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ABSTRACT

Continuous authentication utilizes automatic recognition of certain user features for seamless and
passive authentication without requiring user attention. Such features can be divided into categories
of physiological biometrics and behavioral biometrics. Keystroke dynamics is proposed for be-
havioral biometrics-oriented authentication by recognizing users by means of their typing patterns.
However, it has been pointed out that continuous authentication using physiological biometrics and
behavior biometrics incur privacy risks, revealing personal characteristics and activities. In this pa-
per, we consider a previously proposed keystroke dynamics-based authentication scheme that has
no privacy-preserving properties. In this regard, we propose a generic privacy-preserving version
of this authentication scheme in which all user features are encrypted — preventing disclosure of
those to the authentication server. Our scheme is generic in the sense that it assumes homomorphic
cryptographic primitives. Authentication is conducted on the basis of encrypted data due to the
homomorphic cryptographic properties of our protocol.

Keywords Continuous Authentication, Homomorphic Encryption, Keystroke dynamics, Behavioral biometrics.

1 INTRODUCTION

User authentication is a process that confirms whether a user is the one who he claims to be. The most common form of
authentication is session-oriented authentication, where a session has a certain duration, and the user authenticates him-
self once at the start of a session. Such authentication mechanisms are mainly classified into the following categories:
Knowledge-based authentication (what you know, like passwords and PIN codes), possession-based authentication
(what you have, such as smartcards or dongles) physiological biometrics (face recognition, iris recognition, fingerprint
recognition, etc.). Session-orientation implies that the user is required to do some active or explicit action up front,
like typing a password, inserting a smartcard, or scanning his fingerprint. Session-oriented authentication approaches
authenticate users at the beginning of the session. If the user leaves the device for some time, the device will remain
unlocked for a time, which could allow a malicious user to use the device in the meantime.

For computer devices that are carried by humans, such as smartphones, continuous authentication has been proposed
to strengthen the mentioned authentication methods. The supposed advantage is passive and seamless authentication
mechanisms that do not require user attention. The idea of continuous authentication is that there is some uniqueness
to some user biometry or user context. The authentication process is automatically conducted by events of relevant
user activity. The time window of access is much smaller than for session-oriented approaches, and the system auto-
matically locks in case the user is inactive or when it observes anomalous behaviors.
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Continuous authentication can be achieved by following categories of modes: Behavioral biometrics, physiological
biometrics, and context-aware authentication. The overall premise for behavioral biometrics is that every person has a
uniqueness in walking style, typing style, movement, and so on. By recognizing such movement patterns, a person can
be uniquely identified. Behavioral biometric modes include touch screen dynamics, keystroke dynamics, stylometry,
gait and walking style, etc.

Physiological biometrics, including face and iris recognition, are often considered for continuous authentication, al-
though such modalities normally require explicit user actions and fails as such being passive and seamless.

Context-aware authentication modes include IP-addresses, operating systems, and other profiling parameters such as
GPS position, battery usage, network usage, web browsing histories, and other behavioral activities. Context-aware
modes rely on contextual parameters of the device, such as IP addresses, location data, etc. The potential problem
with context-aware modes is that they only re-authenticate users when there is a change in contextual information. But
they cannot differentiate between a legitimate user or an imposter, if there is no contextual change. Such problems
may occur when users leave their devices open, and someone else uses their devices in their absence.

The definition of continuous authentication demands that the selected mode needs to be passive and continuous simulta-
neously. Therefore, the physiological biometrics and context-aware modes cannot be solely considered for continuous
authentication. Only behavioral biometrics fulfill the requirements of continuous authentication, due to their passive
and continuous nature [2].

Keystroke dynamics are categorized as behavioral biometrics that authenticates users by analyzing and recognizing
user typing behaviors and typing patterns. The keystroke dynamics authentication mechanism can be implemented
either in continuous way, where the user is identified on each input [5] or in periodic way, where user validity is
confirmed over a collected block of actions; the decision is based on the analysis of that block of data [10, 23]. A
minor disadvantage of periodic authentication is the delay for the authentication decision to take place, while for
continuous authentication this is conducted immediately at every user event [5].

The problem about continuous authentication methods including behavioral modalities is that there is no privacy
protection. The behavioral features of keystroke dynamics are privacy sensitive, and may disclose sensitive user
information related to gender, age, left-or right-handedness, and even emotional states during typing [6]. Behavioral
biometrics data are categorized as sensitive data in GDPR, Article 4.

In this paper, we propose a privacy-preserving protocol that is based on the Bours [5] continuous authentication
scheme. To mitigate privacy issues, our protocol uses generic homomorphic cryptographic methods; this enables the
authentication operations to be conducted in the encrypted domain.

2 RELATED WORK

Govindarajan et al. [14] proposed a periodic privacy-preserving protocol for touch dynamics-based authentication.
Their scheme utilizes private comparison protocol proposed by Erkin et al. [12] and the homomorphic DGK encryption
algorithm proposed by Damgard et al. [8]. Note that the Erkin et al. [12] comparison protocol is based on the private
comparison protocol proposed by Damgård et al. [7], Damgard et al. [9]. The scheme of Govindarajan et al. does not
reveal anything, because it makes comparisons in the encrypted domain. However, it is not efficient for continuous
authentication, mainly because of the inefficiency of the Erkin et al. subprotocol, which requires that each bit of the
inputs are encrypted. In the protocol, each of these ciphertexts are then sent to the other party.

Balagani et al. [3] proposed a keystroke dynamics-based privacy-preserving authentication scheme. They extended
the idea of Govindarajan et al. protocol, but is also based on the private comparison protocol proposed by Erkin et al.
[12] and the homomorphic DGK encryption algorithm proposed by Damgard et al. [8]. This scheme has the same
efficiency problems as the scheme by Govindarajan et al.

Wei et al. [22] proposed a privacy-preserving authentication scheme for touch dynamics using homomorphic encryp-
tion properties. It is based on similarity scores between input and reference features using cosine similarity. The
authentication server performs a comparison between the encrypted reference template (provided during enrollment)
and encrypted input template sampled during authentication. The authentication server decrypts the similarity scores
and compares them with a predefined threshold.

Safa et al. [17] proposed a privacy-preserving generic protocol by utilizing context-aware data features such as users
GPS data, search histories (cookies), etc. Additive homomorphic encryption properties and order-preserving symmet-
ric encryption (OPE) are utilized to achieve the privacy of users data features. Their protocol uses the Average Absolute
Deviation (AAD) for the comparison between input feature and the reference features during the authentication phase.
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Shahandashti et al. [18] proposed an implicit authentication scheme by utilizing order-preserving symmetric encryp-
tion (OPSE) with additive homomorphic encryption. The primitives are generic, but the authors suggest the OPSE
scheme proposed by Boldyreva et al. [4] and the Paillier public key scheme. They consider different features for im-
plicit authentication such as user location, visited websites, etc. Further, the AAD is utilized to compute the similarity
between input and reference templates.

Domingo-Ferrer et al. [11] proposed a privacy-preserving authentication scheme using generic features, such as device
data, carrier data, location data, user data stored in the cloud, etc. They utilize set intersection to determine the
dissimilarity between reference data and input data. The privacy is protected by means of the Paillier cryptosystem
and a private set intersection computation protocol proposed by Freedman et al. [13]. However, a potential problem
with these protocols [11, 18] is that context-aware modes cannot tell whether the user is present or not. Thus, if the
device is stolen within the specified domain, it cannot distinguish between a legitimate user and imposters [2].

3 THE BOURS CONTINUOUS AUTHENTICATION SCHEME

This section revisits the keystroke dynamics-based continuous authentication scheme proposed by Bours [5]. The
Bours authentication scheme is shown in Algorithm 1, and it consists of two phases: An enrollment phase and an
authentication phase, that are presented next.

Enrollment phase. Keystroke dynamics-based authentication schemes utilize time-related data from a keystroke. The
timing data are extracted in the form of features when a key is pressed down (tdown

i ) and when the key is lifted up

(tupi ). The time difference ti = tupi − tdown
i is computed for each keystroke, where i is the index ith key, such as ’A’

is i = 0, ’B’ is i = 1, etc. Based on ti, further statistical analysis is performed by computing the mean µi and the
standard deviation σi for each key. Finally, a reference template is created, which contain the statistical values (µi, σi)
for each key. These reference templates are then stored in the database for the purpose of authentication.

Authentication phase. In this phase, an input template is sampled for subsequent comparison with the prestored
reference template. The authentication phase continuously takes the sampled time difference ti and computes Scaled
Manhattan Distance (SMD) between ti and the reference template (µi, σi) according to

di =
|ti − µi|

σi

(1)

The distance di is compared to the predefined threshold Tdist in order to update the aggregated distance indicator (C),
which is increased or decreased based on distance di. A small value of di, close to zero, indicates the similarity
between the input and the reference templates, while a greater value di indicates dissimilarity. Initially, C is assigned
a maximum value max.

When di > Tdist, then C is decremented in the form of a penalty function C ← (C − di + Tdist). Otherwise, C is
incremented in form of a reward function C ← min(C +R,max) by R to at most max, where R is a constant reward
value. Note that C cannot exceed the maximum value. The C is continuously compared to the reject threshold Treject

on each input. When C goes below the reject threshold (C < Treject), the authentication fails and then the user is
rejected.

3.1 Adversarial model

We assume that authentication server is semi-honest adversary, that will not deviate from the defined protocol but will
attempt to learn all possible information from legitimately received messages. The privacy requirement is that the
stored reference templates and input templates are protected so that the server cannot learn anything about them. We
assume that the communication between the user and the server is secure, and that external threats are mitigated by
applying network security techniques.

4 PROPOSED PROTOCOL

In this section, we present a new generic privacy-preserving continuous authentication protocol. This protocol is based
on the continuous authentication scheme proposed by Bours [5], which lacks privacy. The authentication is performed
in the encrypted domain, so the authentication server cannot learn anything about prestored templates, except the
Boolean results and the key index i. Our proposed protocol uses two types of cryptosystems as building-blocks:
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Algorithm 1 Bours keystroke dynamics-based authentication scheme

Enrollment phase
Compute µi, σi, 1 ≤ i ≤ n

Authentication phase
C = max
while IsKeyReleased(i) do
ti = tupi − tdown

i

di = |ti − µi|/σi

if di > Tdist then
C ← (C − di + Tdist) // Penalty function

else
C ← min(C +R,max) // Reward function

end if
if C < Treject then

Reject
end if

end while

Homomorphic public key encryption algorithm. We assume a public key encryption algorithm (e.g., the Paillier
cryptosystem) that supports following homomorphic property: E(m1) ·E(m2) = E(m1+m2). For multiple identical

ciphertexts, this property can be expressed as E(m)k = E(k ·m). For notation we an encrypted value is denote with
E such as E(x) is the encryption of x and the (C∗) presents the encryption of distance indicator C.

Privacy preserving comparison sub-protocol (PPCP). We use PPCP to compare the distance and the threshold in a
privacy-preserving way, which takes one encrypted input E(x) and an unencrypted input y, and determines whether
x > y without disclosing the values of x. These feature can be met by the private comparison protocol of Damgård
et al. [7], Damgard et al. [8, 9]. The other privacy-preserving protocol PPCP ∗ takes two encrypted inputs E(x), E(y)
and performs greater than comparison, this can be achieved by Veugen protocol [20, 21].

The proposed privacy-preserving continuous authentication protocol is presented in Figure 1. It consists of the follow-
ing three phases: Setup phase, enrollment phase, and authentication phase. The detailed description of each phase is
stated in the following:

Enrollment phase. During the enrollment phase, the user registers himself to the server. For this the user creates a
key pair, and sends his public keys to the server. The biometric features are collected at the user side. We consider
the following features are extracted from a keystroke: down-time (tdown

i ), up-time (tupi ) for every key i. The time
duration (ti), the mean (µi), and the standard deviation (σi) are computed in the similar manners as stated in Section 3.
During the enrollment phase, the user encrypts the reference template E(µi

σi

), E( 1

σi

), 1 ≤ i ≤ n, for each key and

sends encrypted template along with the user identity idu and the key index i to the server. The server stores idu and
E(µi

σi

), E( 1

σi

), 1 ≤ i ≤ n, according to the index i of each key. Note that the user device does not store template

locally.

Authentication phase. During the authentication phase, the user initializes the protocol by sending the authentication
request with his identity idu to the server. The server searches for user identity idu and extracts them template that
matches idu. Next, the server sends E( 1

σi

), 1 ≤ i ≤ n, to the user.

The remaining part is conducted each time that the user presses a key, which has index i. The user computes the time
duration ti = tupi − tdown

i of the pressed key, which is input to the homomorphic computation E( ti
σi

) = E( 1

σi

)ti that

is sent back to the server.

The server receives E( ti
σi

) and the server already holds reference template E(µi

σi

). The server homomorphically

computes one of the encrypted Scaled Manhattan Distance E(di) between encrypted input and encrypted reference
templates.

In accordance with Eq. 1, the Scaled Manhattan Distance needs to assign an absolute result2. The absolute result
cannot be achieved directly under encryption. To get absolute result, we invoke a privacy-preserving greater than

2This is not included in the original paper
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User (Privu) Server (PKu)

Enrollment phase

idu, i, E( 1

σi

), E(µi

σi

), 1 ≤ i ≤ n
−−−−−−−−−−−−−−−−−−−−−−−−−−→

Store E( 1

σi

), E(µi

σi

)), 1 ≤ i ≤ n

Authentication phase

idu−−−−−−−−−−−−−−−−−−−−−−−−−−→
Get E( 1

σi

), E(µi

σi

), 1 ≤ i ≤ n

E( 1

σi

), 1 ≤ i ≤ n
←−−−−−−−−−−−−−−−−−−−−−−−−−−

Input: i, ti
E( ti

σi

) = E( 1

σi

)ti

i, E(ti/σi)−−−−−−−−−−−−−−−−−−−−−−−−−−→
C∗ ← E(max)

PPCP∗

gt
←−−−−−−−−−−−−−−−−−−−−−−−−−−→ if PPCP∗

gt

(

E( ti
σi

), E(µi

σi

)
)

then

E(di)← E( ti
σi

) ·E(µi

σi

)−1

else
E(di)← E(µi

σi

) ·E( ti
σi

)−1

end if
PPCPgt

←−−−−−−−−−−−−−−−−−−−−−−−−−−→ if PPCPgt

(

E(di), Tdist

)

then

C∗ ← C∗ ·E(di)
−1 · E(Tdist)

else
PPCP∗

gt
←−−−−−−−−−−−−−−−−−−−−−−−−−−→ if PPCP∗

gt(C
∗ · E(R),max) then

C∗ ← E(max)
else
C∗ ← C∗ · E(R)

end if
end if

PPCPgt
←−−−−−−−−−−−−−−−−−−−−−−−−−−→ if PPCPgt(C

∗, Treject) = false then

Reject
end if

Figure 1: Proposed privacy-preserving protocol for keystroke dynamics-based authentication

comparison protocol (PPCP∗

gt). This protocol determines the greater value between encrypted input and encrypted

reference templates, then the E(di) is computed in either of following way

E(di)← E(
ti
σi

) ·E(
µi

σi

)−1 (2)

or

E(di)← E(
µi

σi

) ·E(
ti
σi

)−1 (3)

This process always assigns positive value to E(di) which is either achieved by Eq. (2) or Eq. (3).

As templates are encrypted with user public key, the server cannot find any information about the templates. The
encrypted distance E(di) is compared to a predefined threshold Tdist in privacy-preserving manners. The privacy-
preserving comparison is explained in the following.

4.1 Privacy-preserving comparison

The presented protocol invokes a privacy-preserving comparison sub-protocol for the following tasks: 1) To determine
the greater value between E( ti

σi

) and E(µi

σi

); 2) compare the encrypted distance E(di) and threshold Tdist to decide
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whether to compute the privacy-preserving reward or the penalty functions; 3) to compare the encrypted aggregated
distance indicator C∗ with a preassigned maximum value w.r.t. the reward function; and 4) to compare C∗ with the
reject threshold value Treject.

The reason for utilizing the privacy-preserving protocol is to hide the exact resultant values from the server and also
from the malicious users.

The server holds the encrypted SMD E(di) and unencrypted threshold Tdist. The server and the user invoke

PPCPgt

(

E(di), Tdist

)

to check whether the distance is greater than the threshold. The comparison protocol returns
a Boolean result. If true, the encrypted distance indicator C∗ is computed by the following penalty function:

C∗ ← C∗ ·E(di)
−1 · E(Tdist)

= C∗ · E(−di) · E(Tdist) = E(C − di + Tdist)
(4)

which decreases the plaintext value C of C∗.

If false, the reward function is computed, which increments the plaintext value C of C∗ as long as it is below the
maximum value according to the Bours reward function:

C ← min(C +R,max) (5)

In our protocol, this is realized by an if-block, where a privacy-preserving comparison is invoked for the third time:

PPCP∗

gt(C
∗ ·E(R),max)

where the E(R) is the encrypted constant reward value. If the comparison is true, the E(max) is assigned to C∗.
Otherwise, C∗ ← C∗ · E(R) = E(C +R).

Lastly, a fourth privacy-preserving comparison PPCPgt(C
∗, Treject) comparing the reject threshold with (C∗). If C∗

is below the reject threshold (Treject), then the authentication fails and the user is rejected.

5 ANALYSIS

In this section, we provide the correctness analysis, security analysis, and analysis of computation and communication
complexity.

5.1 Correctness analysis

The correctness of our proposed protocol relies on additive homomorphic encryption properties. The continuous
authentication phase is entirely performed on encrypted templates. This section considers three kinds of computations
performed in the encrypted domain: the correctness of the encrypted Scaled Manhattan Distance E(di), the encrypted
penalty function, and the encrypted reward function.

During the enrollment phase the user sends encrypted template E( 1

σi

), E(µi

σi

), 1 ≤ i ≤ n, to the server, and during

the authentication phase the server receives encrypted input E( ti
σi

) = E( 1

σi

)ti . The correctness proof of the encrypted

Scaled Manhattan Distance E(di) in Eqs. (2, 3) can be verified by the following equation:

E(di) =E(
ti
σi

) · E(
µi

σi

)−1 = E(
ti − µi

σi

)

when E(µi

σi

) gets greater than E( ti
σi

), then E(di) can be achieved as

E(di) =E(
µi

σi

) ·E(
ti
σi

)−1 = E(
µi − ti
σi

)

Where the Scaled Manhattan Distance, stated in Eq. 1.

The aggregated distance indicator C∗ is computed in the form of penalty and reward functions in Eqs. (4, 5). The
correctness proof of the encrypted penalty function is

C∗ = C∗ ·E(di)
−1 · E(Tdist) = E(C − di + Tdist)

and the correctness proof of the encrypted reward function is

C∗ =min(C∗ · E(R), E(max)) = E(C +R), E(max)

where C∗ is the encryption of C, E(R) is the encryption of reward valueR, and E(max) is the encryption of maximum
value.
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Table 1: Complexity comparison

Protocol Rounds Transmitted encryptions Sub-protocols invocations

[14] 4 N + 1 4N
[3] 5 2N + 1 5N
[22] 3 3N 0
Our protocol 5 N + 4 4

5.2 Security analysis

Our generic protocol relies on the security properties of additive homomorphic cryptosystems, e.g., Paillier [15]. As
noted, the privacy requirement is that the stored reference templates and input templates are protected so that the server
cannot learn anything about them. Our protocol achieves the privacy in the following ways: 1) The reference template
is stored in the encrypted form, 2) Scaled Manhattan Distance is computed on the encrypted input and encrypted
reference templates), 3) the comparison between the threshold and the result is made in a privacy-preserving way, 4)
the aggregated indicator C is computed in the encrypted form and, 5) the final comparison is also made in a privacy-
preserving way using PPCP. The server or malicious insider on the server cannot see any additional information about
biometric templates. Hence, this protocol is a fully privacy-preserving protocol.

5.3 Performance analysis

The performance of a protocol can be determined by analyzing the computation and communication complexities. In
this context, we analyzed the number of rounds to complete the authentication decision, the number of transmitted
encryptions, and the number of invocations of sub-protocols for privacy-preserving comparison. We compared our
protocol with other protocols that have been proposed only for behavioral biometrics limited to touch-dynamics or
keystroke dynamics. Context-aware authentication modes, such as authentication based on GPS data, web-histories,
IP addresses; e.g., Domingo-Ferrer et al. [11], Shahandashti et al. [18] are not considered for comparison.

Our protocol performs continuous authentication in five rounds. Each round contains only one encryption, except for
the first round which is performed only once. Our protocol invokes a sub-protocol for privacy-preserving comparison
four times, where the second time PPCPgt is only invoked when di < Tdist. Our protocol is based on only one sampled
input that compares only two integers (resultant value and a threshold).

The Govindarajan et al. protocol transmits N+1 encryptions during the authentication phase. The first round transmits
N encrypted elements and the second round transmits only one encrypted element. The authentication decision is
completed by four times invoking the privacy-preserving comparison protocol. Each time the sub-protocol compares
the series of N encrypted elements of a feature vector. These sub-protocols are based on the Erkin et al. [12] protocol,
and the Erkin et al. utilizes the Damgård et al. [7], Damgard et al. [9] comparison protocol. As Govindarajan et al.
invoked a sub-protocol four times for N samples, where one comparison is completed in three rounds. Their protocol
takes total 12×N rounds to complete an authentication decision.

The Balagani et al. [3] protocol completes authentication in five rounds, and they transmitted 2N + 1 encryptions.
Moreover, they five times invoked sub-protocols to complete one decision. They also utilized the Erkin et al. protocol
for privacy-preserving comparison. Their protocol completes authentication decision in 15×N total rounds.

The Wei et al. Wei et al. [22] protocol utilizes Paillier cryptosystem and completes an authentication decision in three
rounds. They transmit 3N encrypted vectors, where each vector contained N encrypted elements in a vector.

In comparison to Balagani et al. [3], Govindarajan et al. [14], Wei et al. [22], our protocol is efficient in terms of
computation cost, other protocols compute and transmit N the encrypted elements in each round, whereas our protocol
transmits only one encrypted element. The comparison of N encrypted elements in each round makes them very
inefficient even for periodic authentication. Therefore, our protocol is very efficient for continuous authentication.

The comparison is presented in Table 1, where the number of rounds and transmitted encryptions are counted without
including the sub-protocols.

5.4 Implementation

To determine the performance of our proposed protocols, we implemented the authentication protocol on Intel(R)
Core(TM) i5-7440 HQ CPU @ 2.80GHz, 32 GB RAM in Python 3.10 (Jupyter Notebook, Anaconda3). We use two
libraries for our implementation; the homomorphic encryption library [16] and a library for the secure comparison pro-
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Table 2: Execution time of proposed protocol

k l = 4 l = 7 l = 10

512 ≈ 80ms ≈ 125ms ≈ 195ms
768 ≈ 255ms ≈390ms ≈ 500ms
1024 ≈ 540ms ≈ 750ms ≈ 1006ms
1536 ≈ 1850ms ≈ 2503ms ≈ 3201ms

tocol, developed by TNO MPC Lab [19]. To evaluate the computation cost, we measured execution time to complete
homomorphic operations, and to complete privacy-preserving comparisons.

The execution time of continuous authentication is presented in Table 2. We utilize Veugen protocol [20, 21] as sub-
protocol for privacy-preserving comparison that is a bit-wise comparison protocol. Note that Veugen protocol is the
improvement of DGK comparison protocol (Damgård et al. [7], Damgard et al. [9]). The key-size is represented by k
and l represents the bit-length of input numbers of Veugen protocol [20, 21]. The performance is determined by setting
security parameter k into different sizes (k = 512 to 1536), and used different bit-length of input numbers (l = 5 -
l = 10)-bits. The execution time presented in Table in Table 2 is calculated in milliseconds (ms)3.

6 CONCLUSIONS AND FUTURE WORK

Continuous authentication strengthens the security by monitoring the user behavioral features but causes privacy con-
cerns when behavioral features are transmitted to the authentication server. In this paper, we have presented a new
generic privacy-preserving keystroke dynamics-based continuous authentication protocol. We have proposed a simple
and efficient privacy-preserving protocol utilizing homomorphic encryption properties as building blocks. Our pro-
tocol does not reveal any information about the biometric templates or the resultant outputs. This protocol provides
privacy against the honest-but curious server. To the best of our knowledge, our protocol is the first one to offer
privacy-preserving continuous authentication. Moreover, our protocol provides efficient performance compared to the
literature.

Multimodal behavioral biometric-based continuous authentication may offer more security than a unimodal authenti-
cation mechanism. We will consider multimodal continuous authentication using behavioral biometrics in the future.
This will be achieved by combining keystroke dynamics with touch dynamics. Continuous authentication requires effi-
cient performance in terms of communication and computation costs, and our future research will focus on lightweight
encryption techniques to reduce communication overhead.
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