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Motivated by a condition monitoring application arising from subsea en-
gineering, we derive a novel, scalable approach to detecting anomalous mean
structure in a subset of correlated multivariate time series. Given the need
to analyse such series efficiently, we explore a computationally efficient ap-
proximation of the maximum likelihood solution to the resulting modelling
framework and develop a new dynamic programming algorithm for solving
the resulting binary quadratic programme when the precision matrix of the
time series at any given time point is banded. Through a comprehensive simu-
lation study we show that the resulting methods perform favorably compared
to competing methods, both in the anomaly and change detection settings,
even when the sparsity structure of the precision matrix estimate is misspeci-
fied. We also demonstrate its ability to correctly detect faulty time periods of
a pump within the motivating application.

1. Introduction. Modern machinery can be perplexingly complicated and interlinked.
The interruption of one machine may cause downtime of a whole operation, in addition to
a repair being both costly, time consuming and arduous. This has spawned an enormous
interest in (remote) condition monitoring of industrial equipment to detect deviations from
normal operation such that optimal uptime can be achieved and impending faults discovered
before they occur. Overviews of condition monitoring techniques for different equipment
exist for pump turbines (Egusquiza et al. (2015)), wind turbines (Tchakoua et al. (2014)) and
audio and vibration signals (Henriquez et al. (2014)), among others. A common theme is the
decision problem of when the machinery is running abnormally—a problem that lends itself
well to statistical change-point analysis.

The current work is motivated by a problem of detecting time intervals (segments) of sub-
optimal operation of an industrial process pump. We will refer to these segments as “anoma-
lies” or “segments,” because they correspond to deviations from some predefined baseline
pump behaviour. The pump is equipped with sensors that measure temperatures and pres-
sures over time at various locations. Other operational variables, such as the flow rate and
volume fractions for the different fluids being pumped, are also recorded. If present, the aim
is to estimate the start- and end point of anomalies as well as indicate which variables are
anomalous. This is useful information to the operators of the pump to pinpoint the source of
historical problems and learn from them. Another reason for performing such an analysis is
to create a clean reference data set that can be used to train a model of the equipment’s base-
line behaviour before deploying the method for online condition monitoring. The particular
data set we consider contains four anomalies that have been manually labelled by engineers
familiar with this data, based on retrospectively looking for signs in the data of degrading
performance.

The starting point of our methodology is to assume that, during normal operation of the
pump, the data follows a baseline stationary distribution and during suboptimal operation, the
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FIG. 1. Pump data after preprocessing, with four known segments of suboptimal operation marked by black
lines on the x-axis. The correlation between variables 1 and 2 is 0.89, and the pairwise correlations between
variables 3, 4 and 5 are all above 0.6.

mean of the distribution changes abruptly for some period of time, before it reverts back to
the baseline mean. This is known as an epidemic change-point model in the literature (Kirch,
Muhsal and Ombao (2015)), but in the presence of our application, we will refer to it as the
anomaly model. A challenge with the pump data is that the mean changes as a consequence
of what is being pumped and other operating conditions in addition to suboptimal operation.
To decrease the dependence on the operating conditions and thus increase the signal from
changes due to suboptimal operation, we divide the variables into sets of state variables and
monitoring variables and regress the monitoring variables onto the state variables (similar to
Klanderman et al. (2020)). The remaining five-variate time series of monitoring residuals are
shown in Figure 1, where the known anomalies are marked on the time axis. Observe that
the strength of the known anomalies vary as well as which variables seem to be affected. It
is also apparent that the mean changes outside of the known anomalous segments. Detecting
and estimating these segments is also important, as they may correspond to previously un-
known anomalies or constitute data for which the current model between state and monitoring
variables fit poorly and hence point to how it should be improved.

The pump data after preprocessing also exhibit strong cross-correlation, due to the prox-
imity of the sensors to each other, with the correlation of variables 1 and 2 being 0.89 and the
pairwise correlations between variables 3, 4 and 5 all being above 0.6. Most existing methods
for detecting a change or anomaly in a subset of variables ignore cross-correlation (though
see Wang and Samworth (2018)). If not accounted for, however, cross-correlation will hamper
the detection of more subtle anomalies, as illustrated by the simulated example in Figure 2.
The benefit of undertaking multivariate change-point detection is to borrow strength between
variables to detect smaller changes than would be possible if each variable were considered
separately. Including cross-correlation in the model, if sufficiently strong, will increase the
power of detection. This is particularly true for sparse changes, an observation also made by
Liu, Gao and Samworth (2021).
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FIG. 2. Modelling cross-correlation increases detection power for a fixed Type I error probability, espe-
cially for sparse changes. Both plots show the same set of 1000 simulated observations from a 10-vari-
ate Gaussian distribution with a global constant correlation of 0.5, containing three collective anomalies at
t ∈ (50,100], (333,358], (900,1000], affecting the means of variables {6,10}, {1, . . . ,10} and {9}, respectively,
and 12-point anomalies affecting two random variables each. The left plot displays the estimates of collective and
point anomalies of our method, which incorporates cross-correlations, while the right plot shows estimates when
the method ignores cross-correlations. As both methods were tuned to achieve 0.05 probability of a false positive
under the global correlation null model, the two sparse anomalies are not detected in the right plot as a trade-off
with error control.

Our main methodological contribution is to develop a novel test statistic based on a pe-
nalised cost approach for detecting multiple anomalies/epidemic changes in a subset of means
of cross-correlated time series. The test is designed to be powerful for both sparse and dense
alternatives as well as being computationally fast and scalable. This is crucial for our method
also to be useful for anomaly detection problems of higher dimensionality than our process
pump example. Anomalies are then detected by using the test within a PELT-type algorithm
(Killick, Fearnhead and Eckley (2012)) to optimise exactly over all possible start- and end
points of anomalies.

Through the work on making the method scalable, we derive an algorithm which may be
of independent interest within combinatorial optimisation. Our test statistic is an approxima-
tion to the maximum likelihood solution of our problem, formulated as what is known as an
unconstrained binary quadratic program (BQP). We show that such optimisation problems
can be solved exactly by a dynamic programming algorithm scaling linearly in the number of
variables, p, if the matrix in the quadratic part of the objective function is sparse in a banded
fashion. In the anomaly detection problem this corresponds to having a banded precision ma-
trix. We present a simple preprocessing step for obtaining a banded estimate of the precision
matrix of our data and show empirically that detecting the anomalies, using such an estimate,
leads to gains in power over methods that ignore cross-correlation, even when the banded
assumption is incorrect.

A further challenge in many applications, such as the pump data of Figure 1, is the pres-
ence of outliers. If left unattended, it is well known that they will interfere with the detection
of changes (Fearnhead and Rigaill (2019)). To handle outliers, we incorporate the distinc-
tion between point and collective anomalies, introduced in the CAPA (collective and point
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anomalies) and MVCAPA (multivariate CAPA) methods of Fisch, Eckley and Fearnhead
(2021a, 2021b). A point anomaly is defined as an anomalous segment of length one—a single
anomalous observation—while a collective anomaly is an anomalous segment of length two
or longer. This distinction enables the method to classify sporadic outliers as point anoma-
lies rather than confusing them with a collective anomaly. We call our anomaly detection
algorithm CAPA-CC, short for collective and point anomalies in cross-correlated data.

To the best of our knowledge, there are no other methods designed specifically for the
multiple point and collective anomaly detection problem in multivariate, cross-correlated data
with both sparse and dense anomalies. Current approaches to detect collective anomalies
assume independence across series (Fisch, Eckley and Fearnhead (2021b), Jeng, Cai and
Li (2013)). Alternatively, methods like Kirch, Muhsal and Ombao (2015) model correlated
series but focus on detecting changes in the cross-correlation.

For the general change-point problem of a sparse or dense change in the mean, the lit-
erature is mostly concentrated on methods that either allow for sparse changes but assume
cross-independence (Xie and Siegmund (2013), Jirak (2015), Cho and Fryzlewicz (2015),
Cho (2016), Bardwell et al. (2019)) or allow cross-dependence but assume changes are dense
(Horváth and Hušková (2012), Li et al. (2019), Bhattacharjee, Banerjee and Michailidis
(2019), Westerlund (2019)). The inspect method of Wang and Samworth (2018) is a notable
exception to this rule, as it is designed to estimate sparse changes in the mean of potentially
cross-correlated data. Whilst general change-point methods can also be used for the anomaly
detection problem, some power is expected to be lost, as there is no assumption of a shared
baseline parameter.

The paper is organised as follows: We first describe the anomaly detection problem in
detail in Section 2, before considering our solution in Section 3. Particular focus is put on
the single collective anomaly case and our BQP solving algorithm for approximating the
maximum likelihood solution. We then briefly describe how the same ideas can be applied
to the general change-point detection problem in Section 4. In Section 5 we cover a useful
strategy for robustly estimating the precision matrix with a given sparsity structure, and we
suggest strategies for tuning our method. Section 6 contains an extensive simulation study
for assessing the performance of our method. We conclude by presenting the analysis of the
pump data in Section 7.

2. Problem description. Suppose we have n observations, {xt }nt=1, of p variables, xt =
(x

(1)
t , . . . x

(p)
t ), where each xt has mean, μt , and a common precision matrix, Q, encoding the

conditional dependence structure between the variables. Our interest is in detecting collective
anomalies that are characterised by a change in the mean of the data.

In our anomaly detection problem, segments of the data will be considered anomalous
if the mean, μt , is different from a baseline mean, μ0. Let K be the number of collective
anomalies, where the kth anomaly, for k = 1, . . . ,K , starts at observation sk + 1, ends at
observations ek and affects the components in a subset Jk ⊆ [p]. So, the model assumes that
the mean vectors, μt , are given by

(1) μ
(i)
t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ
(i)
1 if s1 < t ≤ e1 and i ∈ J1,

...

μ
(i)
K if sK < t ≤ eK and i ∈ JK,

μ
(i)
0 otherwise,

where ek ≤ sk+1 such that no overlapping anomalous segments are allowed. To distinguish
collective anomalies from point anomalies, which we will consider later, we make the as-
sumption that collective anomalies are of length at least 2, that is, ek − sk ≥ 2. The rationale
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is that point anomalies, that is, anomalies that affect data at isolated time points are likely to
be caused by different factors than collective anomalies. In our application, point anomalies
may be due to sensor errors, whereas collective anomalies indicate underlying issues with
the machinery. In some cases, one may also be given information about the minimum and
maximum segment length of a collective anomaly, l ≥ 2 and l < M ≤ n, respectively, such
that l ≤ ek − sk ≤ M for all k.

Our aim is to infer the number of collective anomalies, K , as well as their locations within
the data, (sk, ek,Jk)

K
k=1, together with the anomalous means, μ

(i)
k for i ∈ Jk , in a computa-

tionally efficient manner.
During method development we assume that the baseline parameter, μ0, and the preci-

sion matrix, Q, is known. In practice, these will be estimated from the data, using robust
statistical methods described in Section 5.1. Later, to enable quick computation, we will also
assume that Q, or an estimate of Q, is sparse in a banded fashion. A sparse precision matrix
corresponds to cases where only a few of the variables are conditionally dependent.

3. Detecting anomalies.

3.1. A single collective anomaly. In this section we consider the anomaly detection prob-
lem described in Section 2 for K ≤ 1. Our approach is to model the data as being realisations
of multivariate Gaussian random variables, independent over time, and to use a penalised
likelihood approach to detect an anomaly.

We will use the following notation: For a p-vector x and set J ⊆ [p], x(J) := (x(i))i∈J and
x(J) := (x(i)I {i ∈ J})pi=1, where I {i ∈ J}) is the indicator function. For a matrix X, XJ,K
denotes the submatrix of rows J and columns K. Both −J and Jc refer to the complement
of a set J. The k-subscripts enumerating the anomalies will be skipped when the referenced
anomaly is clear from the context.

Define the cost of introducing an anomaly from time-point s + 1 to e in variables J as
twice the negative log-likelihood of multivariate Gaussian data

(2) C
(
x(s+1):e,μ(J)

) =
e∑

t=s+1

(
xt − μ(J)

)ᵀ
Q

(
xt − μ(J)

)
,

where, for simplicity, we have dropped added constants. Now, for ease of presentation and
without loss of generality, we assume μ0 = 0. Then, the log-likelihood ratio statistic of the
observations x(J)

(s+1):e being anomalous is given by

(3) S(s, e,J) = C(x(s+1):e,0) − min
μ(J)

C
(
x(s+1):e,μ(J)

)
.

We refer to S(s, e,J) as the saving realised by allowing the observations x(J)
(s+1):e to have a

different mean from 0. In a maximum likelihood spirit the aim is to maximise the savings
S(s, e,J) over start points s, end points e and subset J, and infer the anomalous segment
thereof. However, as we vary J, we are optimising over differing numbers of means in the
anomalous segment, and the savings will always increase, as we optimise over more parame-
ters. One way of dealing with this is to introduce a penalty that is a function of the number of
anomalous variables, P(|J|), and maximise the penalised savings instead. This gives us the
following anomaly detection statistic:

(4) S := max
l≤s−e≤M

S(s, e) := max
l≤s−e≤M

max
J

[
S(s, e,J) − P

(|J|)].
Recall that l and M are the minimum and maximum segment length, respectively. An
anomaly is declared if (4) is positive and the maximising (s, e,J) is a point estimate of the
anomaly’s position in the data.
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Throughout this article we use a piecewise linear penalty function of the form

(5) P
(|J|) = min

(
αsparse + β|J|, αdense

) =
{
αsparse + β|J|, |J| < k∗,
αdense, |J| ≥ k∗,

where k∗ = (αdense − αsparse)/β . We will refer to |J| < k∗ as being in the sparse regime
and |J| ≥ k∗ as being in the dense regime. Such a penalty function ensures that our method
can be powerful against both sparse and dense alternatives. In addition, we can apply the
results from Fisch, Eckley and Fearnhead (2021b) where it is shown that, if our modelling
assumptions are correct, setting αdense = p + 2

√
pψ + 2ψ , αsparse = 2ψ and β = 2 log(p),

for ψ = log(n), results in a false positive rate that tends to 0 as n grows. Furthermore, Fisch,
Eckley and Fearnhead (2021b) show that scaling the penalty function (5) by a factor b is
appropriate in many situations where the modelling assumptions do not hold, such as when
there is dependence over time.

Note that [p] is always the maximiser in the dense regime and that β is the additional
penalty for adding an extra variable to the anomalous subset in the sparse regime. We will
exploit these properties when deriving an efficient optimisation algorithm in Section 3.2.

To compute the anomaly detection statistic, S, we need the maximum likelihood estimator
(MLE) μ̂(J) of μ(J), where the means of variables j ∈ J are allowed to vary freely while the
others are restricted to 0. Optimising the multivariate Gaussian likelihood (2), with respect to
such a subset restricted mean, results in the following MLE for the mean components in J:

(6) μ̂
(J)
(s+1):e = x̄(J)

(s+1):e + Q−1
J,JQJ,−Jx̄(−J)

(s+1):e.

The corresponding p-vector μ̂(J) is constructed by placing μ̂(J) at indices J and zeroes else-
where. Finally, putting the MLE back into the expression for the saving and suppressing the
subscripts (s + 1) : e to not clutter the display gives us that

(7) S(s, e,J) = (e − s)
(
2x̄ − μ̂(J)

)ᵀ
Qμ̂(J).

Unfortunately, the complicated form of the MLE (6) means that the number of operations
required for finding the exact maximum penalised saving over subsets J is O(2p). The opti-
misation problem is not only combinatorial but also nonlinear, and, as far as we know, there
is no reformulation of the saving (7) that would make the problem notably more tractable.
We thus opt for an approximation to the saving (7) to achieve scalability.

3.2. Approximate savings for anomaly detection. Our idea for a computationally efficient
approximation of the subset-maximised penalised savings S(s, e) is to replace the MLE in (7)
with the subset-truncated sample mean,

(8) x̄(J) = x̄ ◦ u,

where u = (I {i ∈ J})pi=1 and ◦ is the elementwise (Hadamard) product. That is, under the
sparse regime we aim to maximise the approximate penalised saving,

(9) S̃(s, e) := max
J

[
S̃(s, e,J) − P

(|J|)] = max
J

[
(e − s)

(
2x̄ − x̄(J)

)ᵀ
Qx̄(J) − β|J|] − αsparse.

Under the dense regime the exact maximum is given by S(s, e, [p]) − αdense.
An important motivation for using x̄(J) is that finding S̃(s, e) corresponds to what is known

as a binary quadratic program (BQP). The unconstrained version of such optimisation prob-
lems are of the form

(10) max
u∈{0,1}p uᵀAu + uᵀb + c,
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where A is a real, symmetric, (p × p)-dimensional matrix, b is a real, p-dimensional vector
and c is a real scalar. BQPs are NP-hard, in general (Garey and Johnson (1979)), even if A
is positive or negative definite. If A is r-banded, however, we show that BQPs can be solved
with O(p2r ) operations. Proposition 1 confirms that maxJ[S̃(s, e,J) − P(|J|)] is indeed a
BQP. The proof is given in Section A.1 of the Supplementary Material (Tveten, Eckley and
Fearnhead (2022)).

PROPOSITION 1. Let α,β ≥ 0, x̄ ∈R
p and x̄(J) = u ◦ x̄, where u is a binary vector with

1 at positions J and 0 elsewhere. Then, solving

(11) max
J

[
(e − s)

(
2x̄ − x̄(J)

)ᵀ
Qx̄(J) − β|J|] − α,

corresponds to a BQP with A = −(e − s)x̄x̄ᵀ ◦ Q, b = 2(e − s)(x̄ ◦ Qx̄) − β and c = −α.

To explain the dynamic program (Algorithm 1) for solving the BQP when the precision
matrix Q, and hence A, is r-banded; it is illustrative to consider the case of r = 1. The
key idea is that if we cycle through the variables in turn, then the choice of which of the
variables d, . . . , p are anomalous will depend on the variables 1, . . . , d − 1 only through
whether variable d − 1 is anomalous or not. Thus, we can obtain a recursion by considering
these two possibilities separately.

In the case of r = 1, the BQP for maxJ[S̃(s, e,J) − P(|J|)] is given by

(12) max
u∈{0,1}p

p∑
d=1

(bd + Ad,d)ud + 2
p∑

d=2

Ad,d−1udud−1 + c,

where Ad,i = −(e − s)Qd,i x̄d x̄i for i = d, d − 1, bd = 2(e − s)x̄d

∑d+1
i=d−1 Qd,i x̄i − β and

c = −α. Let S̃1(d) and S̃0(d) be the maximal approximate penalised savings of variables
1, . . . , d ≤ p conditional on variable d being anomalous (ud = 1) or not (ud = 0) for a fixed s

and e. Moreover, we write S̃(0,u)(d) and S̃(1,u)(d) for u = 0,1 when additionally conditioning
on variable d −1 being 0 or 1. Then, by initialising from S̃(0) := c, S̃0(1) = S̃(0) and S̃1(1) =
S̃(0) + b1 + A1,1, the following two-stage recursion holds for d = 2, . . . , p:

(13)
S̃(0,u)(d) = S̃u(d − 1),

S̃(1,u)(d) = S̃u(d − 1) + bd + Ad,d + 2uAd,d−1

for u = 0,1, and

(14) S̃u(d) = max
(
S̃(u,0)(d), S̃(u,1)(d)

)
such that max(S̃0(p), S̃1(p)) = maxJ[S̃(s, e,J) − P(|J|)] when r = 1. Note that the compu-
tational complexity of finding the optimum in this case is only O(p).

To extend the recursion to more general precision matrices, observe that the dynamic pro-
gram given by (13) and (14) can be described by an unbalanced binary tree (Figure 3). Ini-
tialisation occurs at levels 0 and 1 of the tree. Thereafter, two selected nodes at level d − 1
grow children nodes, according to (13), before two of the four nodes at level d are selected
as parents for the next level by the max operation in (14). The path from the maximum node
at the final level back to the root encodes the optimal u. In the following we will refer to the
vector of 0’s and 1’s along the path from a certain node back up to the root as the “position”
of a node.

By using the tree description, it is easier to generalise the algorithm to any neighbourhood
structure of each variable d . When r = 1, we only have to consider the two options of variable
d − 1 being 0 or 1 at every step d , whereas for a general band, we have to consider all
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FIG. 3. The unbalanced binary tree structure of the dynamic program for solving (11) for 1-banded Q and
fictitious data. At each level, children nodes are grown, conditional on the value of the parent node, corresponding
to variable/level d being anomalous (ud = 1) or not anomalous (ud = 0). The darker nodes are the selected
parents of the nodes on the next level. Note that in this 1-banded example (a) one parent amongst S̃00(d) and
S̃01(d) is always selected, assuming ud = 0, and similarly (b) one parent amongst S̃10(d) and S̃11(d) is always
selected, assuming ud = 1. Observe that the maximum value to the BQP in this example is S̃00(p), with “position”
u = (1,1,0,0, . . . ,0).

combinations of variables d − r, . . . , d − 1 being 0 or 1. A further adaptation to the precision
matrix at hand can be made by excluding those variables among d − r, . . . , d − 1 that will
never be visited again, at each step d . To be precise, let us define the neighbours of variable
d by Nd := {i : Ad,i 	= 0}, and the potential lower neighbours of d by P <

d := {max(1, d −
r), . . . , d − 1} for d ≥ 2 and P <

1 := ∅. At each step d we have to condition on all 0-1-
combinations of the variables in

(15) Md := P <
d

∖ (
d+r⋃
i=d

Ni

)c

= P <
d ∩

(
d+r⋃
i=d

Ni

)
.

We call the variables in Md the extended neighbours of d; see Figure 4 for an example of
how the Md ’s are constructed.

FIG. 4. An example 4-banded A matrix where the diagonal is black, other nonzero elements are dark grey and
zero-elements are white. The transparent, grey region illustrates how the extended neighbours of d = 6 are found;
the column indices of the grey region correspond to P<

6 = {2,3,4,5}, but variable 3 can be excluded, as it is not
in any of the coming neighbourhoods, making M6 = {2,4,5}. The other extended neighbourhoods in this example
are M1 = ∅, M2 = {1}, M3 = {2}, M4 = {2,3}, M5 = {2,4}, M7 = {4,5,6} and M8 = {7}.
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To accomodate more complicated neighbourhood structures, we have to extend the scalar
indicators u needed when r = 1, to vector indicators ud ∈ {0,1}|Md | that give us the position
of a node in the tree relative to Md . I.e., ud tells us which extended neighbours of d are on
(1) or off (0). At each level d , all 2|Md | possible on-off-combinations must be conditioned on,
resulting in 2|Md |+1 recursive updates, given by

(16)
S̃(0,ud )(d) = S̃ud

(d − 1),

S̃(1,ud )(d) = S̃ud
(d − 1) + bd + Ad,d + 2uᵀ

dAd,Md
,

where (0,ud) and (1,ud) indicates the positions of the 0-child and 1-child nodes relative to
Md . All these children nodes constitute the nodes at level d , and we will refer to them as
{S̃(d)}.

The parent-selecting step in the general case also becomes more complex since the ex-
tended neighbourhoods can evolve in many different ways. To explain this step in detail, we
use the notation position(S̃(d)) to refer to the 0-1-vector that gives the position of a given
node in our binary tree representation of the algorithm. For example, position(S̃10(4)) =
(1,1,0,1) in Figure 3. Now, the parent for each ud are determined by maximising over the
variables that will never be visited again,

(17) S̃ud
(d − 1) = max

v∈V
S̃v(d − 1),

where V = {v ∈ positions({S̃(d − 1)}) : v(Md) = ud} is the set of positions at level d − 1 that
match the on-off pattern indicated by ud relative to Md .

The final procedure is summarised in Algorithms 1 and 2. Note that we also keep track
of the minimum number of anomalous variables at each level d through the term k. In
this way the recursions can be stopped as soon as the anomaly is guaranteed to lie in
the dense regime. For an r-banded matrix the computational complexity is bounded by
O(

∑p
d=1 2|Md |) ≤ O(p2r ), and, if the anomaly is estimated as dense, the number of oper-

ations may be substantially less.

Algorithm 1 Dynamic programming BQP solver for banded matrices

Input: A, b, c, {Md}pd=1, k∗
1: d = 1, k = 0, S̃(0) = c.
2: while d ≤ p and k ≤ k∗ do
3: for ud ∈ {0,1}|Md | do
4: V = {v ∈ positions({S̃(d − 1)}) : v(Md) = ud}.
5: S̃ud

(d − 1) = maxv∈V S̃v(d − 1).
6: S̃(0,ud )(d) = S̃ud

(d − 1).
7: S̃(1,ud )(d) = S̃ud

(d − 1) + bd + Ad,d + 2uᵀ
dAd,Md

.
8: end for
9: k = minv∈positions{S̃(d)} vᵀ1.

10: d = d + 1.
11: end while
12: J̃ = argmax{S̃(p)}.
13: S̃ = max{S̃(p)}.
14: return: S̃, J̃.
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Algorithm 2 The approximate penalised saving for anomaly detection used in CAPA-CC

Input: x̄, Q, {Md}pd=1, β , αsparse, αdense, k∗, e, s.
1: A = −(e − s)x̄x̄ᵀ ◦ Q.
2: b = 2(e − s)(x̄ ◦ Qx̄) − β .
3: c = −αsparse

4: S̃, J̃ from Algorithm 1 with input (A, b, c, {Md}pd=1, k∗)
5: S = S(s, e, [p]) − αdense.
6: if S̃ ≥ S return: S̃, J̃.
7: else return: S, [p].

3.3. Properties of the approximation. Our main evaluation of the approximation’s per-
formance is done through simulations, where in Section C.1 of the Supplementary Material
(Tveten, Eckley and Fearnhead (2022)) we demonstrate that the approximation and the MLE
give almost equal results for low p. Some properties regarding how S̃(s, e) compares to
S(s, e), however, can be derived theoretically.

First, under the dense penalty regime the approximate MLE is equal to the MLE because
the optimal J is [p] in both cases, making μ̂(J) = x̄. Thus, we are only approximating the
savings under the sparse penalty regime.

Second, S̃(s, e) ≤ S(s, e) for all start- and end points s and e. This follows by definition of
the MLE which is present in S(s, e); μ̂(J) is the minimiser in (3), and, consequently, no other
estimator can make the saving larger. Using the approximation will, therefore, not increase
the probability of falsely detecting anomalies. The only effect it may have is a reduction in
power.

In addition to the lower bound of 0 on the approximation error, Proposition 2 gives an up-
per bound which is useful for distilling what drives a potential decrease in performance. The
proof is given in Section A.2 in the Supplementary Material (Tveten, Eckley and Fearnhead
(2022)).

PROPOSITION 2. Let W(J) be the matrix where W(J)J,−J = Q−1
J,JQJ,−J and is 0 else-

where, and Ĵ = argmaxJ[S(s, e,J) − P(|J|)]. Then, the following bound on the approxima-
tion error holds for all s < e:

(18) 0 ≤ S(s, e) − S̃(s, e) ≤ (e − s)λmax
(
QW(Ĵ)

)∥∥x̄(s+1):e
(
Ĵc)∥∥2

.

The right-hand side of (18) suggests that the relative approximation error will be largest
for sparse anomalies in strongly correlated data, as this is the situation when ‖x̄(s+1):e(Ĵc)‖2

is largest (see Section A.2 in the Supplementary Material (Tveten, Eckley and Fearnhead
(2022))). The simulation results in Section C.1 of the Supplementary Material (Tveten, Eck-
ley and Fearnhead (2022)) support this conclusion that the greatest difference in performance
occurs when there is a sparse anomaly in strongly correlated data, although the difference is
small in the tested settings.

3.4. Multiple point and collective anomalies. We can extend the described method for
detecting a single collective anomaly to detecting multiple collective anomalies and also to
allow for point anomalies within the baseline segments. To incorporate point anomalies, we
follow the approach of Fisch, Eckley and Fearnhead (2021a, 2021b) by defining point anoma-
lies as collective anomalies of length 1. Thus, the optimal approximate saving of a point
anomaly at time t can be defined as

(19) S̃′(t) = max
J

[
S̃(t, t,J) − β ′|J|].
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In accordance with Fisch, Eckley and Fearnhead (2021b), we set β ′ = 2 logp + 2ψ , where
ψ = logn as in Section 3.1. As for the collective anomaly penalty function, β ′ can be scaled
by a constant factor b′ to achieve appropriate error control.

We can now extend our penalised likelihood framework. The estimates for the collective
anomalies, K̃ and (s̃k, ẽk, J̃k) for k = 1, . . . , K̃ , and point anomalies, Õ and J̃t for t ∈ Õ , can
then be obtained by minimising the penalised cost

(20) max
K∈[
n/l�],sk,ek

K∑
k=1

S̃(sk, ek) + max
O⊆[n]

∑
t∈O

S̃′(t),

subject to ẽk − s̃k ≥ l ≥ 2, ẽk ≤ s̃k+1 and (
⋃

k[s̃k + 1, ẽk]) ∩ Õ = ∅.
The optimisation problem (20) can be solved exactly by a pruned dynamic program, using

ideas from the PELT algorithm of Killick, Fearnhead and Eckley (2012). Defining C(m) as
the maximal penalised approximate savings for observations x1:m, the basis for our PELT
algorithm is the following recursive relationship:

(21) C(m) = max
(
C(m − 1), max

0≤t≤m−l

[
C(t) + S̃(t,m)

]
,C(m − 1) + S̃′(t)

)
,

for C(0) = 0. The first term in the outer maximum corresponds to no anomaly at m, the
second term to a collective anomaly ending at m and the third term to a point anomaly at m.

The computationally costly part of (21) is the maximisation over all possible starting-
points t in the term for collective anomalies. Due to this term, the runtime of this dynamic
program scales quadratically in n. If one specifies a maximum segment length M , however,
the runtime is reduced to O(Mn) at the risk of missing collective anomalies that are longer
than M . The PELT algorithm is able to prune those t’s in the term for the collective anoma-
lies that can never be the maximisers, thus reducing computational cost whilst maintaining
exactness. Proposition 3 gives a condition for when t can be pruned. The proof is given in
Section A.3 of the Supplementary Material (Tveten, Eckley and Fearnhead (2022)).

PROPOSITION 3. If there exists an m ≥ t − l such that

(22) C(t) + S̃(t,m) + αdense ≤ C(m),

then, for all m′ ≥ m + l, C(m′) ≥ C(t) + S̃(t,m′).

Proposition 3 states that if (22) is true for some m ≥ t − l, t can never be the optimal
start-point of an anomaly for future times m′ ≥ m + l and can, therefore, be skipped in the
dynamic program. Killick, Fearnhead and Eckley (2012) show that if the number of change
points increases linearly in n, then such a pruned dynamic program can scale linearly. In the
worst case of no change points, however, the scaling is still quadratic in n.

Calculating C(n) in (21) by PELT with savings computed from Algorithm 2 constitutes
our CAPA-CC algorithm.

4. Relation to general change-point detection. So far, we have considered the anomaly
detection problem which is a special case of the change-point detection problem. In the
change-point model the changing parameter can change freely at every change point. The
anomaly model restricts the change-point model by assuming there is a (known) baseline pa-
rameter the data reverts to at every other change point. In terms of the anomaly model (1),
the change-point model is given by setting ek = sk+1 and eK = n and assuming all mean
vectors to be unknown, including μ0. In this section we highlight the benefits of making a
distinction between changes and anomalies in light of our application and, briefly, describe
how our method can be adapted to change-point detection in general.
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In our application of condition monitoring a process pump as well as in other anomaly de-
tection applications, the aim is to classify observations as either conforming to some baseline
behaviour or being anomalous. Moreover, the majority of observations belong to the baseline
group (or else the anomalies would not really be anomalies), and the remaining, anomalous
observations may have any location and grouping within the data set (see Figure 1). The
anomaly model adapts the change-point model to this setting by assuming that the baseline
behaviour is characterised by a common stationary distribution, and that each anomaly is
characterised by two (unknown) change points—one change from the baseline distribution
to some other distribution and another change back to the baseline. In this way the model
clearly distinguishes between which segments are in line with the baseline and those that are
anomalous. In a general change-point model with K change points, on the other hand, obser-
vations are classified into K + 1 distinct segments. These segments would subsequently have
to be labelled as either baseline or anomalous by some additional rule if anomaly detection
was the aim. In addition, the anomaly model enables borrowing strength across the entire data
set for estimating the baseline distribution, rather than separately estimating each parameter
between each anomaly, increasing the power of detecting anomalies.

If, however, a classical change-point analysis is of interest, the methodology described
in Section 3 can be adapted. The overarching strategy in the corresponding change-point
problem is to embed a test statistic for a single change point within binary segmentation or
a related algorithm, such as wild binary segmentation (Fryzlewicz (2014)) or seeded binary
segmentation (Kovács et al. (2020)). The test statistic for a single change point can be derived
in a similar fashion as the test for a single anomaly given in (9). For a detailed derivation,
algorithm and simulation results for the change-point detection problem, see the Supplemen-
tary Material (Tveten, Eckley and Fearnhead (2022)), Sections B and C.3.

5. Implementational details.

5.1. Robustly estimating the mean and precision matrix. To detect anomalies in practice,
we need an estimate of Q and μ0, as they are very rarely known a priori. We will use the
median of each series x(i)

1:n to estimate μ
(i)
0 . To estimate Q, we use a robust version of the

GLASSO algorithm (Friedman, Hastie and Tibshirani (2008)). This algorithm takes as input
an estimate of the covariance matrix, �̂, and an adjacency matrix W. An estimate Q̂(W) of
Q is then computed by maximising the penalised log-likelihood

(23) log det� − tr(�̂�) − ‖� ◦ �‖1

over nonnegative definite matrices �, where we define the entries of � to be γij = 0 if wij = 1
or i = j and γij = ∞ otherwise. This can be seen as producing the closest estimate of Q,

based on �̂
−1

, subject to the sparsity pattern imposed by W. To compute Q̂ efficiently, we
use the R package glassoFast (Sustik and Calderhead (2012)).

As input for �̂, we use an estimate, S, of the covariance in the raw data that is robust to
the presence of anomalies. Our robust estimator is constructed from the Gaussian rank cor-
relation and the median absolute deviation estimator of the standard deviation, as suggested
by Öllerer and Croux (2015). To be precise, let mad(x(i)) be the median absolute deviation
of all measurements of variable i, and

(24) rGauss
(
x(i),x(j)) := r

(
	−1(

R
(
x(i))/(n + 1)

)
,	−1(

R
(
x(j))/(n + 1)

))
be the Gaussian rank correlation between variables i and j , where r is the sample Pearson
correlation and R(x) is a vector of the ranks of each xt within x. Then, the robust pairwise
covariances are estimated by

(25) sij = mad
(
x(i)

1:n
)
mad

(
x(j)

1:n
)
rGauss

(
x(i)

1:n,x(j)
1:n

)
.
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5.2. Tuning. There are two primary tuning parameters in CAPA-CC: The adjacency ma-
trix W in the precision matrix estimator of Section 5.1 and the scaling factor b in the penalty
function for collective anomalies. This section contains guidelines for tuning them after some
notes on the remaining tuning parameters.

The scaling factor for the point anomaly penalty, b′, can be tuned separately from b if
the application dictates it, but a reasonable default is to let b′ = b and tune both penalties
simultaneously. The minimum and maximum segment lengths of collective anomalies, l and
M , are tuning parameters solely for the convenience of speeding up computation if there is
knowledge of such limits in an application. Otherwise, they default to l = 2 and M = n.

A number of different considerations can go into choosing W. From a modelling perspec-
tive, selecting W corresponds to deciding on a model for the conditional independence struc-
ture; wij = 0 means variables are assumed to be conditionally independent, while wij = 1
means variables are conditionally dependent. For spatial data, for example, the choice of W
is the same as choosing the neighbourhood structure in a conditional autoregressive model,
where wij = 1 if and only if spatial region i is a neighbour of spatial region j . In our process
pump example this would mean specifying which sensors are neighbours.

Computational considerations can also guide the choice of W, however. As we have seen,
CAPA-CC scales exponentially in the band of Q. Hence, the band of W governs the runtime
of our algorithms to a large extent. A reasonable default choice of W is, therefore, a low value
of r in the r-banded adjacency matrix W(r), defined by

(26) wij =
{

1 if 0 < |i − j | ≤ r,

0 otherwise.

In the simulations of the next section, we illustrate that good performance can be achieved
even when specifying W to have a much narrower band than the true Q.

In cases where the precision matrix is sparse but not banded, bandwidth reduction algo-
rithms, such as the Cuthill–McKee algorithm (Cuthill and McKee (1969)) and the Gibbs–
Poole–Stockmeyer algorithm (Lewis (1982)), can be a useful preprocessing step before run-
ning CAPA-CC.

Several strategies can also be employed for tuning the penalty scaling factor b. The first
strategy requires a training set containing only baseline observations. This training set can
either be used to estimate a model (e.g., Gaussian) of the baseline behaviour of the data or
to constitute the empirical distribution of the baseline data. Anomaly-free data sets can then
be sampled parametrically or nonparametrically from the baseline model to obtain bootstrap
estimates α̂ of α = P(K̂ > 0|K = 0) for a fixed b. A practitioner can thus select a target
probability of false positives α and find b that meets this criterion within a selected interval
of error, α±δ, and level of confidence governed by the number of repetitions used to calculate
α̂ per b.

A second criterion is to find the smallest b such that a user-selected tolerable number of
false alarms is raised in the training set. This strategy is much less computationally inten-
sive, as it avoids the bootstrap sampling, but the error control hinges more strongly on how
generalisable the training set is.

If there is no training set available, a third tuning strategy is to adjust b until a desired num-
ber of anomalies are output by CAPA-CC. As b is increased, the ordering of the anomalies in
terms of significance will gradually be revealed. We explore the pump data set by this tuning
strategy in Section 7.

6. Simulation study. We next turn to examine the power and estimation accuracy of
CAPA-CC in a range of data settings. In almost all cases we test the robustness of the method
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against an incorrectly specified adjacency matrix in the precision matrix estimate. We con-
centrate on the single anomaly setting first, before comparing several state-of-the-art methods
in the multiple anomaly setting.

We have chosen a widely used one-parameter version of the conditional autoregressive
(CAR) model, called the row-standardised CAR model, as our primary testbed (see, for in-
stance, Ver Hoef, Hanks and Hooten (2018) for a concise introduction). This CAR model is
given by

(27) QCAR(ρ,W) := diag(W1) − ρW,

where W is an adjacency matrix as before. QCAR is then standardised so that Q−1 becomes
a correlation matrix, and we let μ0 = 0 throughout. Conveniently, the sparsity structure of
QCAR follows directly from the design of W. In our simulations we consider data with pre-
cision matrices corresponding to the r-banded neighbourhood structures given in (26) and
regular lattice neighbourhood structures. To define the m × m lattice adjacency matrix, let
(u, v) denote the coordinate of a node in the lattice for 0 ≤ u, v ≤ m. The neighbourhood
of (u, v) is considered to be {(u − 1, v), (u + 1, v), (u, v − 1), (u, v + 1)}. Coordinates are
then enumerated by i = (u − 1)m + v such that the square lattice adjacency matrix Wlat can
be defined by wij = 1 if i and j are neighbours and 0 otherwise. For the sake of brevity,
we also define Qlat(ρ) := QCAR(ρ,Wlat) and Q(ρ, r) := QCAR(ρ,W(r)). In addition to the
CAR models, we also test performance under the constant correlation model, given by

(28) Qcon(ρ) := (
ρ11ᵀ + (1 − ρ)I

)−1
.

Note that we use W∗ to refer to the true adjacency matrix of the data.
If more than one series changes, the power of different methods may depend on how

similarly each series change. To investigate this, we consider the following ways of simu-
lating anomalous means, μk , k = 1, . . . ,K : μ

(Jk)
k ∼ N(0,�Jk,Jk

), where � is the data co-

variance matrix and μ
(Jk)
k ∼ N(0, (Qcon(ρ))−1). We refer to anomalies being drawn from

the former and latter classes, respectively, by μ(�) and μ(ρ). Note that ρ = 0 and ρ = 1
correspond to the special cases of the means being independent and equal for the changing
variables, respectively. After sampling a mean vector, it is scaled by a constant to achieve a
specific signal strength ϑk := ‖μk − μ0‖2 = ‖μk‖2. Moreover, unless stated otherwise, we
let Jk = {1,2, . . . , Jk}, where Jk ∈ [p] denotes the number of changing variables.

In all simulations the penalty functions or detection thresholds are tuned to achieve α =
0.05 ± 0.02 probability of false positives in data simulated from the appropriate true null
distribution (see Section 5.2). One thousand and 500 bootstrap repetitions were used for each
b to obtain α̂ for p = 10 and p = 100, respectively.

6.1. Single anomaly detection. To the best of our knowledge, there are no other statistical
methods tailored for jointly detecting sparse and dense anomalies in correlated multivariate
data. A comparison between methods for independent multivariate data was performed by
Fisch, Eckley and Fearnhead (2021b), where their MVCAPA method was shown to generally
outperform other competitors. Hence, we focus on comparing MVCAPA against a range of
CAPA-CC scenarios, including various incorrectly specified versions, exploring the trade-
offs between the two methods. We evaluate methods in terms of power to detect an anomaly
of increasing signal strength and also assess the correctness of the estimated subset of anoma-
lous variables, J.

In the following, “Whiten + MVCAPA” means that the input to MVCAPA are the
whitened observations S−1/2xt , where S is the robust covariance matrix estimate (25),
whereas a plain “MVCAPA” takes the raw data xt . Note that Whiten + MVCAPA scrambles
the sparsity structure of an anomalous mean such that the recovery of J is lost. It is, however,
still interesting to include in the comparisons of detection power as no sparsity structure has
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to be imposed on the covariance or precision matrix, in contrast to CAPA-CC. We, therefore,
expect Whiten + MVCAPA to perform well when the precision matrix as well as the change
is dense.

6.1.1. Independence vs. dependence. As the performance of the anomaly detection meth-
ods we consider ultimately hinges on the performance of a test statistic at each pair (s, e), we
compare performance assuming that the location of the collective anomaly is known a priori.
That is, we fix the collective anomaly at (s, e) = (n/2, n/2 + 10) and compare the power of
S̃(s, e) with the corresponding test statistic, assuming cross-independence used within MV-
CAPA. In CAPA-CC we test using the true precision matrix Q, an estimate based on the
true adjacency structure Q̂(W∗), as well as misspecified banded adjacency structures with
r = 1,2,4. The power at each point along the power curve is estimated from 1000 (p = 10)
or 500 (p = 100) simulated datasets, and the same datasets were used for all methods. The
full set of tested scenarios include all combinations of {(n,p),Q, ρ, J,μ(·)} for (n,p) =
(100,10), (200,100), Q = Q(2),Qlat,Qcon, ρ = 0.3,0.5,0.7,0.9,0.99, J = 1, 
√p�,p and
change classes μ(�), μ(0), μ(0.8), μ(0.9) and μ(1). In addition, we have also varied which se-
ries are anomalous for selected scenarios. Note that CAPA-CC(Q) represents the performance
of an oracle method. For larger n relative to p, however, the difference between CAPA-CC(Q)
and CAPA-CC(Q̂(W∗)) will decrease.

A first main finding, illustrated in Figure 5, is that, for detecting a single anomalous vari-
able, incorporating correlations leads to higher power, even when misspecifying the structure
of the precision matrix estimate. The stronger the correlation, the higher the gain in power. For
a collection of densely correlated variables, even using a 1-banded estimate of the precision
matrix leads to a big improvement in power for sparse anomalies, compared to MVCAPA
(the bottom row of plots). It is somewhat surprising that Whiten + MVCAPA performs com-
parably to CAPA-CC in this setting of a very sparse change.

FIG. 5. Power curves for correct and misspecified versions of CAPA-CC for a single known anomaly at
(s, e) = (100,110) when J = 1 and p = 100. Results for 2-banded, lattice and globally constant correlation
precision matrices are shown from top to bottom, with increasing ρ from left to right. Other parameters: n = 200,
α = 0.05 and 500 repetitions were used during tuning and for each point along the power curves.
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FIG. 6. Power curves for a single known anomaly at (s, e) = (100,110) and (a) J = 10 and (b) J = 100, when
p = 100 and ρ = 0.9. The methods are the same as in Figure 5. From left to right, the columns of plots show results
for the anomalous means being sampled from N(0, I), N(0,�), N(0,Q−1

con(0.8)) and μ(i) = μ for all i ∈ J in
the right-most column. From top to bottom are results for 2-banded, lattice and global constant correlation data
precision matrices. Other parameters: n = 200, α = 0.05 and 500 repetitions per point along the power curves.

The picture for more than one anomalous variable is more complex. Figure 6 displays the
results for different precision matrices and classes of changes for p = 100 and ρ = 0.9 when
(a) J = 10 and (b) J = 100. Observe that, for all precision matrices and J ’s (entire first col-
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umn), CAPA-CC is superior for anomalous means sampled from the independent normal dis-
tribution (μ(0)). This is also the case when the anomalous means are sampled from a normal
distribution with the data correlation matrix (μ(�)) (entire second column), with the excep-
tion of J = 10 and global constant correlation. The power of CAPA-CC decreases, however,
when the anomalous means have very similar or equal values, as in the case of means being
sampled from to μ(0.8) and μ(1). Surprisingly, for the special case of equally sized anomalous
means and a banded or lattice precision matrix, MVCAPA is more powerful than using the
true model for the precision in CAPA-CC(Q). For J = 100, this is also the case for equal
changes in the global constant correlation model. The same phenomenon can be observed
for other methods as well (see Section B in the Supplementary Material (Tveten, Eckley and
Fearnhead (2022))), and we discuss it further in Section 8. As expected, Whiten + MVCAPA
performs well for Qcon precision matrices, but the misspecified versions of CAPA-CC out-
performs it when J = 100. For low values of ρ, we observe almost no difference between
the different methods which is why we focus on ρ ≥ 0.5. For higher values of ρ than 0.9, the
gain from incorporating correlations in the method increases. For p = 10, the corresponding
results look qualitatively similar; see Section C.2 of the Supplementary Material (Tveten,
Eckley and Fearnhead (2022)) for more details.

6.1.2. Variable selection. Although CAPA-CC is not designed to estimate J consistently,
it is worth investigating the behaviour of Ĵ so that it is interpreted with sufficient caution. Note
that we now use Ĵ to refer to the output estimate of J for all algorithms. Also, recall that we
let J := |J| and Ĵ := |Ĵ|.

For p = 10 and 100, the precision and recall of Ĵ from MVCAPA as well as both true
and misspecified versions of CAPA-CC were compared in the single known anomaly setting,
described in Section 6.1.1. We also included the exact ML method for p = 10. Whiten +
MVCAPA is excluded from these simulations since the decorrelation transform breaks up
the sparsity structure of the anomalies.

Under a 2-banded precision matrix model we see from Tables 3 and 4 in the Supple-
mentary Material (Tveten, Eckley and Fearnhead (2022)) that both CAPA-CC and the exact
ML method tend to have higher recall, but slightly lower precision, than MVCAPA. The
reason for this is illustrated in Figure 7, where it can be observed that all the methods that
incorporate cross-correlations overestimate J more frequently than MVCAPA. In particu-
lar, CAPA-CC more often estimates anomalies as dense. This effect is seen more clearly for
p = 100 (Figure 20 in the Supplementary Material (Tveten, Eckley and Fearnhead (2022))),
where estimating J becomes increasingly hard as J grows closer to the boundary k∗ between
sparse and dense changes. Moreover, we found that the estimated subset is quite sensitive to
the scaling of the penalties relative to the signal strength ϑ . If a more accurate estimate of

FIG. 7. Estimated sizes of J for J = {1} (left) and J = {1,2,3} (right) when p = 10 and the location of the
anomaly is assumed known. Other parameters: n = 100, Q = Q(2,0.9), s = 10, e = 20, ϑ = 2, μ(�), α = 0.005.
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J is desired, we thus recommend running a postprocessing step by optimising the penalised
saving for each anomalous segment using only the sparse penalty regime.

6.2. Multiple anomaly detection. The simulation study is concluded by comparing the
following methods in a multiple anomaly setting with and without point anomalies:

• CAPA-CC with a misspecified precision matrix Q̂(4).
• MVCAPA and Whiten + MVCAPA.
• The inspect method of Wang and Samworth (2018). We test both the version assuming

cross-independence implemented in the R-package InspectChangepoint as well as
the version including cross-correlations discussed in their paper. To distinguish the two
versions, we refer to the former as inspect(I) and the latter as inspect(Q̂), where Q̂ is the
inverse of the robust covariance matrix estimator (25).

• The group fused LARS method of Bleakley and Vert (2011), implemented in the R-
package jointseg.

In addition, we tested the methods of Wang et al. (2020) and Safikhani and Shojaie (2020)
for detecting changes in vector autoregressive models, but they were excluded due to poor
computational scaling in p or n. For example, the method of Wang et al. (2020) with a
maximum segment length of 100 takes around 13 minutes to complete on a single p = 10,
n = 1000 data set on a typical computer, and the method of Safikhani and Shojaie (2020)
scales exponentially in K̂ . The included methods are all tuned to a specific false positive
probability α on data sets of size min(n,200), except the group fused LARS, which uses the
default model selection procedure of jointseg proposed in Bleakley and Vert (2011). To
speed up computation, we set the maximum segment length of CAPA-CC and MVCAPA to
M = 100

Performance is measured by the adjusted rand index (ARI; Hubert and Arabie (1985)) of
classifying observations as either anomalous (point or collective) or baseline. The ARI mea-
sures the accuracy of the classification but adjusts for the sizes of the classes. It is, therefore,
suitable in an unbalanced classification problem such as ours.

As inspect and the group fused LARS method are not made specifically for the anomaly
setting, as opposed to MVCAPA and CAPA-CC, we do not expect them to be competitive.
However, since they could be used for the purpose, we include them to measure the gain
of using a dedicated anomaly detection method rather than a generic change-point detection
method. Our heuristic for turning the change-point detection methods into an anomaly clas-
sifier is as follows: If the sample mean of an estimated segment has L2 norm greater than
1, the observations within the segment are classified as anomalous, and if the L2 norm is
smaller than or equal to 1, they are classified as baseline. Adjacent segments, where both are
classified as collective anomalies, by this rule are also merged to a single collective anomaly
if the sign of

∑p
j=1 x̄

(j)
(s+1):e in each of the two segments is the same.

Also, note that we use a misspecified precision matrix in CAPA-CC since this is most
realistic, but improved performance on the order of what can be seen in Figures 5 and 6 could
be achieved by selecting the correct model.

Table 1 displays the results for p = 100, n = 1000 with three evenly spaced collective
anomalies of lengths (30, 20, 10), different affected subsets, affected means sampled from
μ(�) and ϑ = 1 in signal strengths of sizes ϑ(1,2,3). The results are again generally fa-

vorable for CAPA-CC(Q̂(4)), in particular, for the banded and lattice precision matrices,
while Whiten + MVCAPA is slightly better for the global constant correlation matrix when
point anomalies are absent. The group fused LARS and inspect(I) methods achieved approx-
imately 0 ARI on all the tested scenarios, including the different signal strength parameters
of ϑ = 1,1.5,2.
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TABLE 1
ARI of classifying baseline and anomalous observations when p = 100, n = 1000, (ϑk)

3
k=1 = (1,2,3), the

change class is μ(�), {(sk, ek)}3
k=1 = {(300,330), (600,620), (900,910)} and J1 = {1}, J2 = {1, . . . ,10},

J3 = {1, . . . ,10,46, . . . ,55,91, . . . ,100}, based on 100 repetitions. Point anomalies are placed at 10 fixed
locations, each randomly affecting a single variable with size sampled from N(0,4 logp). The largest value for

each data setting is given in bold. Note that the results for inspect(I) and the group fused LARS methods are
excluded from the table since their ARIs are approximately 0 in all the tested scenarios

Q ρ Pt. anoms CAPA-CC(Q̂(4)) W + MVCAPA MVCAPA inspect(Q̂)

Q(2) 0.5 – 0.23 0.09 0.20 0.05
Q(2) 0.5 � 0.40 0.25 0.37 0.01
Q(2) 0.7 – 0.34 0.19 0.12 0.06
Q(2) 0.7 � 0.43 0.30 0.31 0.00
Q(2) 0.9 – 0.53 0.43 0.05 0.13
Q(2) 0.9 � 0.61 0.46 0.26 0.03
Qlat 0.5 – 0.21 0.08 0.12 0.05
Qlat 0.5 � 0.29 0.26 0.25 0.08
Qlat 0.7 – 0.27 0.21 0.13 0.05
Qlat 0.7 � 0.35 0.31 0.25 0.10
Qlat 0.9 – 0.34 0.28 0.09 0.08
Qlat 0.9 � 0.33 0.42 0.18 0.14
Qcon 0.5 – 0.44 0.52 0.00 0.06
Qcon 0.5 � 0.50 0.49 0.11 0.03
Qcon 0.7 – 0.60 0.65 0.00 0.08
Qcon 0.7 � 0.66 0.64 0.10 0.04
Qcon 0.9 – 0.66 0.82 0.00 0.26
Qcon 0.9 � 0.71 0.82 0.09 0.10

The full set of multiple anomaly simulation results, covering anomalous means sampled
from μ(0) and μ(0.8) in addition to μ(�), and ϑ = 1.5,2 in addition to ϑ = 1, can be found
in Section C.4 of the Supplementary Material (Tveten, Eckley and Fearnhead (2022)). The
results for μ(0.8) are very similar to the results for μ(�), and the results for μ(0) are slightly
more favorable for CAPA-CC compared to the other methods. As ϑ increases, the ARI of all
methods increase, and the differences in performance decrease. In the scenarios with point
anomalies when ϑ = 1.5 and ϑ = 2, a lot is gained by using CAPA-CC or (Whiten +) MV-
CAPA rather than inspect.

7. Pump data analysis. We now return to the problem of inferring anomalous segments
and variables in the pump data described in the Introduction. Recall that the data was pre-
processed by regressing a set of monitoring variables onto a set of state variables, such that
we are left with five series of residuals to detect anomalies in (Figure 1). Some of the resid-
uals are strongly correlated (Figure 8), suggesting that incorporating cross-correlations when
modelling them is advantageous based on our simulation study.

Before running CAPA-CC on the pump data, the penalties must be tuned and input param-
eters selected. The tuning of the penalties accounts for all features in the data that we have
not modelled, for example, autocorrelation, a nonstationary correlation matrix and trends in
the data’s mean not associated with segments of suboptimal operation. As we do not have
training data guaranteed to only contain baseline observations, we instead tune the penalties
such that a chosen number of the most significant anomalies are output, as discussed in Sec-
tion 5.2. To test performance, we tune b such that the correct number of collective anomalies
(four) are output to see how they align with the known ones. Since there are many outliers
in the data set, we want to retain the default level of outlier-robustness and, therefore, keep
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FIG. 8. The robustly estimated correlations (see (25)) of the pump data after preprocessing.

the point anomaly scaling at 1, while adjusting b. This tuning procedure resulted in a scaling
factor of b = 11. For the remaining inputs, we set Q to the inverse of the correlation matrix
in Figure 8, a minimum segment length l = 5, and use no maximum segment length; see
Section D in the Supplementary Material (Tveten, Eckley and Fearnhead (2022)) for results
on the robustness to these choices of tuning parameters.

The final result is shown in Figure 9. Before interpreting the output, it is important to know
that the start points of the known anomalies are more uncertain than the end points; the end
point is the time where the pump was brought back to normal operation, whereas the start
point has been set based on a retrospective analysis by the engineers. With this in mind, we
observe that three out of four estimated collective anomalies are within three separate known
anomalous segments, with the estimated end points being more accurate than the estimated
start points. The short known anomaly from t = 125 to t = 135 is missed, as there is virtually
no signal of it in the data. The estimated anomaly from t = 1306 to t = 1362, however,
does not overlap with a known anomaly, but it clearly looks anomalous by eye. This segment

FIG. 9. The four most significant estimated collective anomalies in the five residual times series derived from
the pump data. Tuning parameters: b = 11, bpoint = 1, l = 5 and M = n.
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is also of interest to detect since it may correspond to an unknown segment of suboptimal
operation. If not, this segment points to a part of the data that fits our linear regression model
poorly, indicating that a more sophisticated model might be in order if fewer false alarms
are required. In general we expect that a better model for linking the state variables with the
monitoring variables would improve the results even further because more of the trend in the
mean not associated with the known anomalies would be absorbed by the model rather than
leaking into the residuals.

In addition, notice the importance of including point anomalies in the analysis for this
application. Rerunning CAPA-CC on the data without inferring point anomalies resulted in
four additional false collective anomalies being inferred for b = 11.

8. Conclusions. In this article we have proposed computationally efficient penalised
cost-based methods for detecting multiple sparse and dense anomalies or changes in the
mean of cross-correlated data. In addition to estimating the locations of the anomalies/change
points, the methods indicate which components are affected by a change. This is important
to understand why and how changes or anomalies have occured. At the computational core
of these methods lies a novel dynamic programming algorithm for solving banded uncon-
strained binary quadratic programs which approximate the Gaussian likelihood ratio test for
a subset mean change.

The motivation of our methodological development comes from condition monitoring of
an industrial process pump, where strong cross-correlations between spatially adjacent sensor
measurements could be observed. Although several modelling assumptions were violated,
three out of four known anomalies could be detected, with only one potential false alarm,
when analysing the data with CAPA-CC. Even better results can be expected by using a
more accurate model to remove trends not associated with anomalies. Also of interest for this
application is being able to detect collective anomalies in real-time. The CAPA framework we
have adopted has been shown to be able to be applied in online settings (Fisch, Bardwell and
Eckley (2020)), and similar ideas could be used to produce a sequential version of CAPA-CC.

When assessing the method’s performance empirically, special attention was paid to how
incorporating cross-correlations in the model affected the results, compared to ignoring it as
most existing methods do. We found that, for low to medium levels of dependence, there
was almost no difference in power or estimation accuracy; for example, for ρ < 0.5 in the 2-
banded and lattice precision matrices, and ρ < 0.2 for the constant correlation matrix, in the
case of p = 100 variables. For increasingly stronger dependence above these levels, either in
the form of a denser precision matrix or higher correlation parameter, the benefit of including
cross-correlation in the model of the data grows in almost all tested cases.

The exception to this rule is connected to the somewhat surprising finding that the shape of
the change in mean across variables influences the magnitude of the advantage of including
cross-correlations quite strongly. In positively correlated data, changes that affect many series
and are of very similar, or the same, size for each series can be harder to detect when including
cross-correlations in the model. For example, in a model with strong positive correlations it is
much harder to detect if a moderately large amount of variables changes by the same amount
in the same direction, than if these variables changes by varying amounts in wildly varying
directions. The intuition behind this is that in the former case, the change mimics the expected
behaviour of the data, given the variables’ strong positive dependence, while, in the latter, the
change strongly violates the model’s expectation. The model assuming independence, on the
other hand, is completely agnostic to the shape of the changed mean vector. As a result, the
benefits of including correlations in the model is small or, perhaps, even negative, if variables
in the data is strongly dependent, and interest lies on detecting moderately sparse to dense
and similarly changing variables.
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SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/21-AOAS1508SUPPA; .pdf). Proofs of the
propositions, additional comments to Proposition 2, derivation of the related change-point
test, and detailed results from the simulation study, for both anomaly and change-point detec-
tion. More results on the pump data example for different choices of tuning parameters are
also given.

Code (DOI: 10.1214/21-AOAS1508SUPPB; .zip). Efficient implementations of the
CAPA-CC and CPT-CC algorithms as well as the code for reproducing the simulation study
is available in the R package capacc, downloadable at https://github.com/Tveten/capacc.
CAPA-CC will be included in a future version of the R package anomaly on CRAN, which
contains the CAPA family of methods.
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