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Abstract
Diurnal temperature range is an important variable in climate science that can
provide information regarding climate variability and climate change. Changes
in diurnal temperature range can have implications for hydrology, human health
and ecology, among others. Yet, the statistical literature on modeling diurnal
temperature range is lacking. In this article we propose to model the distri-
bution of diurnal temperature range using the five-parameter lambda (FPL)
distribution. Additionally, in order to model diurnal temperature range with
explanatory variables, we propose a distributional quantile regression model
that combines quantile regression with marginal modeling using the FPL distri-
bution. Inference is performed using the method of quantiles. The models are
fitted to 30 years of daily observations of diurnal temperature range from 112
weather stations in the southern part of Norway. The flexible FPL distribution
shows great promise as a model for diurnal temperature range, and performs
well against competing models. The distributional quantile regression model is
fitted to diurnal temperature range data using geographic, orographic, and cli-
matological explanatory variables. It performs well and captures much of the
spatial variation in the distribution of diurnal temperature range in Norway.

K E Y W O R D S

distributional quantile regression, diurnal temperature range, five-parameter lambda distribution,
method of quantiles

1 INTRODUCTION

In this article we develop distributional models for diurnal temperature range, which is the difference between daily
maximum and minimum temperature. The fourth IPCC assessment report identified diurnal temperature range as a key
uncertainty factor (Solomon et al., 2007), and the fifth report described a substantial knowledge gap surrounding this
climate variable (Stocker et al., 2013). While more effort has since been made to understand diurnal temperature range,
the literature on it is still lacking (Masson-Delmotte et al., 2021; Sun et al., 2019; Thorne et al., 2016b; Thorne, Donat,
et al., 2016). Diurnal temperature range can be used as an index of radiative forced climate change, and as a useful index
for assessing the output of general circulation models (Braganza et al., 2004). Additionally, it has been shown that diurnal
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temperature range is linked to human health conditions such as the risk of influenza (Park et al., 2020), risk of stroke
(Vered et al., 2020), and overall health and mortality (Cheng et al., 2014; Lim et al., 2015). Changes in diurnal temperature
range can also be of large importance within ecology (Henry, 2007; Kovi et al., 2016; Peng et al., 2013; Vasseur et al., 2014)
and hydrology (Hanssen-Bauer et al., 2016), among others. Despite these areas of usage, to the best of our knowledge,
there do not exist any attempts at statistical modeling of the distribution of diurnal temperature range in the literature.
In their recent work of reassessing changes in diurnal temperature range worldwide, Thorne et al. (2016a) conclude
that there is “only medium confidence in the magnitude of reductions in diurnal temperature range since 1950” and that
“there is low confidence in trends and multidecadal variability in diurnal temperature range prior to 1950.” Thus, more
knowledge about diurnal temperature range is needed.

In this article we propose to model the marginal distribution of diurnal temperature range with the five-parameter
lambda (FPL) distribution (Gilchrist, 2000). The FPL distribution is an extension of the four-parameter generalized
lambda distribution (Ramberg & Schmeiser, 1974), itself an extension of Tukey’s three-parameter lambda distribution
(Tukey, 1962). This family of distributions has seen infrequent use within the statistical literature. Some areas of usage for
the FPL distribution have been income modeling (Tarsitano, 2004) and reliability analysis (Ahmadabadi et al., 2012; Nair
et al., 2013). The FPL distribution is tightly linked to the generalized Pareto distribution (e.g. Coles, 2001), as its quantile
function is equal to the difference between two generalized Pareto quantile functions (see Section 3.1). The generalized
Pareto distribution is often used for estimating extremely large or small quantiles, and has been much used for modeling
both the upper and lower tails of temperature distributions (e.g. Rohrbeck et al., 2021; Stein, 2021a). Thus, the FPL dis-
tribution is a natural choice for modeling the difference between daily maximum and daily minimum temperature if one
considers these as extreme upper and lower quantiles in the daily temperature distribution.

The FPL distribution can be used for modeling the distribution of diurnal temperature range in locations with avail-
able observations. However, most locations do not contain any available temperature data. Thus, it is also of interest to
model diurnal temperature range in locations without daily temperature observations, using a regression model. Most
classical regression models focus on estimating the conditional mean of a distribution, given a set of explanatory vari-
ables. However, the distribution of diurnal temperature range is complex, and its variance, skewness, and kurtosis vary
in space (see Section 2). Thus, a regression model for the mean would not provide enough information about diurnal
temperature range to be of much use. An alternative to regression on the mean is quantile regression (Koenker, 2005),
where one models a set of conditional quantiles given some explanatory variables. Quantile regression is based on fewer
assumptions than mean regression, and it allows for more flexible modeling of complex distributions. However, it can
often lead to quantile crossing, meaning that certain combinations of the explanatory variables lead to non-monotonic
quantile functions (Bondell et al., 2010; Cannon, 2011; Rodrigues & Fan, 2017). Furthermore, quantile regression can only
estimate a finite set of quantiles, and it does not lend an easy way of estimating distributional properties like moments.
An alternative that has gained more popularity in recent years is distributional regression, where one attempts to model
the entire conditional distribution given a set of explanatory variables (e.g. Henzi et al., 2020; Klein et al., 2015; Schlosser
et al., 2019). As stated by Hothorn et al. (2014), this should be the ultimate goal of any regression analysis. However, most
distributional regression models can be somewhat complex and computationally demanding.

Here, we propose a conceptually simple and highly parallelizable distributional regression model, based on a com-
bination of quantile regression and marginal modeling with the FPL distribution. Parameter estimation for the FPL
distribution is performed using the method of quantiles (e.g. Koenker, 2005), which is based on minimizing the distance
between a quantile function and a set of estimated quantiles. A thorough description of this estimation method is pre-
sented, and it is compared to competing estimation methods for the FPL distribution, both in a simulation study, and using
real temperature observations. In order to ease parameter interpretation and numerical inference, a novel reparametriza-
tion of the FPL distribution is developed. The marginal FPL model and the distributional quantile regression model are
fitted to 30 years of daily temperature observations from 112 weather stations in southern Norway, including both coastal
and inland stations over a large range of altitudes. In order to properly evaluate the model fits, a closed-form expres-
sion for the continuous ranked probability score (CRPS, Matheson & Winkler, 1976) with an FPL forecast distribution is
developed. This new modeling framework provides a rigorous alternative to analyze diurnal temperature range and its
observed variation in time and space compared to current empirical approaches (e.g. Shelton et al., 2021; Sun et al., 2021;
Vinnarasi et al., 2017; Wang et al., 2017).

The remainder of the article is organized as follows. Section 2 introduces daily temperature data from the south-
ern part of Norway, and associated explanatory variables. Section 3 provides a motivation for the choice of modeling
diurnal temperature range with the FPL distribution, and presents some of the properties of the distribution. The distri-
butional quantile regression model is also developed here. In Section 4, the method of quantiles and two other competing
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F I G U R E 1 Empirical season medians of diurnal temperature range (DTR) at the 112 weather stations in our data set. The locations of
the four stations from Figures 2,6 and 8 are presented in all the plots. These are: (1) Flesland, (2) Hovden-Lundane, (3) Lyngør fyr, and (4)
Sande-Galleberg

inference methods are described, and a closed-form expression for the CRPS with an FPL forecast distribution is devel-
oped. In Section 5, a simulation study is performed, where we compare the method of quantiles with two competing
inference methods. Finally, we apply our models to Norwegian diurnal temperature range data and evaluate the model
fits in Section 6. The article concludes with a short discussion in Section 7.

2 DATA

The analysis in this article is based on daily time series of air temperature observations from a set of weather stations in
southern Norway. The data are openly available from Norwegian Meteorological Institute (2019). For each weather sta-
tion, daily minimum and maximum temperatures between 18-18 UTC are used to find time series of diurnal temperature
range. Data is downloaded from the 30 year time period from January 1, 1989 to December 31, 2018. Two thirds of the
weather stations were already established in 1989, and the ages of the remaining stations are almost uniformly distributed
between 1 and 30 years. Some stations are too recently established to be useful for our purposes, and others contain large
amounts of missing data. Data cleaning is therefore performed by removing all weather stations that contains less than
180 observations from any of the four seasons of the year (winter: December–February; spring: March–May; summer:
June–August; autumn: September–November). By cleaning the data we reduce the number of weather stations from an
initial 133 to a new value of 112 stations. The locations of these are displayed in Figure 1 together with median diur-
nal temperature range for each season. These 112 stations span altitudes from 0 to 1900 m above sea level, and contains
observations from tundra, subarctic, and oceanic climates (Kottek et al., 2006).

Our modeling framework does not specifically account for measurement and round-off errors. Obvious errors, result-
ing in negative diurnal temperature range, are removed from the data. Due to the existence of negative data, it is expected
that there also are erroneous data among the positive range values. However, accounting for these errors is outside the
scope of this article.

Six explanatory variables are used for modeling diurnal temperature range: easting, northing, distance to the open
sea and altitude, in addition to the historical mean and variance of daily mean temperature at each location. This is
estimated using the records of daily temperature observations from each station. Exploratory analysis finds evidence that
the marginal distribution of diurnal temperature range can be approximated as being constant within each season (results
not shown), but that it varies between the seasons. Historical mean and variance of the daily mean temperature are
therefore computed for each season separately. The distance to the open sea is derived from a digital elevation model of
Norway, with resolution 50 × 50 m2, published by the Norwegian Mapping Authority (https://hoydedata.no). Time series
of daily mean temperature, along with longitude, latitude and altitude are freely available from Norwegian Meteorological
Institute (2019). Easting and northing are based on UTM 32 coordinates.

Figure 1 shows the median of diurnal temperature range for each season and each weather station. It reveals clear
seasonal and spatial patterns. In particular, the values appear higher during spring and summer than during winter and
autumn. Similar patterns are also found when examining other quantiles. Histograms of diurnal temperature range for
four selected stations and seasons are presented in Figure 2. We observe considerable differences in the shapes of the
histograms.

To explore the relation between the explanatory variables and diurnal temperature range, we fit a simple linear model
with different quantiles of diurnal temperature range against standardized versions of the explanatory variables. These
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F I G U R E 2 Histograms of diurnal temperature range for four selected weather stations and seasons

F I G U R E 3 Linear relationships between the six explanatory variables and the median of diurnal temperature range (DTR) at the 112
weather stations in our data set. All explanatory variables are standardized to have zero mean and a standard deviation of one

linear model fits are presented in Figure 3 for the median of diurnal temperature range. Most of the estimated trends are
significant at the 5%-level. Especially for the mean and variance of historical daily mean temperature, there is a strong
linear relationship during winter and autumn. Similar trends are found for all other examined quantiles.

3 MODELS

3.1 Marginal modeling with the FPL distribution

We assume that daily minimum and maximum temperature can be described well by the generalized Pareto distribu-
tion. The generalized Pareto distribution is a common model for extreme observations (e.g. Coles, 2001), and it is often
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used for modeling extreme temperature (e.g. Castro-Camilo et al., 2021; Davison & Huser, 2019). Additionally, Rohrbeck
et al. (2021) model daily temperature in the Red Sea by assuming that both the upper and lower tails of daily temperature
can be modeled using the generalized Pareto distribution, and Stein (2021b) proposes to model climatological phenomena
using parametric distributions that behaves like the generalized Pareto distribution in both tails, and uses this approach
to model daily average temperature near Calgary during winter. The generalized Pareto distribution can be described
through its quantile function (e.g. Hosking & Wallis, 1987)

Q(p;𝜇, 𝜂, 𝜉) = inf{x ∈ R ∶ p ≤ F(x;𝜇, 𝜎, 𝜉)} = 𝜇 + 𝜂

{(
1 − (1 − p)𝜉

)
∕𝜉, 𝜉 ≠ 0

− log(1 − p), 𝜉 = 0,

where F is the cumulative distribution function, and 𝜇, 𝜂, and 𝜉 acts as the location, scale, and shape parameters, respec-
tively. Diurnal temperature range is equal to the difference between daily maximum and daily minimum temperature,
and can therefore be modeled as the difference between the quantiles of two generalized Pareto distributions. We model
maximum daily temperature as some quantile of a generalized Pareto distribution, while minimum daily temperature is
modeled as some quantile of a reflected generalized Pareto distribution. If the random variable X has a quantile function
QX (p), then −X has the quantile function Q−X (p) = −QX (1 − p). This results in an expression for the diurnal temperature
range:

Qrange = Qmax(p1;𝜇1, 𝜂1, 𝜉1) − Qmin(p2;𝜇2, 𝜂2, 𝜉2) = 𝜇1 +
𝜂1

𝜉1
(1 − (1 − p1)𝜉1) + 𝜇2 +

𝜂2

𝜉2
(1 − p𝜉2

2 ).

In the case of 𝜉1 = 0 or 𝜉2 = 0 the expression is simplified, since lim𝜆→0(p𝜆 − 1)∕𝜆 = log p. We reparametrize by setting
p1 = p, p2 = pa, 𝜉∗2 = a𝜉2, and 𝜂∗2 = a𝜂2, where a = log p2∕ log p. This gives

Qrange(p) = 𝜇1 +
𝜂1

𝜉1
(1 − (1 − p)𝜉1) + 𝜇2 +

𝜂∗2

𝜉∗2
(1 − p𝜉∗2 ).

Further manipulation of the expression yields

Qrange(p) = (𝜇1 + 𝜇2) +
𝜂1 − 𝜂∗2

2

{(
1 −

𝜂1 + 𝜂∗2

𝜂1 − 𝜂∗2

)
p𝜉∗2 − 1
𝜉∗2

−
(

1 +
𝜂1 + 𝜂∗2

𝜂1 − 𝜂∗2

)
(1 − p)𝜉1 − 1

𝜉1

}
,

which is equal to the quantile function of a FPL distribution (Gilchrist, 2000),

Q(p;𝝀) = 𝜆1 +
𝜆2

2

{
(1 − 𝜆3)

p𝜆4 − 1
𝜆4

− (1 + 𝜆3)
(1 − p)𝜆5 − 1

𝜆5

}
, 𝜆2 > 0, 𝜆3 ∈ [−1, 1], (1)

Consequently, we expect the FPL distribution to be a suitable model for diurnal temperature range.
No analytic expression for the probability density function or cumulative distribution function of the FPL distribu-

tion exists, although the density for a given p can be obtained as the reciprocal of the quantile derivative, (dQ(p;𝝀)∕dp)−1.
From the quantile function (1) of the FPL distribution it is clear that 𝜆1 acts as a location parameter and 𝜆2 as a
scale parameter of the distribution. We notice that 𝜆4 = 𝜉∗2 and 𝜆5 = 𝜉1, which means that these two parameters con-
trol the behavior of the left and right tails, respectively. The final parameter 𝜆3 acts as a weight between the two
tails.

The support of the FPL distribution can be both finite and infinite. This makes the distribution flexible for modeling
a variety of different phenomena. The support is given by

[Q(0;𝝀),Q(1,𝝀)] = 𝜆1 +
𝜆2

2

⎧⎪⎪⎨⎪⎪⎩

[
− 1−𝜆3

𝜆4
,

1+𝜆3

𝜆5

]
, 𝜆4, 𝜆5 > 0[

− 1−𝜆3

𝜆4
,∞

)
, 𝜆4 > 0, 𝜆5 ⩽ 0(

−∞,
1+𝜆3

𝜆5

]
, 𝜆4 ⩽ 0, 𝜆5 > 0

.
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Diurnal temperature range is always positive. In order to ensure a positive support for the FPL distribution, one must
enforce the inequality-constraints

𝜆1 −
𝜆2(1 − 𝜆3)

2𝜆4
> 0, 𝜆4 > 0. (2)

The parameterization in (1) is intuitive in the sense that it stems from the combination of two generalized Pareto
distributions. However, for performing numerical parameter estimation, other representations are more appropriate. The
location 𝜆1 and scale 𝜆2 are not clearly linked to any central moments or quantiles of the FPL distribution. We thus propose
a reparametrization scheme with a new location parameter that is equal to the median of the FPL distribution, and a new
scale parameter that is equal to the inter-quartile range of the FPL distribution,

𝜆∗1 = Q(0.5;𝝀) = 𝜆1 +
𝜆2

2

{
(1 − 𝜆3)

0.5𝜆4 − 1
𝜆4

− (1 + 𝜆3)
0.5𝜆5 − 1

𝜆5

}
,

𝜆∗2 = Q(0.75;𝝀) − Q(0.25;𝝀) = 𝜆2

2

{
1 − 𝜆3

𝜆4

(
0.75𝜆4 − 0.25𝜆4

)
+ 1 + 𝜆3

𝜆5

(
0.75𝜆5 − 0.25𝜆5

)}
. (3)

The new parameter vector is denoted 𝝀∗ = (𝜆∗1, 𝜆
∗
2, 𝜆3, 𝜆4, 𝜆5). In order to simplify parameter constraints during any

numerical estimation procedures, we further introduce the reparametrization

�̃�1 = 𝜆∗1, �̃�2 = log
(

e𝜆∗2 − 1
)
, �̃�3 = log

(
1 − 𝜆3

1 + 𝜆3

)
, �̃�4 = log

(
e𝜆4 − 1

)
, �̃�5 = log

(
e𝜆5+0.5 − 1

)
, (4)

This results in an unconstrained parameter vector �̃� ∈ R5 and guarantees that 𝜆2 > 0, 𝜆3 ∈ (−1, 1) and 𝜆4 > 0. We also
restrict 𝜆5 to the interval (−0.5,∞), as this guarantees a finite mean and variance for the FPL distribution (e.g. Coles, 2001;
Tarsitano, 2010). Exploratory data analysis (results not shown) finds that the right tail parameter in the diurnal tempera-
ture range distribution tends to be considerably larger than −0.5. Davison and Huser (2019) model extreme temperatures
in Spain with the generalized Pareto distribution and find that the tail parameter, which we denote by 𝜆5, is approxi-
mately equal to 0.4. Castro-Camilo et al. (2021); Rohrbeck et al. (2021) model Red Sea temperatures with the generalized
Pareto distribution and find that the tail parameter is larger than −0.1. O’Sullivan et al. (2020) model temperature
extremes in Dublin and find that the posterior median of the tail parameter is larger than 0.1. Based on these results
and our exploratory data analysis, we are confident that the restriction of 𝜆5 > −0.5 should not lead to any loss in model
performance.

The standard way of reparametrizing a parameter 𝜃 that is bounded away from zero is to set 𝜃 = log 𝜃. However, if 𝜃
attains a large value, a small error in the estimate for 𝜃 leads to a considerable error in the estimate for 𝜃. The function
g(x) = log(ex − 1) has the property that g(x) ≈ log x for small x and g(x) ≈ x for large x. This allows us to constrain the FPL
parameters without risking large reparametrization instability because of an exponential relation between 𝝀 and �̃�.

The reparametrization to �̃� eases numerical inference methods, and is used whenever we perform parameter
estimation. However, the 𝝀∗ parametrization is more intuitive, and is therefore primarily used when describing our
methods.

3.2 Distributional quantile regression

We wish to model the marginal distribution of diurnal temperature range at locations without available temperature
observations, using a regression model with explanatory variables. As described in Section 2, the distribution of diurnal
temperature range is very rich. Many of its distributional properties seem to vary in space, and between seasons. Thus,
it does not seem good enough to use for example, a generalized linear model (GLM) where we only allow the mean
and variance of diurnal temperature range to vary in space. We suggest that one should apply a distributional regres-
sion model, where the entire distribution function is allowed to vary in space, (e.g. Henzi et al., 2020; Klein et al., 2015;
Schlosser et al., 2019) for modeling diurnal temperature range. One way of performing distributional regression is to
apply a latent Gaussian model with an FPL likelihood, such that all five FPL parameters are modeled as a linear com-
bination of explanatory variables and Gaussian white noise. However, this leads to an unnecessarily complex model.
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Additionally, as described in Section 5, the flexibility of the five FPL parameters might lead to something similar to iden-
tifiability problems, that can be problematic when we perform regression directly on the parameters and not on the
distribution itself. Here, we propose a novel distributional regression model for diurnal temperature range which is based
on combining quantile regression and marginal modeling with the FPL distribution, and we use this for modeling the
marginal distribution of diurnal temperature range at locations with no temperature observations.

We first assume that any quantile in the distribution of diurnal temperature range can be modeled as a linear combi-
nation of explanatory variables. Let yi(s) be observation i of diurnal temperature range at location s ∈  , where  is the
given study area. For any probability p ∈ (0, 1), we assume that the diurnal temperature range can be modeled as

yi(s) = x(s)T𝜷p + 𝜀i,p(s), i = 1, … ,n(s), (5)

with explanatory variables x(s) and regression coefficients 𝜷p. The error terms 𝜀i,p(s) are assumed to be independent
and distributed such that P(𝜀i,p(s) ≤ 0) = p for all s ∈  and i = 1, … ,n(s) (Koenker, 2005). We are now able to estimate
quantiles qp(s) = x(s)T𝜷p of diurnal temperature range for any p ∈ (0, 1), at any location s with available explanatory
variables x(s).

In order to turn this into a distributional regression model, we further propose to treat all qp(s) as quantiles of the FPL
distribution at location s. The only necessary assumption for performing quantile regression is that P(yi(s) ≤ x(s)T𝜷p) = p,
and there need not be any disagreements between this and the assumption that the marginal distribution at any location s
is the FPL distribution. Consequently, we model the distribution of diurnal temperature range at location s using the FPL
distribution with the parameters𝝀∗ that minimize the distance between qp(s) and the quantile function Q(p;𝝀∗) of the FPL
distribution (1). With this approach, we are able to describe the distribution of diurnal temperature range everywhere,
using a parametric model. This makes it easier to interpret the distributional properties of diurnal temperature range than
when we only use the semi-parametric quantile regression model.

A common problem with quantile regression is that the different estimated quantile models may cross, such that
the estimator for qpi(s) is larger than the estimator for qpj(s) for pj > pi (Bondell et al., 2010; Cannon, 2018; Rodrigues
& Fan, 2017). However, by first performing quantile regression and then fitting the FPL distribution to the regression
quantiles, this problem is easily fixed, as the FPL quantile function always is monotonic increasing. Consequently, there
is no need to implement complicated quantile regression methods that ensure non-crossing quantiles, and we can base
our modeling on the fast and simple regression model where each quantile is modeled separately.

For simplicity, the distributional quantile regression model is referred to as the regression model for the remainder of
the article.

4 INFERENCE

4.1 Parameter estimation for the FPL distribution

We present three marginal parameter estimation methods for the FPL distribution: the method of quantiles, maximum
likelihood estimation and the starship method.

4.1.1 The method of quantiles

The method of quantiles is an estimation method similar to the better known method of moments, in which the distance
between quantiles of a parametric distribution and empirical quantiles from observed data is minimized. Let y1, … , yn be
independent and identically FPL distributed random variables with quantile function Q(p;𝝀∗) and parameters 𝝀∗. A set
of m empirical quantiles Q̂(pi) = q̂pi

, i = 1, 2, … ,m, are constructed from the observations y. The method of quantiles
estimator for 𝝀∗, is found by minimizing the absolute distance

L(𝝀∗) =
m∑

i=1

|||q̂pi
− Q(pi;𝝀∗)||| . (6)

There do not exist any straightforward expressions for the probability density or the cumulative probability function of
the FPL distribution. However, a simple and closed-form expression exists for its quantile function. This can make it more
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8 of 22 VANDESKOG et al.

natural to perform parameter estimation based on quantile matching instead of for example, likelihood-based estimation
methods. In addition, Bignozzi et al. (2018) state that parameter estimation methods based on quantile matching can
be preferable when distributions are heavy-tailed or their support varies with the parameters. Both of these conditions
hold for the FPL distribution. Additionally, Bhatti et al. (2018) find that the method of quantiles outperforms both the
method of moments and maximum likelihood estimation for parameter estimation under the Pareto distribution. As
the FPL distribution can be described as the difference between two Pareto distributions, it should share some of the
same properties. Tarsitano (2005) applies the method of quantiles for parameter estimation with the FPL distribution,
using only five quantiles. He concludes that the method has several advantages, while a theoretical justification for the
choice of quantiles is lacking. For a large set of observations y(1) ⩽ y(2) ⩽ · · · y(n), the distribution function of y(i) is close
to the empirical distribution function F̂(y(i)) = (i − 0.5)∕n. Consequently, for a large set of n observations, we perform the
method of quantiles by setting pi = (i − 0.5)∕n and q̂pi

= y(i) for i = 1, 2, … ,n, thus avoiding the issue of which quantiles
to select. This is somewhat similar to the method of least absolute deviations by Tarsitano (2010). Koenker (2005) has
shown that the method of quantiles estimator is consistent, provided that all estimated quantiles q̂ are consistent. Note
that the order statistics of y are dependent. This must be taken into account if one attempts to compute the variance of
the estimator for 𝝀∗.

A weakness of the method of quantiles is that it might return a parameter estimator 𝝀∗ such that Q(0; �̂�∗) > y(1) or
Q(1; �̂�∗) < y(n). This problem is addressed by introducing inequality constraints when minimizing the loss function in
(6), demanding that Q(0;𝝀∗) < y(1) and y(n) < Q(1;𝝀∗). In order to guarantee a positive support, the inequality constraints
from (2) can also be enforced. Note that 𝜆4 > 0 is automatically enforced by optimizing over the �̃� parametrization. The
positive support constraint is slightly relaxed by only demanding that Q(10−4;𝝀∗) > 0, as we find that this can consider-
ably improve the model fit in certain cases. These constraints are enforced by performing numerical optimization using
an augmented Lagrangian formulation (e.g. Nocedal & Wright, 2006), implemented within the R package nloptr (Bir-
gin & Martínez, 2008; Johnson, 2020). Closed-form expressions are available both for the quantile loss function and for
its gradient. However, in practice we find that the method of quantiles performs better when not including gradient infor-
mation in the optimizer. Consequently, we minimize the augmented Lagrangian using the derivative-free Nelder-Mead
algorithm (Nelder & Mead, 1965), also implemented in the nloptrpackage.

Due to the flexibility of the FPL distribution, the quantile loss (6) proves to be difficult to minimize without a good
initial value for the FPL parameters. We utilize the connection between (𝜆∗1, 𝜆

∗
2) and the quantiles of the FPL distribution

by setting the initial values equal to the empirical median and inter-quartile range of y, respectively. Initial values for the
remaining three parameters are selected using a quick grid search. We compute the quantile loss function for all combi-
nations of 𝜆3 ∈ {−0.5,−0.25, 0, 0.25, 0.5}, 𝜆4 ∈ {0.1, 0.2, 0.4, 0.8, 1, 1.5}, and 𝜆5 ∈ {−0.4,−0.1, 0.1, 0.2, 0.4, 0.8, 1, 1.5} and
select the combination of parameters that minimizes it as initial values.

4.1.2 Maximum likelihood estimation

No closed-form expression exists for the cumulative distribution function of the FPL distribution. However, as mentioned
in Section 3.1, for a given probability p, the probability density function of the FPL distribution can be obtained as the
reciprocal of the quantile derivative

f (y;𝝀) = 2
𝜆2

{
(1 − 𝜆3)p𝜆4−1 + (1 + 𝜆3)(1 − p)𝜆5−1}−1

,

with p = F(y;𝝀). A numerical approximation for the cumulative distribution function of the FPL distribution is available
from the R package gld(King et al., 2020). For y = (y1, … , yn)T this gives rise to the log-likelihood

𝓁(𝝀; y) = n log 2 − n log 𝜆2 −
n∑

i=1
log

{
(1 − 𝜆3)p(yi)𝜆4−1 + (1 + 𝜆3)(1 − p(yi))𝜆5−1} .

A straightforward expression for the gradient of the log-likelihood cannot be provided, as it requires computing the
derivative of F(y;𝝀) with respect to 𝝀. Maximization of the log-likelihood is performed using the same grid-search and
augmented Lagrangian as for the method of quantiles, where we include the same inequality constraint to guarantee a
positive support.
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VANDESKOG et al. 9 of 22

F I G U R E 4 Diagram of the regression model. First, quantile regression (QR) is performed for modeling different quantiles of diurnal
temperature range yi(s) given the explanatory variables x(s). Using the quantile regression model, the conditional quantiles
q̂p1

(s0), q̂p2
(s0) … , q̂pm

(s0) are estimated, given the explanatory variables x(s0) at a specific location. Then, using the method of quantiles
(MQ), the FPL distribution is fitted to the conditional quantiles, resulting in the estimator �̂�∗(s0) for the FPL parameters

4.1.3 The starship method

A straightforward way of modeling with the FPL distribution is to use the already implemented functions in theR package
gld (King et al., 2020). This package is mostly focused on the four-parameter generalized lambda distribution, but it
also includes one inference method for the FPL distribution, namely the starship method (King & MacGillivray, 1999;
Owen, 1988). The starship method is based on the fact that if y has distribution function F(⋅;𝝀∗), the transformed variable
u = F(y;𝝀∗) has a uniform distribution. Parameters can therefore be estimated by minimizing any goodness-of-fit statistic
between the uniform distribution and F(y;𝝀∗).

The starship suffers from the same problems as the maximum likelihood estimator, namely that no closed-form
expression exists for the cumulative distribution function of the FPL distribution, which therefore has to be numerically
approximated. The implemented method in the gld package performs minimization using the Anderson-Darling statis-
tic. However, the gld implementation of the starship method is very computationally inefficient, so in order to compare
it with the previously described methods for large amounts of data, we implement our own version of the starship, based
on the gld implementation. This implementation performs minimization of the Anderson-Darling statistic using the
same optimization approach as in the precious methods. On a sample of 104 observations, our version of the starship esti-
mates 𝝀∗ in approximately 50 s, while the gld implementation uses approximately 330 s. The two implementations seem
to perform equally well numerically.

4.2 Parameter estimation in the regression model

Inference for the regression model is divided into two steps. The estimation procedure is illustrated in Figure 4. First,
quantile regression is performed using the R package quantreg(Koenker, 2018), separately for each of the probabilities
pi = i∕100, i = 1, 2, … , 99. Then, at any location s0 with available explanatory variables where we wish to model diurnal
temperature range, we estimate the conditional quantiles q̂pi

(s0). The quantile function of the FPL distribution is then
fitted to the 99 estimated quantiles q̂p1

(s0), q̂p2
(s0) … , q̂p99

(s0) using a marginal parameter estimation method. There are
no good ways of extending the maximum likelihood or starship method to fit a quantile function to a set of quantiles.
However, the method of quantiles is perfect for this kind of parameter estimation problem. Consequently, the method
of quantiles is used for fitting the FPL distribution to the 99 estimated quantiles, resulting in an estimator �̂�∗(s0) for the
FPL parameters at s0. All 99 quantiles are modeled independently of each other, meaning that numerical inference can
be executed in parallel. Fitting the FPL distribution to estimated quantiles at different locations is also an independent
operation that can be performed in parallel. The proposed regression model is therefore highly parallelizable.

4.3 Model evaluation

Model performance is evaluated using the continuous ranked probability score (CRPS Gneiting & Raftery, 2007; Matheson
& Winkler, 1976). Given a forecast distribution F and an observation y, the CRPS is equal to

S(F, y) = ∫
∞

−∞
(F(t) − I(t ≥ y))2 dt = 2∫

1

0
𝜌p(y − F−1(p)) dp, (7)
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10 of 22 VANDESKOG et al.

with 𝜌p(u) = pu − I(u < 0)u, where I(⋅) is an indicator function. This is a strictly proper scoring rule, meaning that if y
has distribution function G, then E[S(G, y)] ≤ E[S(F, y)] for all forecast distributions F, with equality only if F = G. Due
to scarce usage of the FPL distribution in the literature, to the best of our knowledge, a closed-form expression for the
CRPS with an FPL forecast distribution has not yet been provided. Consequently, we derive the expression for the CRPS
with an FPL forecast distribution. When modeling diurnal temperature range with the FPL distribution, the quantile
formulation of the CRPS is especially useful. Given an FPL forecast distribution F with quantile function Q, the CRPS
can be expressed as

S(F, y) = 2∫
1

0
𝜌p(y − Q(p)) dp = y(2F(y) − 1) − 2∫

1

0
pQ(p) dp + 2∫

1

F(y)
Q(p) dp.

Both of these integrals are fairly straight-forward to compute with the FPL quantile function, as they are simply
polynomials in p. Solving the first integral yields

∫
1

F(y)
Q(p) dp = (1 − F(y))𝜆1 +

𝜆2

2

(
(1 − 𝜆3)

(
1 − F(y)𝜆4+1

𝜆4(𝜆4 + 1)
−

1 − F(y)
𝜆4

)
− (1 + 𝜆3)

(
(1 − F(y))𝜆5+1

𝜆5(𝜆5 + 1)
−

1 − F(y)
𝜆5

))
,

while solving the second integral yields

∫
1

0
pQ(p) dp = 𝜆1

2
+ 𝜆2

2

(
−(1 − 𝜆3)

1
2(𝜆4 + 2)

+ (1 + 𝜆3)
𝜆5 + 3

2(𝜆5 + 1)(𝜆5 + 2)

)
.

Thus, by numerically approximating F(y) we are able to estimate the CRPS of the FPL distribution. In the special case of
𝜆4 = 0 or 𝜆5 = 0, the integrals are solved by using that

∫ log p dp = p(log p − 1), ∫ log(1 − p) dp = (p − 1) log(1 − p) − p,

∫ p log p dp = 1
2

p2(2 log p − 1), ∫ p log(1 − p) dp = 1
4
(
2(p2 − 1) log(1 − p) − p(p + 2)

)
.

The CRPS can be used for comparing competing forecasts. Given two forecasts F1 and F2, and observations y =
(y1, … yn)T , we can compute the mean CRPS

S(F, y) = 1
n

n∑
i=1

S(F, yi),

and choose the forecast with the lowest mean CRPS. However, the mean CRPS in itself does not provide much information
about the goodness of fit of a forecast. Given a forecast F and observations y with unknown distribution function G, there
is no way of knowing if there is a large difference between S(F, y) and S(G, y), since G is unknown. Thus, we also evaluate
model performance by studying quantile-quantile-plots (QQ-plots) and the probability integral transform (PIT).

If a random variable y has distribution function F, then the transformed variable u = F(y) is uniformly distributed
between zero and one. Given a forecast distribution F and observations y one can therefore examine deviations between
the distribution of u = F(y) and the standard uniform distribution. Heinrich et al. (2020) propose to evaluate model fit by
examining the first two moments of u. Denote the error in the first moment as e𝜇 = E(u) − 0.5 and the error in the second
central moment as e𝜎 = SD(u) − 1∕

√
12. It follows that e𝜇 < 0 indicates a positive bias and e𝜇 > 0 indicates a negative

bias. If e𝜎 < 0, the forecast distribution F is overdispersive, and if e𝜎 > 0, it is underdispersive.

5 SIMULATION STUDY

5.1 Setup

Simulation studies are performed to compare the different parameter estimation methods for the FPL distribution. We
draw 500 random sets of FPL parameters 𝝀∗. These are sampled such that they are of approximately the same magnitude
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VANDESKOG et al. 11 of 22

Algorithm 1. Sampling 𝝀∗

while TRUE do
Sample 𝜆∗1 ∼  (5, 32)
Sample 𝜆∗2 ∼ U(1.5, 8)
Sample 𝜆3 ∼ U(−0.9, 0.9)
Sample 𝜆4 ∼ U(0.01, 0.9)
Sample 𝜆5 ∼ U(−0.3, 0.7)
if Q(0,𝝀∗)> 0 then ⊳ Ensure a positive support

if Q(1,𝝀∗) − Q(0,𝝀∗)> 1 then ⊳ Ensure that the support doesnot become too compact
break

end if
end if

end while
return 𝝀∗

as the estimated FPL parameters for diurnal temperature range in Section 6 (see Table 4), while also ensuring that we
have a positive and wide enough support. The exact sampling scheme is given in Algorithm 1, with  (𝜇, 𝜎2) denoting a
Gaussian distribution with mean 𝜇 and variance 𝜎2 and U(a, b) denoting a uniform distribution with limits a and b. For
each set of FPL parameters we then sample n realizations from the FPL(𝝀∗) distribution with n = 2i for i = 7, 8, … , 14.
The parameter estimation methods described in Section 4.1 are then applied for estimating 𝝀∗. We evaluate the overall
fit to data and the ability of recovering the true parameter values. Overall model fit to data is evaluated using the CRPS.
Since the true value of 𝝀∗ is known, we can compute the skill score 1 − CRPS(F,G)∕CRPS(F, y), where F is our estimated
distribution, G is the correct distribution and CRPS(F,G) is the expected value of the CRPS with respect to G. Thus, a
perfect forecast gives a skill score of zero, while all other forecasts give a skill score larger than zero and smaller than one.
The ability to recovery the true values of 𝝀∗ is evaluated using the mean square error (MSE) between the true parameters
𝝀∗ and the estimated parameters �̂�∗, over all 500 repetitions,

MSE(𝝀∗,𝝀) = 1
500

500∑
i=1

1
5

5∑
j=1

(
𝜆∗j

(i) − 𝜆
(i)
j

)2
,

where 𝝀(i) = (𝜆(i)1 , … 𝜆
(i)
5 )T are the true FPL parameters in simulation number i out of 500, and 𝝀∗(i) are the corresponding

estimated parameters.

5.2 Results

Table 1 displays the skill score, MSE and computation time for all methods. As n grows, the computation times for the
maximum likelihood and starship methods grow considerably faster than the time for the method of quantiles. This
happens because the method of quantiles is based solely on analytical expressions, while the other two methods require
numerical estimation of the likelihood or distribution function of the FPL distribution. The method of quantiles has a
worse skill score for small to medium sample sizes and a slightly better skill score for large sample sizes, whereas the
starship method attains the worst skill score for large sample sizes. Interestingly, the method of quantiles fails to recover
the correct FPL parameters, and has a much larger MSE than the other two methods. This demonstrates the flexibility of
the FPL distribution, as we are able to achieve a better CRPS using the “wrong” parameter estimates. A closer examination
of the estimated parameters finds that the large increase in MSE is caused almost solely by too large estimates of 𝜆4 and
𝜆5. In some situations it seems that a large increase in 𝜆4 combined with a decrease in 𝜆3 yields almost no change in the
overall shape of the FPL distribution. This makes sense, as increasing 𝜆4 leads to a thinner left tail, while decreasing 𝜆3
places more weight on the left tail. Similarly, a large increase in 𝜆5 can be mitigated by increasing 𝜆3. When modeling
diurnal temperature range, model fit is much more important than parameter recovery, as the FPL model is merely an
assumption, and possibly not the true underlying distribution of diurnal temperature range. Thus, the low skill score and
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12 of 22 VANDESKOG et al.

T A B L E 1 Mean skill scores, MSE and computation times for the method of quantiles (MQ), maximum likelihood (ML), and starship
method, when performing parameter estimation 500 times on n samples drawn from an FPL distribution

Method n = 27 n = 28 n = 29 n = 210 n = 211 n = 212 n = 213 n = 214

Skill score (⋅103) ML 6.12 3.18 1.48 0.73 0.40 0.21 0.11 0.09

MQ 6.42 3.33 1.58 0.81 0.43 0.21 0.10 0.06

Starship 6.12 3.18 1.49 0.75 0.40 0.26 0.20 0.21

MSE ML 0.17 0.14 0.06 0.03 0.02 0.02 0.02 0.01

MQ 14.01 207.16 201.66 6.87 32.20 3.85 5.04 0.47

Starship 1.27 0.35 0.28 0.26 0.15 0.02 0.02 0.03

Time (s) ML 0.6 0.9 1.5 3.0 5.6 11.0 22.6 46.4

MQ 0.2 0.2 0.3 0.3 0.4 0.6 1.1 1.9

Starship 0.8 1.1 1.8 3.3 6.5 14.1 30.4 63.9

Note: The skill scores are multiplied by 103 to get more readable results. Computation times are reported on a 2.4 GHz computation server.

fast computation times of the method of quantiles for large sample sizes make up for the fact that we seem to lose the
ability to always recover the true parameters.

6 MODELING DIURNAL TEMPERATURE RANGE IN SOUTHERN
NORWAY

Diurnal temperature range in southern Norway is modeled separately for all seasons, using our two proposed models.
Model calibration is evaluated using QQ-plots and the PIT. The marginal model is compared against several compet-
ing models using the CRPS. The regression model is tested in a leave-one-out cross-validation study, and the results are
compared with the marginal model fits.

6.1 Marginal modeling

In order to evaluate the model performance of the FPL distribution for diurnal temperature range, the distribution is
used for modeling data from southern Norway. Diurnal temperature range is modeled separately for all seasons and
weather stations, using the FPL distribution and three other competing parametric distributions: the gamma distribution,
lognormal distribution and the generalized lambda (GL) distribution. The gamma- and lognormal distributions are fitted
to data using maximum likelihood estimation, implemented in the R package MASS (Venables & Ripley, 2002). The GL
distribution is a specialization of the FPL distribution, parametrized with four parameters, and it is fitted using maximum
likelihood, implemented in the gld package. The FPL distribution is fitted to diurnal temperature range using all three
inference methods described in Section 4. In-sample model comparison is performed using the CRPS. This is computed
numerically for the GL distribution, using (7). For the gamma- and lognormal distributions, CRPS is computed using the
scoringRules package (Jordan et al., 2019).

Table 2 displays the mean CRPS over all 112 weather stations for each season and all our chosen models. Apart from
the FPL results during summer, all three model fits with the FPL distribution attain a lower mean CRPS than the com-
peting models. The differences in CRPS might seem small, but a simple permutation test shows that there is a statistically
significant difference between the scores of the FPL and GL distributions, except during summer when inference is per-
formed with the method of quantiles. The same permutation test finds no evidence that there is a difference in CRPS
when using the method of quantiles and the starship method, but there is some evidence that both the starship and the
method of quantiles attains better model fits than the maximum likelihood estimation. The mean computation time for
estimating the FPL parameters at a single location is approximately 0.3 s with the method of quantiles, 2.7 s with max-
imum likelihood estimation and 4.0 s with the starship method, meaning that it takes 2 min to estimate parameters for
all stations and seasons with the method of quantiles, and 30 min with the starship method. Figure 5 displays the fitted
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VANDESKOG et al. 13 of 22

F I G U R E 5 Estimated probability density functions using four different parametric distribution for modeling diurnal temperature
range. The observations of diurnal temperature range are displayed using histograms

T A B L E 2 Mean CRPS over all 112 weather stations during each season

Season FPL (MQ) FPL (ML) FPL (starship) GL Gamma Lognormal

Winter 1.577 1.577 1.577 1.578 1.580 1.589

Spring 2.109 2.109 2.108 2.111 2.122 2.141

Summer 1.851 1.849 1.849 1.851 1.857 1.867

Autumn 1.715 1.715 1.715 1.717 1.720 1.732

Note: Four different distributions are fitted to diurnal temperature range data. The FPL distribution are fitted to data using the method of quantiles (MQ),
maximum likelihood (ML) estimation, and the starship method. The best mean CRPS for each season is written in bold.

probability density functions of all models at the four stations from Figure 2. The FPL distribution is fitted to data using
the method of quantiles. It seems that the flexibility of the FPL distribution makes it able to model the many shapes of
diurnal temperature range better than the competing models. Especially in the lower right plot one can see how the added
flexibility of the FPL distribution allows it to provide a slightly better fit to data than the GL distribution, which clearly is
the strongest competitor. The FPL distribution attains a lower CRPS than the competing models in all four sub-plots.

The FPL model fits are further evaluated to assess absolute performance. For the remainder of the article we choose
to use the method of quantiles for fitting the FPL distribution to diurnal temperature range data, as all three inference
methods perform almost equally well, and the method of quantiles is necessary for the regression model described in
Section 3.2. Figure 6 displays different properties of the model fit of the FPL distribution at the four stations from Figure 5.
It is evident that the FPL distribution provides a good model fit to observed diurnal temperature range data. The model
struggles slightly with the bimodal distribution at Hovden-Lundane, but has an excellent fit to the data at the other three
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14 of 22 VANDESKOG et al.

F I G U R E 6 Upper plots: Histograms displaying observed diurnal temperature range are plotted along with the probability density
functions of the FPL distribution. Middle plots: Histograms displaying the PIT of diurnal temperature range with the estimated FPL
parameters. Lower plots: QQ-plots displaying sample quantiles of diurnal temperature range against distributional quantiles of the estimated
FPL distributions

stations. A visual assessment of the model fit for all other stations finds that the results in Figure 6 are representative for
most of the available data. The mean PIT errors e𝜇 and e𝜎 are displayed in Table 3. Both are of magnitude 10−4 for the
marginal FPL model, implying high overall performance.

An overview of the estimated FPL parameters is given in Table 4. The location and scale parameters are largest during
summer and spring, and the tail parameters 𝜆4 and 𝜆5 seem to take approximately the same values for all seasons. The
estimator for 𝜆5 is mostly far away from−0.5, indicating that the restriction of 𝜆5 > −0.5 has not lead to a decrease in model
performance. The tail weight 𝜆3 seems to be almost evenly distributed between −1 and 1, but its distribution is clearly
most focused on the positive side, where it lends most weight to the right tail of the FPL distribution. When examining the
marginal parameter estimates in a map (results not shown) we find that both �̂�

∗
1 and �̂�4 increase when moving eastwards.

The opposite is found for �̂�3, which attains its largest values to the west. �̂�∗2 and �̂�5 take on low values along the coast, and
increase as we move further away from the sea, and further to the east. There are some locations where the estimates for
𝜆4 and 𝜆5 are much larger than 1. This is most likely caused by the problems discussed in Section 5, where a large change
in a tail parameter combined with a change in 𝜆3 results in little change in the overall shape of the FPL distribution. The
estimators for 𝜆∗2 and 𝜆3 are also showing unusual values at these locations.

6.2 Regression model

The regression model is applied for modeling diurnal temperature range for each season separately, using all the explana-
tory variables introduced in Section 2. Before we apply the regression model, each explanatory covariate is standardized
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T A B L E 3 Mean CRPS and PIT errors e𝜇 and e𝜎 over all 112 weather stations, computed for the marginal model and the regression model

Season Model CRPS e𝝁 e𝝈

Winter Marginal 1.58 0.00 ⋅ 10−2 0.00 ⋅ 10−2

Regression, in-sample 1.63 1.46 ⋅ 10−2 −0.30 ⋅ 10−2

Regression, out-of-sample 1.63 1.44 ⋅ 10−2 −0.35 ⋅ 10−2

Spring Marginal 2.11 0.06 ⋅ 10−2 −0.05 ⋅ 10−2

Regression, in-sample 2.29 1.10 ⋅ 10−2 −1.35 ⋅ 10−2

Regression, out-of-sample 2.31 1.08 ⋅ 10−2 −1.49 ⋅ 10−2

Summer Marginal 1.85 0.01 ⋅ 10−2 0.01 ⋅ 10−2

Regression, in-sample 2.12 1.70 ⋅ 10−2 −3.51 ⋅ 10−2

Regression, out-of-sample 2.16 1.58 ⋅ 10−2 −3.74 ⋅ 10−2

Autumn Marginal 1.71 0.03 ⋅ 10−2 −0.05 ⋅ 10−2

Regression, in-sample 1.76 0.97 ⋅ 10−2 −0.54 ⋅ 10−2

Regression, out-of-sample 1.77 0.94 ⋅ 10−2 −0.60 ⋅ 10−2

Note: The regression model is fitted to data both in-sample, and out-of-sample using leave-one-out cross-validation.

T A B L E 4 The FPL parameters are estimated at all weather stations, using the marginal model and the out-of-sample regression model

Winter Spring Summer Autumn

Model �̂� 2.5% 50.0% 97.5% 2.5% 50.0% 97.5% 2.5% 50.0% 97.5% 2.5% 50.0% 97.5%

Marginal �̂�1 3.0 5.0 7.7 3.6 8.0 11.5 3.7 8.8 11.8 3.1 5.6 7.4

�̂�2 1.9 3.7 7.0 2.3 5.7 8.1 1.9 4.9 7.1 1.9 4.4 6.9

�̂�3 −0.6 0.2 1.0 −0.9 0.1 1.0 −0.6 0.4 1.0 −0.7 0.6 1.0

�̂�4 0.0 0.4 0.8 0.0 0.4 1.2 0.0 0.2 0.5 0.0 0.2 1.1

�̂�5 −0.1 0.1 0.3 −0.2 0.2 0.5 −0.1 0.3 0.6 0.0 0.2 0.5

Regression �̂�1 2.9 4.8 7.1 3.4 7.8 12.5 4.6 8.3 11.2 3.3 5.5 7.6

�̂�2 1.5 3.8 6.2 2.3 5.7 8.7 3.6 5.2 7.1 1.9 4.6 6.7

�̂�3 −0.5 0.2 0.9 −0.5 0.5 1.0 0.0 0.6 0.9 −0.3 0.5 0.8

�̂�4 0.0 0.4 0.6 0.0 0.3 0.7 0.0 0.1 0.5 0.0 0.4 0.8

�̂�5 −0.3 0.0 0.3 −0.3 0.2 0.7 0.0 0.3 0.7 −0.2 0.2 0.4

Note: Median parameter estimates over all 112 locations are displayed, along with the 2.5% and the 97.5% quantiles.

to have zero mean and a standard deviation of one. Modeling is performed in-sample using all available data, and
out-of-sample in a leave-one-out cross-validation study. Thus, in the cross-validation study, the regression coefficients
𝜷pi

, i = 1, 2, … , 99, are estimated 112 times for each season, each time by leaving one station out of the training data.
The FPL parameters are then estimated at the one station that was not included in training the quantile regression mod-
els. Table 3 shows little difference in performance between in-sample and out-of-sample estimation, indicating that our
model does not overfit to the data. For winter and autumn data, the differences between the CRPS of the marginal model
and the regression model are small. However, during summer and spring, there is a considerable difference in perfor-
mance between the two models. The calibration of the regression model is clearly worse than that of the marginal model
for all seasons. However, PIT errors with a magnitude of 10−2 is still good, even though it is worse than a magnitude of
10−4. All estimated regression coefficients for the 112 out-of-sample median regressions are displayed in Figure 7. The
variability in �̂�0.5 within each season is small, indicating that the estimation procedure is robust against minor changes in
the training data. We see that the most influential explanatory variables across all seasons are the distance to the open sea
and the historical temperature observation. There is a large difference between summer, spring and the other two seasons
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16 of 22 VANDESKOG et al.

F I G U R E 7 Estimated regression coefficients �̂�0.5 for the median regression. The parameter estimation is performed out-of-sample,
resulting in 112 parameter estimates within each season. The whiskers in the box-plot have a maximum length of 1.5 times the interquartile
range. The y-axis has unit “standard deviations of y,” meaning that if a regression coefficient is for example, 0.4, then a change of one
standard deviation for the corresponding explanatory variable causes a change of 0.4 ⋅ SD(y) in the median of y

for these explanatory variables. For example, a larger mean temperature will lead to larger median range during summer,
but lower median range during all other seasons. This might be connected to the difference in model performance during
summer and spring. Similar trends are found in the �̂�p for all other probabilities p.

Figure 8 displays the out-of-sample estimation results for the same stations and seasons as in Figure 6. While the
regression model is able to capture the overall shapes at each location, some deviations are noticeable. In particular, the
estimated right tail is too heavy at all stations but Hovden-Lundane, where it is too light. Apart from this, the model
fits seem adequate for the bulk of the data. As seen in Table 4, the estimated FPL parameters from the out-of-sample
regression model shares many similarities with the parameter estimates from the marginal model. Most of the spatial
trends from the marginal model fits are also found when examining the estimates from the regional model.

Figure 9 summarizes the calibration of both the marginal model fits and the out-of-sample regression model fits for
summer and winter seasons by displaying the PIT errors e𝜇 and e𝜎 at all locations. For the out-of-sample assessment
of the regression model, the calibration of the estimated distributions varies substantially between the two seasons. In
winter, the calibration is, expectedly, somewhat worse than that of the marginal model. However, only a few stations show
considerable lack of calibration. Both positive and negative values of e𝜇 are observed, indicating both negative and positive
biases. However, the values of e𝜎 are rather negative than positive, indicating a slight tendency towards overdispersion or
too large spread. Similar patterns are observed for autumn (results not shown). The performance of the regression model
in summer is considerably worse than that in winter. There is a distinct jump in the values of e𝜇 and e𝜎 as the distance
from the sea increases. The jump in e𝜇 implies that we observe mostly positive biases along the coast and negative biases
at inland locations. Figure 1 shows that there is a similar pattern of change in the median of diurnal temperature range
along the coast and further inland during summer and spring. This indicates that the regression model is too smooth,
and fails to model the transition from coastal to inland climate. A similar jump in e𝜇 and e𝜎 can be seen for spring data,
although the difference is not as considerable as for the summer data.

Figure 3 hints that there is more information to gain from the climatological explanatory variables describing the
distribution of mean temperature in winter and autumn than in summer and spring. In order to investigate whether the
seasonal difference in skill is due to this effect, we repeated the regression analysis using only the four geographic and
orographic explanatory variables. Under this model, the performance for winter and autumn data is considerably worse,
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VANDESKOG et al. 17 of 22

F I G U R E 8 Upper plots: Histograms displaying observed diurnal temperature range are plotted along with the probability density
functions of the FPL distribution from the out-of-sample regression model. Middle plots: Histograms displaying the PIT of diurnal
temperature range with the estimated FPL parameters. Lower plots: QQ-plots displaying sample quantiles of diurnal temperature range
against distributional quantiles of the estimated FPL distributions

F I G U R E 9 PIT mean errors e𝜇 and standard deviation errors e𝜎 are displayed for the regression model and the marginal model, during
summer and winter. The magnitude of each error is represented by the radius of each dot. Values of each error are represented by the color of
each dot. The locations of the four stations from Figures 2,6 and 8 are presented in all the plots. These are: (1) Flesland, (2) Hovden-Lundane,
(3) Lyngør fyr, and (4) Sande-Galleberg
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while it stays almost unchanged for spring and summer data (results not shown). The magnitude of the PIT errors during
winter and autumn with this model is also comparable with those for spring and summer data in the original model.

7 CONCLUSION AND DISCUSSION

This article proposes to use the FPL distribution to model the distribution of diurnal temperature range. A distributional
quantile regression model is also proposed, where diurnal temperature range is modeled using a combination of quan-
tile regression and marginal modeling with the FPL distribution. Parameter estimation is performed using the method
of quantiles, which is a fast inference method that compares well with the competing inference methods of maximum
likelihood estimation and the starship method. Diurnal temperature range from southern Norway is modeled using the
marginal FPL model and the regression model. The marginal FPL model provides a good fit to diurnal temperature
range data, and the regression model shows promise and is able to capture much, but not all, of the spatial trends in the
distribution of diurnal temperature range.

We propose a reparametrization of the FPL distribution that allows for easier inference by directly connecting the
location 𝜆1 and scale 𝜆2 to quantiles of the distribution. This allows us to select better initial values for parameter estima-
tion of the FPL parameters. The reparametrization also limits the parameter space of 𝝀 so that 𝜆5 > −1∕2. This does not
appear to influence our results.

Although the method of quantiles shows great success in fitting the FPL distribution to data, we experience situations
where the estimators for 𝜆4 and 𝜆5 become too large with respect to the true values, which the method accounts for by
providing biased estimates for 𝜆3. For large sample sizes this does not seem to affect the model fit much, but for smaller
sample sizes it seems to negatively affect the performance. Further work should be put into understanding the effect of the
parameters of the FPL distribution, and why the method of quantiles overestimates tail parameters in certain situations.

Model evaluation is mainly performed using the probability integral transform (PIT) and the continuous ranked prob-
ability score (CRPS). A novel closed-form expression for the CRPS with an FPL forecast distribution is developed, which
makes model evaluation faster and simpler. Other scoring rules may be more appropriate for evaluating model fit in
larger and more inhomogeneous regions (Bolin & Wallin, 2019), but we believe the CRPS to be a good choice for model
evaluation in the current setting.

While the regression model is not able to fully capture the spatial patterns in diurnal temperature range for spring and
summer, its performance is promising, especially for winter and autumn data. It is our belief that one can achieve bet-
ter results with an improved selection of explanatory variables and, potentially, further development of the distributional
quantile regression method. As an example, many of the weather stations with high PIT errors e𝜇 and e𝜎 are located along
the coast. Consequently, it might be reasonable to better distinguish between coastal observations and inland observa-
tions, for example, through the introduction of a binary explanatory variable. A transformation of variables could also
improve our models. The relationships between the median of diurnal temperature range and the available explanatory
variables shown in Figure 3 do not seem linear for the geographical information. One might find possible transformations
of the explanatory variables which are able to improve the linear relationships between the quantiles of diurnal temper-
ature range and the available explanatory variables. In addition to the explanatory variables used in the current study,
one might find important dependencies between diurnal temperature range and other climate variables, such as daily
precipitation, wind speed and the degree of cloud cover. Especially precipitation and cloud cover have been found to be
highly negatively correlated with diurnal temperature range (Waqas & Athar, 2018; Zhou et al., 2009). It is not obvious
how such explanatory variables should be incorporated in our model, though. The regression model for diurnal temper-
ature range only includes spatial fixed effects. The inclusion of spatial random effects might improve model performance
(Lum & Gelfand, 2012; Self et al., 2021). Additionally, attempts to estimate parameter uncertainty will be affected by the
temporal autocorrelation of diurnal temperature range, which is statistically significant for lags up to approximately one
week. Consequently, further modeling attempts should also aspire to include a temporal framework. A comprehensive
modeling framework for temperature range should furthermore include modeling components to account for data issues
such as data inhomogeneities and measurement errors, including recording precision. This is particularly important in
settings where long data series from various data sources are combined into a single analysis, like in the unified Bayesian
approach that was introduced in the EUSTACE project (Rayner et al., 2020). In this project temporal and spatial auto-
correlations were handled by latent random field components, and the data inhomogeneities were directly estimated via
independent random effect variables. That approach allowed the propagation of uncertainty through the entire analy-
sis system, in contrast to more traditional data homogenization methods that handle this as a separate pre-processing
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VANDESKOG et al. 19 of 22

step. In principle, the FPL model for diurnal temperature range can be incorporated into the observation level of such
hierarchical models.

Two of the explanatory variables in the regression model are based on historical daily mean temperature. For spatial
interpolation one might argue that observations of daily mean temperature are unavailable at most locations where there
are no observations of diurnal temperature range. However, while the literature on modeling diurnal temperature range is
lacking, much effort and success has been put into the modeling of mean temperature (e.g. Haylock et al., 2008; Maraun &
Widmann, 2018). We assume that there already exist satisfactory spatial and temporal models for Norway, which are able
to describe the historical mean and variance of daily mean temperature between 1989 and 2018 with a high performance.
The Nordic Gridded Climate Data Set version 2 (Lussana et al., 2018), for example, models daily mean temperature with
high performance everywhere in Norway, Finland, and Sweden. Accordingly, all explanatory variables can be provided
at any location in Norway.

Better models for diurnal temperature range may be important for improving interpolation and statistical downscal-
ing of temperature projections from climate models (e.g. Maraun & Widmann, 2018). The common approach today is to
perform separate modeling of daily maximum, minimum, and mean temperature. However, this can lead to inconsisten-
cies such as predictions where the daily mean is larger than the daily maximum temperature (e.g. Lussana et al., 2019). In
addition, the three temperature variables are heavily dependent and should be modeled jointly, but multivariate modeling
is often too challenging and computationally demanding. An alternative method for modeling these three temperature
variables is to transform minimum, maximum, and mean temperature to diurnal temperature range, mean tempera-
ture, and the location of the daily mean inside the temperature range. This would remove all ordering inconsistencies
between minimum, mean, and maximum temperature, and it would considerably reduce correlations between the three
variables. Analysis of the data used in this article finds that the absolute values of pairwise sample correlations between
daily minimum, maximum, and mean temperature mainly lie in the interval [0.9, 1]. Sample correlations between diur-
nal temperature range, daily mean temperature and the location of the mean inside the range, on the other hand, are
always below 0.5. Thus, appropriate statistical models for diurnal temperature range and its relationship with daily mean
temperature can be of great interest as model components for multivariate temperature modeling approaches. Further
work should be conducted to examine this approach.
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