the method was challenged
when trying to generate images resembling the ones from the source and target domains,
where perhaps high focus was dedicated to compensating for background differences
observed across labs. More recent adversarial generative methods do not use the concept
of training two GANs anymore and trying a more recent state-of-the art approach could
be considered in future work. The other adversarial approach, CDAN, came closer to
the higher performance bound and little variation across the different runs was observed
(Table 3, Figure 6). SimCLR also provided stable results and led to the best performance on
the target domain compared to the other two methods. In Zhao et al. [21], self-supervised
approaches did not have the best performance score, but in our case it seemed that the
pretext task of recognizing positive samples from negative samples was sufficiently good
to make the model learn invariant representations across source and target domains. As
suggested in [39], with the chosen pretext task, the attention was probably focused on low-
and mid-level network representations that might have captured brightness and contrast
characteristics. Those characteristics could be found with low-resolution images, that is
why operating on images of size 96x96 pixels was not a problem.

Applying a standardization preprocessing to the images from the Norwegian lab,
training a model with these data and deploying it on preprocessed data from the Icelandic
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lab performed worse than the CDAN and the SimCLR approaches (Table 3, Figure 7a).
Moreover, slightly higher variations across the runs were observed (Figure 6). This reflected
that finding a solution solely based on data preprocessing was not enough to handle
the dataset shift. There was a need for more elaborate adjustments in the deep neural
network architecture and UDA using self-supervised learning (SimCLR) seemed the most
promising alternative.

Finding an approach for automatic age determination across labs without requiring
additional human expertise when training could have implications in two major respects.
First, since acquiring otolith image data is less cost demanding than the human interpre-
tation, the present study could raise the possibility of carrying out age determination of
backlogs of otoliths that have not yet been annotated in other labs. Second, having a tool for
adapting age-reading from one lab to another could help reduce the observed between-lab
differences. This may streamline comparisons conducted in age-reading workshops such
as [15,16]. In this context, it could also be interesting to combine age readings from different
methods and estimate the relative merits of each. By using the approach proposed in [40],
one could combine estimated ages while accounting for the biases and imprecisions of
the different used methods. In this case, the results would be properly weighted before
using them for stock assessment population models. Those could possibly be improved
by combining the predictions of independent estimators, which is the case of manual
predictions, based on analysis of otolith age zones and DL predictions, which are triggered
by other aspects [11].

The results presented in this paper must be seen nonetheless in light of some limita-
tions. We considered adapting a classifier that was trained on images from the right and
left otoliths to images only belonging to the right otolith. The reason was that in the earlier
phase of the study, we decided to use the same paired data as in Moen et al. [10] (including
right and left otoliths) but when we prepared the training data for Iceland, we limited
ourselves to the right-separated pair that we resized to 224 × 224 pixels and dismissed
the rest of the image. This decision was not reviewed at the later stage of the results
evaluation, but we plan in the future to analyze what would happen when including the
left otolith images as well. Furthermore, the correspondence with sex and length could also
be examined. The age distribution for Greenland halibut females and males is known to
differ, with females tending to live longer and with a growth that exceeds that of males [41].
Incorporating information about the sex and length in the DL network as proposed in [42]
may also be helpful.

To compare the performance of the different DL approaches, we used the CV, the
RMSE and the age-bias plots. However, in the context of stock assessment, these quantities
might be too limiting measures. Analyzing age distributions and examining the final
stock assessment results would be important tasks for the future. It might happen when
comparing methods (including different manual age readings) that the stock assessment
results appear virtually the same, despite possible large differences in CV, RMSE, age-bias
plots or vice-versa.

Finally, we considered adapting a classifier from a source to a target domain where
the target age categories were included in the source label space (Figure 2). In the proposed
UDA methods, we tried to match the whole source and target domains as if they fully
shared the label space, which was not the case. This could have led to a suboptimal
transferability of source examples, where in our study some age categories could have been
over-represented (e.g., ages 10–12 as seen in Figure 7b–d). Looking for solutions to handle
this, as proposed for instance in [43,44], will be an important task in the future. Another
realistic scenario to be examined would be when the target label space has age categories
that are not present in the source label space (e.g., transferring the age classifier trained on
Icelandic data to Norwegian data). It could then happen that the techniques investigated
in this paper would not perform that well. In that case, alternative solutions as proposed
in [45] should be taken into consideration.
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5. Conclusions

In this work, the dataset shift across otolith images acquired from labs in Norway
and Iceland was handled using domain adaptation strategies. We were able to adjust a DL
model to provide satisfactory predictions on the Icelandic data. However, the performance
depended strongly on the selected strategy. We observed that the CDAN and SimCLR ap-
proaches resulted in better performances, compared to the CoGAN or the simple adaptation
method via standardization.

Even though common practice consists of validating a DL model on a holdout dataset
during training, this step is not sufficient to guarantee that the model will have a well-
defined behavior for unseen data. Hence, before DL-based predictors are considered to
perform large scale inference on otolith images, a proper handling of dataset shift across
different image labs is needed. The insights from this study pointed out that domain
adaptation was a promising direction to consider, although analyzing model performance
based on information shared between the source and target label spaces deserves further
exploration. The hope is that such findings will contribute to the further development of
DL techniques that could aid in reducing effort and availability of expertise in the otolith
age-reading process.
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