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Abstract

The Cancer Registry of Norway organises a
population-based breast cancer screening program.
The interpretation of the screening mammograms
is a manual process, but deep neural networks
are showing potential in mammographic screen-
ing. Most methods focus on methods trained from
pixel-level annotations, but these require expertise
and are time-consuming to produce. Through the
screenings, image level annotations are however
readily available. In this work we present a few
models trained from image level annotations from
the Norwegian dataset: a holistic model, an atten-
tion model and an ensemble model. The models
combine two ResNet101 instances and use gradient
based saliency mappings to identify regions of in-
terest. We compared the models’ performance with
that of pretrained models based on pixel-level an-
notations, trained on international datasets. From
this we found that models trained on our local data
with image-level annotation gave considerably bet-
ter performance (AUC=0.940) than the pretrained
models from external data (AUC=0.861), although
the latter was based on pixel-level annotations.

1 Introduction

Breast cancer is the most common cancer and the
leading cause of cancer death among women world-
wide [3]. Early detection of breast cancer through
screening is recommended by international health
organizations to reduce this mortality [11]. In
Norway a population-based breast cancer screen-
ing program [8], administered by the Cancer Reg-
istry of Norway (CR) invites all women aged 50-69
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to mammography every two years. About 250 000
women participate each year.

The interpretation of the screening mammo-
grams is a manual process where two radiologists
independently analyze the mammograms, giving
them a score indicating the level of suspicion of ma-
lignancy. If both radiologists give the lowest score,
the screening is considered negative, otherwise a
consensus meeting is used to determine whether to
call the woman back for further assessment. In to-
tal 0.6% of the attending women are diagnosed with
breast cancer.

Artificial intelligence (AI) building on deep neu-
ral networks is now showing potential in mammo-
graphic screening and may help reduce the work-
burden of radiologists. Initial AI approaches [2, 6]
were hindered by limited amount of training data,
but more recent studies [20, 13] have had much
more data available, and some report performance
that competes with radiologists [13].

Compared to the more traditional methods for
mammogram analysis, deep learning methods of-
fer the advantages of automated learning of fea-
tures and the opportunity for end-to-end models.
However, to achieve this, a considerable amount of
annotated training data is needed. Through the
Norwegian breast cancer program, we have a large
dataset available. However, we only have diagno-
sis and annotations at image and patient level, and
not delineation of cancers at pixel level. Acquiring
this type of pixel level annotations is time consum-
ing and requires breast radiologists that are already
overloaded with work. Our choice was therefore ei-
ther to train from our own dataset based on image-
level labels or to use an existing state-of-the-art
model that was pre-trained on pixel information
directly or for transfer learning.

https://doi.org/10.7557/18.6244

The author(s). Licensee Septentrio Academic Publishing, Troms, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1

https://doi.org/10.7557/18.6244
http://creativecommons.org/licenses/by/4.0/


2 Related work

As mammographic images are large, full resolution
images will typically not fit into GPU memory to-
gether with the more accurate standard CNN ar-
chitectures. At the same time, the salient features
of a growing tumor, such as lesions and calcifica-
tions, can only be reliably identified on a very small
scale. Therefore, significant information could be
lost from down-sampling, resulting in poor perfor-
mance [15]. Most approaches are therefore based
on methods that need to be trained from pixel-level
annotations [9, 10, 4].

Still there are some works on holistic approaches,
using image-level annotations only [14, 22, 6]. Mo-
hammad et al [14] obtain a holistic approach
through inputting a heavy down-sampled mammo-
gram to a CNN. Zhu et al [22] perform classification
based on a raw, un-annotated whole mammogram,
where they attempt to overcome the resolution
problem through using a multiple instance clas-
sifier approach based on a bag-of-patches. Geras
et al [6] succeed at using high-resolution input in
their multi-view deep convolutional network (MV-
DCN), through using a specially designed architec-
ture with aggressive convolution and pooling layers.
Through this they are able to build an MV-DCN
that takes four 2600x2000 pixels images (one per
view) as input without any downscaling and with-
out much performance degradation.

Wu et al [20] investigate the value of pixel-level
labels by comparing the use of only image-level la-
bels to that of using both image-level and pixel
level labels, where they find that the combina-
tion performs better than the image-only model.
Their image-only model is inspired by the method
of Geras [6]. Pixel-level and image-level labels are
combined by using a pixel-trained model to predict
heatmaps which are then used to produce multi-
channel images as input to the image-level model.
Still, they comment that the high resolution of the
images and the limited memory of modern GPUs
constrain them to use relatively shallow networks
(ResNet-22) within the models when using full-
resolution images as inputs.

To be able to exploit information from local de-
tails without having pixel-level annotations, more
recent works propose to use weak supervision [15,
16, 12]. Such approaches aim to identify image re-
gions relevant to classification utilizing only image-

level labels during training, based upon the obser-
vation that feature maps in the final convolutional
layers of CNNs reveal the most influential regions
of the input image [12].

Shen et al have developed what they call a glob-
ally aware multiple instance classifier (GMIC) [15].
They use the ResNet-model of Wu et al to gener-
ate a pixel-level saliency map through a 1x1 convo-
lution of the feature maps obtained after the last
residual block. Each element of the saliency map
denotes a score that indicates the contribution of
the corresponding location towards classifying the
input. The most salient patches are then selected
through a Gated Attention Mechanism and sent to
a multiple instance classifier. In [16] they extend
the architecture with a fusion model. This ap-
proach requires image-level annotations only and
compares favourably to the approaches of Wu in
terms of performance but requires more memory
and computational resources. As a biproduct of
the classification procedure, these models can visu-
alize the important patches.

Liu et al [12] have introduced another weakly
supervised approach that also aims at segmenta-
tion, GLAM (Global-Local Activation Maps). In
comparison with GMIC, this approach produces
more fine-grained saliency maps. They also com-
bine saliency maps at different scales to generate
the global saliency map. With their model they
also provide segmentation. Classification-wise their
AUC is on level with the GMIC model.

In our work we wanted to first look into how far
a simple holistic approach could bring us, when we
were able to do end-to-end training on our Norwe-
gian dataset and while finding a good balance be-
tween input resolution and network capacity. We
compared this to a pre-trained model trained with a
combination of global and local information. Fur-
thermore, to see if our holistic model could gain
from incorporating even more detailed information,
we also extended our baseline model into a sim-
ple attention model. In our attention model, we
focused on capturing salient areas at high resolu-
tion, while keeping patches as large as possible and
reusing the network architecture from the holistic
model.
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3 Methods

In the following we describe the methods based on
training from image-level annotations, and also give
a brief description of the method behind the pre-
trained model that also exploited pixel-level anno-
tations.

3.1 Holistic model

In our first approach we wanted to see how a sim-
ple holistic approach would fare, that exploits only
image-level annotations and could be trained end-
to-end on our dataset. We chose a model of the
residual net family, which have been much used
for mammogram analyses [20, 12, 15, 16]. They
show good performance and are neither too mem-
ory nor too computation demanding. We found
that a ResNet-101 network gave us a good bal-
ance between network capacity and memory needs,
allowing for use of image crops of good size and
reasonable resolution although some downsampling
was still required.

For the purpose of model training, we defined
the positive cases as examinations for which cancer
was found through the screening procedure, and the
rest of the examinations as negative ones. Input to
the network was a single image, and standard data
augmentation transforms were used during train-
ing. In evaluation mode, the images were center-
cropped and down-sampled before they were fed
into the network. The network output was a posi-
tive and a negative class score, where we defined a
risk score for cancer for a single input image as the
difference between these (positive - negative).

3.2 Attention model

Even without pixel-level annotations we still
wanted to try to identify important regions in the
image and see if our ResNet model could gain from
increased attention towards suspicious regions. To
achieve this we used the simple pixel attribution
approach of Simonyan et al [17], where they calcu-
late the gradient of the loss function for the class
they are interested in with respect to the input pix-
els. This model has been shown to give reasonable
results on medical images [7] and it is computation-
ally efficient, since it requires only a single back-
propagation pass through the model.

By retrieval of the gradients from predictions
from our original holistic model, we could then get
a spatial attention map showing where the network
focused in order to classify the given image. From
this attention map we then identified the most
salient parts of the image by finding the points with
the highest gradient impact. From these points we
found the mass centre and defined this as the cen-
tre of attention (COA) in the image and identified a
region of interest (ROI) around this COA. Figure 1
shows an example of saliency maps and resulting
ROIs.

Figure 1: Examples of saliency maps for a positive
(left) and negative (right) case. The green dots
represent the important pixels, the red dot shows
the COA and the squares are the ROIs.

Under the assumption that the important part of
the image has been found, the region of interest can
be considerably smaller than the full image and can
thereby be represented with a higher resolution and
still fit on the GPU. One might suspect that this
method would fail to identify relevant parts of pos-
itive images that were falsely classified as negative
by the Holistic model, but subsequent performance
tests indicate that it performs reasonably well.

Since the Holistic model was designed to utilize
the available GPU resources as effectively and effi-
ciently as possible, we decided to re-use the same
architecture for the fine-grained model; the only
difference being that the fine-grained model was
trained to evaluate a smaller part of the image and
therefore received input of a higher resolution, with
the aim of improving its ability to identify minute
indications of cancer.

This attention approach has some similarities
with the approaches in [16, 12], by requiring image-
level labels only for training and using a single
holistic ResNet for identifying ROIs to be passed
on to a more fine-grained sub-model. The main
difference lies in the degree of complexity. While
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the GLAM model [12] uses a hierarchy of patches
of different resolutions and the GMIC model [16]
uses non-standard loss functions, tailor-made op-
timization procedures for selection of patches and
attention mechanisms that combine model outputs
from several ROI patches, our approach is simpler
and more transparent.

3.3 Ensemble model

While we would expect the focused attention and
higher resolution of the Attention model to lead
to a better performance than that of the simpler
Holistic model, this might not always be the case.
For some images, the over-all shape of the breast
or other macro-characteristics might give indepen-
dent information about the correct diagnosis, which
would be lost for the fine-grained sub-model. There
may also be several local regions of a breast that
contribute independently to a positive evaluation
by the Holistic model, in a way that could be lost
in the ROI. Besides, there is often a benefit from
averaging the output of different models [5], and
for these reasons we defined an Ensemble model
through the (unweighted) average of the Holistic
and Attention risk scores.

3.4 Examination-level risk scores

A screening examination consists of four images
with two different views for each breast. To ob-
tain the risk score of a screening examination, we
first defined a single-breast risk score as the sum
of the risk scores for the two images of the given
breast, and then we defined the examination-level
risk score as the maximum of the two single-breast
scores. This procedure was applied to the single-
image risk scores of the Holistic, Attention and En-
semble models alike.

3.5 Pretrained model

For our Pretrained model we wanted one that was
trained from a combination of image-level labels
and pixel-level annotations and could be adapted
to our image-level labels. The model described in
[20] was chosen, as it fitted this order and also had
implementation code and pretrained weights avail-
able on GitHub. This model uses a multi-view ap-
proach that takes as input all four views from a

screening examination. To obtain local informa-
tion, heatmaps are first estimated for each view
using a DenseNet model trained on smaller anno-
tated image patches. For each view, this is used to
produce heatmaps for likely benign and malignant
masses. A multi-view model takes these heatmaps
as input, together with the actual images, and pro-
duces two risk scores (benign and malignant) for
each breast. For further details we refer to [20]. We
used the malignancy risk scores of the Pretrained
model directly and also implemented transfer learn-
ing. For the latter, we replaced the head of the pre-
trained model with a head adapted to and trained
on our own Norwegian data set, predicting cancer
at examination-level.

4 Experiments

4.1 Data

Our data set was from mammography screening of
women aged 50 to 69 in breast-diagnostic centres
from three Norwegian counties, containing data
from a total of 153 159 examinations using Siemens
equipment.

Each examination in our data set consisted of
four grey-scale images; two of each breast taken
from two different angles (Figure 2). The four im-
ages are from left to right L-CC, L-MLO, R-CC and
R-MLO, where R and L means right and left breast,
respectively, while MLO (mediolateral oblique) and
CC (bilateral craniocaudal) are the two standard
views of the breast. Some examinations had more
than four images, but these were excluded from
the analysis. There were eight different image sizes
ranging from 940x2340 to 3328x4096 pixels.

Figure 2: An example of four-view mammographic
images (not from our dataset). Illustration from
The Digital Mammography DREAM challenge [18].

In our dataset we have annotations resulting
from diagnoses. A cancer case is defined as a
‘screening cancer’ if it was diagnosed as the result
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of a screening examination. Otherwise, it is defined
as an ‘interval cancer’ because it was found and di-
agnosed in the time span between one screening
exam and the planned next one. They are likely a
mix of cancers that develop quickly after a screen-
ing exam and cases that could have been identified
in screening but were missed. In some cases, they
may also have been identified by the radiologists
as suspicious but not confirmed by biopsies. The
remaining examinations were denoted as ‘normal’.
In our data set of 153 159 examinations, 783 were
classified as screening cancers and 249 as interval
cancers.

During training, screening cancer examinations
were defined as the positive cases, while the rest
(including interval cancers) were defined as nega-
tive ones. For the positive cases, the two images of
the affected breast were defined as positive exam-
ples, while for negative cases all four images were
defined as negative ones.

4.2 Implementation details

For our Holistic model, we used a Pytorch ResNet
with two output nodes, initialized with pretrained
weights and modified to greyscale. We used one
of the cross-validation folds to test different trade-
offs between input field size, batch size and model
size within the constraints of the available GPU
memory capacity (11178 MiB). We ended up with
using an input field of 976x976 pixels, a batch size
of 4 and a ResNet101. During training, the im-
ages were rescaled to a width of 976, padded with
zeros and randomly flipped, rotated and cropped.
More advanced augmentation methods like per-
spective transformations and elastic deformations
might have been appropriate as well, but were not
implemented in the present application. In evalua-
tion mode, the images were rescaled to a width of
976 and center cropped.

The Attention model used the same crop size
as the Holistic model, although of a smaller area
with higher resolution. When selecting the region
of interest, the centroid of the 1% pixels with the
highest gradient impact was defined as the Holistic
model’s center of attention (COA). This percentage
was defined based on visual inspection of what ap-
peared to give reasonable results. A 976x976 square
centered at the COA was used as input field for the
Attention model.

The network, ResNet-101, was structurally iden-
tical to the Holistic model and the input trans-
forms of the ROI for training were also applied
with minor adjustments. Even though it evaluates
on a smaller scale, initializing the Attention model
with the Holistic model weights boosted the train-
ing speed substantially.

4.3 Experimental setup

All experiments were performed with 10-fold cross-
validation, stratified by screening and interval can-
cers. As our performance metric we used the
generic criterion of AUC, which is common in the
field and has the advantage of being independent
of class imbalance. Based on the radiologists’ ini-
tial malignancy scores, we defined the following
risk scores: For a single radiologist, we defined
his examination-level risk score as the maximum
of the single-breast scores. The double-radiologist
risk score of a single breast we defined as the sum
of the radiologists’ risk scores, and the maximum of
these was used as the examination-level risk score.

5 Results

The different models were tested separately on the
same dataset. Performance was investigated both
for the case of separating screening cancers from all
others, and the case of separating all cancers, both
screening and interval, from the rest. These results
are summarized in Table 1.

From this we see that the best performance is
achieved by the ensemble model, combining the
Holistic and the Attention model. Furthermore, we
see that all the locally trained models outperform
the pretrained ones, even though the former have
not been trained on pixel-level information.

In comparison with the radiologists, we also see
quite good performance of the locally trained mod-
els. For the case of distinguishing between screen-
ing cancers and others, the best model, the Ensem-
ble model, shows slightly better performance than
one single radiologist. When it comes to distin-
guishing between all cancers (screening+interval)
and others, the Ensemble model is actually on par
with the double-radiologist performance.
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Model Screening
Screening
+ Interval

Holistic 0.913 0.866
Attention 0.932 0.883
Ensemble 0.940 0.891
Pretrained 0.833 0.784

Adapted Pretrained 0.861 0.819
1 radiologist 0.930 0.836
2 radiologists 0.987 0.886

Table 1: AUC-values for (i) screening cancer vs
the rest and (ii) cancers (screening + interval) vs
the rest for different models and radiologist eval-
uations. Note that in the AUC computations
we included for efficiency reasons, all the (screen-
ing) cancers, but only 5000 of the approximateley
150 000 examinations in the rest dataset.

6 Discussion

Our main finding is that training a model end-
to-end on local data with image-level labels gave
better performance than a model that was pre-
trained on external images with pixel-level anno-
tations. We regard this as a robust finding since
even the Holistic model performed better than the
version of the Pretrained model where the top layer
was replaced and trained on our data. From other
studies, generalization to new data sets is known to
give problems [19] which may e. g. be related to
different technical imaging machinery, different ma-
chine settings and physiological differences in the
screened population.

We find it encouraging that even the Holistic
model performs better than a single radiologist in
identifying cancer cases over-all, as it is often ar-
gued that fine-grained models that classify small
patches are necessary to capture the minute can-
cer signs present in high-resolution mammograms
[21, 16]. Further improvement is seen with the At-
tention model, where a focus for attention is found
only from the weak image-level labels. The best re-
sults are achieved with the combination of the two
in the Ensemble model, combining both the holistic
and the fine-grained view.

The Ensemble model has an AUC performance
on screening cancers that is comparable to con-
temporary state-of-the-art models [1]. Such com-

parisons may be less meaningful across datasets,
since the different models are trained and evaluated
on different populations of women and images may
have different technical quality. However, the find-
ing is strengthened by the fact that the model per-
formance was between that of a single and a double
radiologist reading for detecting screening cancers,
which has also been reported for other studies [1].

Furthermore, the model performance is equal to
a double radiologist reading in identifying cancers
in general, including screening and interval cases.
This is an even more interesting finding than the
detection of screening cancers. Since the radiol-
ogist scores trigger the further examinations and
biopsies, the fact that an examination is given a
high radiologist score increases the likelihood that
it ends up in the screening cancer category. Con-
versely, any cancer case that might be overlooked
by the radiologist is excluded from the screening
cancer set. Therefore, the task of screening cancer
detection by design favours the radiologists.

7 Conclusion

We conclude that the ability to fully train a model
on local images gave a big advantage over an exter-
nal model trained with pixel-level annotations, even
when the latter was adapted using transfer learning
for local images. A pure ResNet model performed
surprisingly well and a model where that ResNet
identifies an ROI for another model, worked even
better. The latter achieved a performance compa-
rable to double radiologist reading, for the task of
identifying any cancer (screening or interval type),
requiring no pixel-level annotation for training.
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