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Abstract

Neuroblastoma (NBL), one of the main death-causing cancers in children, is known for its

remarkable genetic heterogeneity and varied patient outcome spanning from spontaneous

regression to widespread disease. Specific copy number variations and single gene rear-

rangements have been proven to be associated with biological behavior and prognosis;

however, there is still an unmet need to enlarge the existing armamentarium of prognostic

and therapeutic targets. We performed whole exome sequencing (WES) of samples from

18 primary tumors and six relapse samples originating from 18 NBL patients. Our cohort

consists of 16 high-risk, one intermediate, and one very low risk patient. The obtained

results confirmed known mutational hotspots in ALK and revealed other non-synonymous

variants of NBL-related genes (TP53, DMD, ROS, LMO3, PRUNE2, ERBB3, and PHOX2B)

and of genes cardinal for other cancers (KRAS, PIK3CA, and FLT3). Beyond, GOSeq analy-

sis determined genes involved in biological adhesion, neurological cell-cell adhesion, JNK

cascade, and immune response of cell surface signaling pathways. We were able to identify

novel coding variants present in more than one patient in nine biologically relevant genes for

NBL, including TMEM14B, TTN, FLG, RHBG, SHROOM3, UTRN, HLA-DRB1, OR6C68,

and XIRP2. Our results may provide novel information about genes and signaling pathways

relevant for the pathogenesis and clinical course in high-risk NBL.

Introduction

Neuroblastoma (NBL) presents a major challenge in paediatric oncology due to its highly vari-

able clinical appearance and extreme genetic heterogeneity [1–3]. It is the most common

extra-cranial solid tumor in children, originating from immature precursors of sympathic
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ganglionic cells during embryonic and fetal life [4, 5]. The disease accounts for 7–8% of all

childhood malignancies and 15% of all paediatric malignant deaths [6, 7].

NBL is diagnosed according to the histopathological criteria defined in the International

Neuroblastoma Pathology Classification [8]. To assess the prognosis of individual patients, the

International Neuroblastoma Risk Group (INRG) has developed a pre-treatment risk scheme

built on clinical, pathological, and genetic factors like age, histologic category, grade of tumor

differentiation, MYCN oncogene and chromosome 11q copy number variations (CNVs), and

DNA ploidy [9, 10]. Patients with risk factors like age>18 months, high tumor stage, MYCN
amplification (MNA), segmental chromosomal aberrations, and/or unfavourable histology fall

into the high-risk group with poor prognosis [10]. High-risk NBLs often infiltrate adjacent

organs and metastasize to regional lymph nodes, bone marrow (BM), bone, or soft tissue [10].

About 40–50% of NBLs present metastatic disease at diagnosis; however, in a subgroup of

infants, spontaneous regression without any treatment might occur [11].

Numerical chromosomal changes are present in low- and intermediate-risk NBLs, whereas

structural chromosomal alterations are strongly associated with more aggressive high-risk dis-

ease [12]. Chromosomal instability causes CNVs throughout the genome which, together with

MNA, presents the most prominent clinically relevant features in the biologic and genomic

landscape of NBL [13]. Segmental CNVs frequently comprise losses of chromosomes 1p, 3p,

4p, 11q and gains of 1q, 2p, 17q, but other loci may also be affected [14–16]. A rare but small

group of familial NBL exists, being estimated to cover around 1–2% of all cases [17]. So far,

mutations of only two genes have been identified as disease-causing in hereditary NBL: the

paired-like homeobox 2B gene (PHOX2B), a key enzyme in early sympathic neurogenesis [18]

and a tumor suppressor in NBL metastasis, and the anaplastic lymphoma kinase (ALK) gene,

playing a role in both familial and sporadic NBLs [5, 19, 20]. ALK codes for a tyrosine kinase

and appears as a promising therapeutic target [21, 22]. Apart from the activating mutations of

ALK and the inactivating mutations in the α-thalassaemia/mental retardation syndrome X-

linked (ATRX) gene are recurrent mutations infrequent in primary NBL [5]. Additionally, tel-

omerase reverse transcriptase (TERT) gene rearrangements constitute a frequent genetic fail-

ure in NBLs being associated with poor outcome in high-risk patients [5, 15, 23, 24]. The TP53
gene is involved in many cellular processes and is mutated in over 50% of all human cancers

[25]. In NBL, the TP53 mutation rate is only about 2%; however, protein accumulation is a fre-

quent phenomenon both in NBL tumors and cell lines [26, 27]. One study reported p53 as a

direct transcriptional target of MYCN in NBL [26]. Furthermore, mutations in genes involved

in the TP53 pathway may be biomarkers for a subgroup of NBLs with very high-risk within the

larger group of high-risk tumors characterized by either classical (MYCN/TERT) or alternative

(ATRX) telomere maintenance mechanisms [28, 29].

A number of research projects have explored the clinical potential of high-throughput

sequencing technologies in adult cancers [30]. However, childhood cancers significantly

diverge from adult cancers in terms of clinical behaviour, frequency, histopathology, genetic

subtypes, and tumor biology [31, 32]. The extreme heterogeneous nature of NBL is challeng-

ing. Many studies have utilized sequencing technology to enhance the knowledge about NBL

[5, 15, 33–35]. The presence of ALK mutations, as the most frequent among primary NBLs,

has already been proven; however, other studies revealed novel alterations developed in

relapsed NBLs, associated with activation of the ALK-RAS-MAPK pathway or mesenchymal

transition [33, 36, 37].

In this study, whole exome sequencing (WES) was performed on paired tumor-normal

samples from 18 Norwegian NBL patients: 16 high-risk, one intermediate (IR), and one very

low risk (VLR), to investigate their mutational profile and to identify possible novel somatic

variants. In addition, for six patients, WES on paired normal—relapse tumor samples was
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performed. Variants of genes known to be important for NBL development and aggressiveness

were detected with a mean number of non-synonymous variants of 28 (range 3–346). Hotspot

mutations in the ALK gene were identified in tumor samples from five of these high-risk NBL

patients. Mutations in genes previously reported playing a role in NBL disease development

were found, including PHOX2B, TP53, DMD, ROS, LMO3, PRUNE2, and ERBB3, members of

the MAPK family and ABCA2 genes. Our patient samples revealed few recurrent mutations;

however, in addition to the ALK gene, variants in nine biologically relevant genes were identi-

fied being mutated in more than one patient i.e. TMEM14B, TTN, FLG, RHBG, SHROOM3,

UTRN, HLA-DRB1, OR6C68, and XIRP2. Some potentially important genes were detected by

pathway analysis and we hypothesize that further studies of their functional role in the origin

and progression of NBL could lead to the discovery of new potential biomarkers.

Results

A total of 16 primary and four relapse tumor samples of patients diagnosed with high-risk

NBL were investigated by WES. Two additional samples of patients not fulfilling the clinical

INRG high-risk disease criteria were also included in the study: patient 7 was diagnosed with a

localized tumor without MYCN amplification but with an 11q deletion (intermediate risk) and

experienced two relapses at different time points, and patient 15 was classified as stage MS

with very low risk (no MNA, no 11q deletion), but displayed two segmental aberrations (+2p

and +17q). For patient 23, a sample collected at time of diagnosis was not available. All tissue

samples were taken prior to therapy, except the primary tumor of patient 14, which was col-

lected after initial chemotherapy treatment had started. The median age at time of diagnosis

was 44 months (range 1.5–192 months). Five patients were under the age of 18 months at the

time of diagnosis and one of them was MYCN amplified. Among 18 patients at the age of�18

months, four were MYCN amplified and eight showed an 11q deletion (Table 1). Eight patients

relapsed between 10 months and 3 years after diagnosis; seven patients died from the disease.

They all belonged to the group of�18 months.

Variants detected by WES

The total number of detected variants in the primary tumor samples revealed extreme varia-

tions between individual patients, ranging from 12 variants in patient 2 to 1687 variants

detected in patient 12. The average number of variants for patients of�18 months is 237,

while for those below 18 months was 14 variants. The mean and median numbers of total vari-

ants were 190 and 54, respectively. The mean and median numbers of all detected non-synon-

ymous variants were 28 and 5, ranging from 1 to 346. The total numbers of variants detected

in both, primary and relapse tumor samples, were classified into different Tiers (Fig 1A and 1B

and S1 and S2 Tables). For the relapsed samples, the mean and median numbers of all detected

non-synonymous variants were 66 and 27, ranging from 1 to 424. Numbers of variants

detected in relapse samples were higher compared to the corresponding primary tumor sam-

ples (S3 Table). The average tumor cell percentage in all samples was 79 (60–90) (S6 Table).

For all detected variants, the tumor allele frequency (TAF) is provided (S7 Table).

No Tier 1 variants with strong clinical significance for the user-specified cancer type have

been identified in our study. Tier 2 variants were found in primary and relapse samples and

included six variants in four genes, three in ALK, one in the FLT3, one in KRAS, and one in

PIK3CA (Table 2). The PIK3CA gene was not mutated in the primary tumor of patient 17. For

patient 23, no material from the primary tumor was available.

Based on the Personal Cancer Genome Reporter (PCGR) report, we were able to identify

ALK mutations in five patients. Three were classified as being clinically significant (Table 2),
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Table 1. Clinical characteristics of the NBL patients included in this study.

Patient ID 1 2 4 5 6 7 8 9 11

Gender M M F M M M M M M

Risk

Stratification

HR HR HR HR HR IR HR HR HR

LDH 358 458 448 295 348 230 329 270 656

Genomic

profile

11q- MNA - 11q- 11q- 11q- 11q- - 11q-

Age at

diagnosis

(months)

97 1.5 192 69 84 72 18 23 43

Primary

tumor site

Abdomen Adrenal

gland

Abdomen Cervical

lymph node

metastasis at

diagnosis

Abdomen Adrenal

gland

Cervical

lymph node

metastasis at

diagnosis

Abdomen Adrenal gland

Metastatic site Skeleton,

pancreas,

lungs

Liver, BM Skeleton,

lymph

nodes, BM

Skeleton,

lymph nodes,

BM

- - Skeleton,

lymph nodes,

BM

Skeleton,

lymph nodes,

BM

Skeleton, BM

Refractory

disease

No No No Yes (BM) Yes No No Yes No

Relapse Yes No No No NA Yes No No Yes

Time to

relapse

(months)

36 - - - - 13 - - 10

Death Yes No No No Yes Yes No No Yes

Time to death

(months)

90 - - - 72 60 - - 18

Patient ID 12 14 15 16 17 18 20 21 22 23

Gender F F M F F M M M F F

Risk

Stratification

HR HR VLR HR HR HR HR HR HR HR

LDH 338 333 364 7969 858 1670 1674 3976 554 1884

Genomic

profile

11q- NA - MNA 11q- MNA MNA - - -

Age at

diagnosis

(months)

18 17 4 127 44 141 146 47 14 4

Primary

tumor site

Abdomen Adrenal

gland

Liver

metastasis at

diagnosis

Abdomen Abdomen Adrenal

gland

Abdomen Liver

metastasis at

diagnosis

Adrenal

gland

Relapse in

cranium

(regio

parietalis)

Metastatic site Skeleton,

BM

Skeleton

lymph

nodes, BM

Liver, BM Skeleton,

lymph nodes,

BM

SSkeleton,

lymph nodes,

BM, liver,

lungs

Liver,

BM

Skeleton,

lymph nodes,

BM

Skeleton,

lymph nodes,

BM, liver,

kidney

Skeleton,

lymph

nodes, BM

Liver, BM

Refractory

disease

Yes No No Yes No No No No Yes

Relapse No No No Yes Yes No No Yes no

Time to

relapse

(months)

- - - - 18 - - 16 - -

Death No No No Yes Yes No No Yes No

Time to death

(months)

- - - 7 96 - - 24 - -

F, female; M, male; HR, high-risk; VLR, very low risk; IR, intermediate risk; MNA, MYCN-amplification; and BM, bone marrow.

https://doi.org/10.1371/journal.pone.0273280.t001
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while the remaining ones had an uncertain clinical impact (Tier 3) for patient 9 (p.Phe1174Val,

c.3520T>G) and patient 20 (p.Phe1174Leu, c.3522C>G). These four different missense variants

of the ALK gene are all detected at positions (F1174 and R1275), known as hotspots in NBL.

Tier 3 includes 108 variants in 101 different genes classified as tumor suppressors and

proto-oncogenes in the primary tumor samples of 12 patients (11 patients were� 18 months)

and 77 variants in 71 genes in six relapsed samples (Table 3A and 3B). Several of these variants

have previously been reported to play a potential role in NBL disease development, including

TP53, DMD, ROS, LMO3, PRUNE2, and ERBB3, members of the MAPK family (MAP2K4 and

MAP2K7) and ABCA2 genes. Additionally, two variants in the PHOX2B gene were found

(classified as Tier 4): one intron variant in patient 12 and one missense variant in patient 6.

Fig 1. Total number of variants. Columns illustrate the total number of variants classified into Tiers 1, 2, 3, 4, and synonymous variations detected in primary (1a

–b), and relapse samples (1c –d) of NBL patients included in the study. No Tier 1 variants were detected. For patient 7, two relapse samples (7 � and 7 ��), collected

at different time points and analyzed separately, are presented.

https://doi.org/10.1371/journal.pone.0273280.g001
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To evaluate the cancer-associations of certain detected variants, the MutationAssessor pre-

dictor algorithm was applied. This sequence-based tool uses the impact of mutations to rank

genes according to their significance for cancer. Taking into account the functional impact of

amino-acid substitutions on proteins, it gives a functional impact score (FIS) for every non-

synonymous mutation. If the FIS is >2.00, the mutation is considered to have a damaging

effect [38, 39]. The PHLPP1 gene was mutated in two of the patients with the prediction of a

damaged protein variant c.4856G>A in patient 9 and tolerated c.2791G>A variant in patient

12. Beside the observed PHLPP1 mutations, additional genes related to the RET signaling path-

way were detected and classified into Tier 3, both in primary and relapse tumor samples:

ERBB3, MET, PDGFB, RET, IRS2, DUSP10, AKT1, RIT1, MAPK7, NFKB1, MAP2K7,

MAP2K4, MEF2C, and MMP9.

Variants classified into Tier 3 were grouped into mutations detected only in the primary

tumor, shared by the primary and relapse tumor, or unique for relapse samples. Only patient 1

revealed shared variants in nine genes, with TAFs ranging from 14 to 83% (S7 Table); however,

additional 20 and 31 gene variants were found to be unique for the primary and relapse,

respectively (Table 4). The other three patients with both the primary and relapse tumor sam-

ples did not share gene variants classified into Tier 3. We observed shared mutated variants of

DUSP10, NR1H4, and MED12 genes between two relapses of patient 7 (Table 5). RET gene var-

iants were detected in two of the relapse samples, patient 1 and 17; however, at different posi-

tions (c.2081G>A; c.395T>C).

Patient samples 2, 6, 8, and 15 exhibited a general lower mutation burden of 12, 96, 12, and

24 detected variants; and neither Tier 2 nor 3 variants were detected. Oncoscore was applied to

investigate further potential targets in Tier 4 classified variants in these patients. In patient 2, a

total of 12 mutations were found, whereof six were classified as Tier 4 with the highest reported

Oncoscore value at ~0.26 in a non-synonymous variant of the NCKAP5 gene, predicted to

cause alterations of the resulting protein. All other identified non-synonymous mutations

exhibited an Oncoscore below ~0.27. In patient 6, 31 out of a total of 96 mutations were classi-

fied as Tier 4. A non-synonymous variant was detected for the TNIK gene, predicted to pro-

duce a damaged protein, revealing an Oncoscore of ~0.624. Additionally, mutated variants of

PHOX2B gene were detected with Oncoscore ~0.26 (p.Glu129Ter c.385G>T). Unfortunately,

MutationAssessor does not provide prediction assessment for this variant. In the tumor sam-

ple of patient 8, a total of 12 mutations were determined, of which three were classified into

Table 2. Detected variants of genes classified according to potential clinically significance (Tier 2).

Patient ID Gene name Variant

12 ALK p.Phe1174Leu

c.3522C>A

22 ALK p.Arg1275Gln

c.3824G>A

23 � ALK p.Arg1275Gln

c.3824G>A

12 FLT3 p.Thr22Met

c.680C>T

16 KRAS p.Gly12Val

c.35G>T

17 � PIK3CA p.His1047Arg

c.3140A>G

�, relapse sample.

https://doi.org/10.1371/journal.pone.0273280.t002
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Table 3. Variants classified into Tier 3.

a

Primary tumors

Patient ID Tumor suppressors Proto-oncogenes

Gene Variant Gene Variant

1 GLIPR1 p.Thr234Asn c.701C>A AKR1B10 p.Ala209Thr c.625G>A

DLC1 p.Gln1326Ter c.3976C>T MYCL p.Arg214Gln c.641G>A

BTG1 p.Trp56Ter c.167G>A MYBL1 p.Asp263Gly c.788A>G

PRUNE2 p.Ala2067Thr c.6199G>A NUAK1 p.Ser499Asn c.1496G>A

PRKDC p.Val646Met c.1936G>A EHMT2 p.Arg1053Cys c.3157C>T

MUC2 p.Gln736Ter c.2206C>T CDH2 p.Ala30Thr c.88G>A

MUC2 p.Ser1698Thr c.5092T>A ITGB1 p.Arg240His c.719G>A

MAP2K4 p.Glu221Ter c.661G>T IQGAP1 p.Thr292Met c.875C>T

CREBBP p.Val2376Ile c.7126G>A LMO3 p.Gln86Ter c.256C>T

ZFHX3 p.Met887Thr c.2660T>C USP15 p.Arg429Ter c.1285C>T

FBLN1 p.His671Tyr c.2011C>T MN1 p.Asp1020Gly c.3059A>G

TCHP p.Arg285His c.854G>A PDGFB p.Thr169Met c.506C>T

FBP1 p.Ala5Val c.14C>T WNT10A p.Ala148Val c.443C>T

DMD p.Ser42Gly c.124A>G IRS2 p.Ser731Ala c.2191T>G

- - - G6PD p.Arg469His c.1406G>A

4 STAG2 p.Glu1147Val c.3440A>T SETBP1 p.Asp341Val c.1022A>T

- - - EIF3A p.Arg611Met c.1832G>T

5 DKK1 p.Asp142Tyr c.424G>T FASN p.Gly950Ser c.2848G>A

- - - OTX2 p.Arg55Leu c.164G>T

7 FAS - c.569-1G>C AFP p.Ala439Ser c.1315G>T

RP1 p.Met508Leu c.1522A>T HOXA1 p.Gly122Trp c.364G>T

9 PHLPP1 p.Gly1619Glu c.4856G>A ALK p.Phe1174Val c.3520T>G

11 TP53 p.Gly199Val c.596G>T HMMR p.Leu109Met c.325C>A

BCL6B p.Gly35Glu c.104G>A PGR p.Ser796Ter c.2387C>A

MAP2K7 p.Pro286Ala c.856C>G - - -

12 PRUNE2 p.Thr1004Met c.3011C>T ROS1 p.Ser1109Leu c.3326C>T

KANK1 p.Glu432Gln c.1294G>C ERBB3 p.Ser1119Cys c.3355A>T

E2F2 p.Gln226His c.678G>T MYBL2 p.Ile624Met c.1872C>G

PHLPP1 p.Glu931Lys c.2791G>A KIF14 p.Met753Leu c.2257A>T

CDH11 p.Met275Ile c.825G>A USP6 p.Arg912Gln c.2735G>A

CBX4 p.Pro535Ala c.1603C>G TNK2 p.Arg1086His c.3257G>A

SUSD2 p.Asn466Ser c.1397A>G ATF7IP p.Asn348Ile c.1043A>T

RIT1 p.Glu11Gln c.31G>C MMP9 p.Arg668Gln c.2003G>A

MCC p.Ser25Gly c.73A>G UBD p.Ile68Thr c.203T>C

SUN2 p.Leu89Arg c.266T>G DBH p.Arg549Cys c.1645C>T

DMD p.Asp882Gly c.2645A>G - - -

13 - - - USP39 p.Leu446Phe c.1338G>T

14 PLXNC1 p.Gly964Glu c.2891G>A - - -

16 - - - NFKB1 - c.1300+?1G>A

17 DMBT1 p.Val1545Leu c.4633G>C PHF20 p.Ser880Phe c.2639C>T

- - - ABCA2 p.Asp578His c.1732G>C

- - - WDR7 p.Thr1076Arg c.3227C>G

- - - FCRL1 p.Thr160Ile c.479C>T

- - - AP3S1 p.Pro158Leu c.473C>T

(Continued)
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Table 3. (Continued)

- - - ISOC2 p.Arg49Trp c.145C>T

- - - OPLAH p.Asn1105Ile c.3314A>T

- - - ODF2 p.Leu751Met c.2251C>A

- - - UBQLN2 p.Asp314Asn c.940G>A

- - - COL5A1 p.Ala397Val c.1190C>T

- - - MTNR1B p.Arg154His c.461G>A

- - - PSD3 p.Ala1003Ser c.3007G>T

- - - ALMS1 p.Gln1155Glu c.3463C>G

- - - DSE p.Val592Asp c.1775T>A

- - - UNC13A p.Ser1562Phe c.4685C>T

- - - MAP7D1 p.Gln63Pro c.188A>C

- - - RETSAT p.Gly536Arg c.1606G>A

- - - WDR75 p.Val486Phe c.1456G>T

- - - TMEM14B p.Arg108Cys c.322C>T

- - - WDR91 p.His572Asn c.1714C>A

- - - ZNRF4 p.Glu315Ter c.943G>T

- - - IGLJ3 p.Val35Leu c.103G>T

18 MEF2D p.Pro460Gln c.1379C>A SULF2 p.Trp735Leu c.2204G>T

RP1 p.Leu2115Phe c.6345A>C - - -

20 TP53BP1 p.Gly1788Glu c.5363G>A ALK p.Phe1174Leu c.3522C>G

- - - RSF1 p.Glu311Ter c.931G>T

b

Relapses

Patient ID Tumor suppressors Protooncogenes

Gene Variant Gene Variant

1 CDC73 p.Val442Ile c.1324G>A MAPK7 p.Glu783Lys c.2347G>A

INPP4B p.Lys782Asn c.2346G>T MYCL p.Arg214Gln c.641G>A

TMPRSS11A p.Gln240Arg c.719A>G RET p.Arg694Gln c.2081G>A

KANK1 p.Asp29Asn c.85G>A NUP214 p.Gly1727Arg c.5179G>A

PRKDC p.Val646Met c.1936G>A IRF4 c.-56+?1G>A

PTPN13 p.Leu1225Met c.3673C>A PHGDH p.His532Arg c.1595A>G

PML p.Arg670Cys c.2008C>T CTTN p.Gly440Asp c.1319G>A

DNMT3A p.Pro569Leu c.1706C>T CDH2 p.Ala30Thr c.88G>A

AKT1 p.Arg328Cys c.982C>T WBP2 p.Gly151Arg c.451G>A

PRSS21 p.Ala224Val c.671C>T GTPBP4 p.Thr189Met c.566C>T

PLK2 p.Asp443Asn c.1327G>A EIF3A p.Arg959Gln c.2876G>A

PLK2 p.Arg174Ile c.521G>T ITGB1 p.Arg240His c.719G>A

SULF1 p.Met255Thr c.764T>C LMO3 p.Gln86Ter c.256C>T

ZFHX3 p.Arg2712Ser c.8136A>T USP15 p.Arg429Ter c.1285C>T

FBLN1 p.His671Tyr c.2011C>T KDM5C p.Arg909Trp c.2725C>T

LMO7 p.Arg119Cys c.355C>T FOXC1 p.Gln530Arg c.1589A>G

PCDH20 p.Ala769Thr c.2305G>A WNT10A p.Ala148Val c.443C>T

NOTCH3 p.Gly2052Asp c.6155G>A GLI3 p.Leu68Phe c.202C>T

ARHGAP10 p.Ile332Val c.994A>G MEF2C p.Ser350Ile c.1049G>T

FBP1 p.Ala5Val c.14C>T -
PHLDA2 p.Gly29Val c.86G>T -

(Continued)
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Tier 4. A non-synonymous variant of the PSMC3 gene was found and reported as predicted to

produce a malformed protein but with a low Oncoscore of ~0.27. In patient 15, 24 mutations

were detected, seven of them being classified as Tier 4. One variant found in the AHNAK2
gene was previously reported as being destructive resulting in a changed protein with an

Oncoscore of ~0.60 (S5 Table).

Identification of potentially damaging genes and variants

WES analysis of all samples included in this study revealed a total of 3426 variants. To select a

dataset of more biologically relevant variations, filtering was performed using the MutationAs-

sessor results from PCGR. This filtering step reduced the total number of events to 320 poten-

tial pathogenic variants. Among these variants, only so far unreported genes mutated in more

than one patient are presented (thus, known hotspot genes like ALK were excluded).

Based on the filtering described above, 17 biologically relevant variants in nine biologically

relevant genes were identified in nine patients: TMEM14B, HLA-DRB1, OR6C68, TTN, FLG,

RHBG, SHROOM3, UTRN, and XIRP2. Two genes with identical variants were present in two

patients (TMEM14B and HLA-DRB1) with a TAF ranging from 44 to 58%, and seven genes

with different variants were identified (Tables 6 and S7). Two patients (7 and 12) with

Table 3. (Continued)

6 DLEC1 p.Pro1028Arg c.3083C>G FOXQ1 p.Arg287Gly c.859A>G

ZEB2 p.Pro922Arg c.2765C>G RELB p.Val230Glu c.689T>A

SMARCA2 p.Leu1320Phe c.3958C>T IRS1 p.Lys61Ter c.181A>T

BACH2 p.Gln722His c.2166G>T - - -

MEF2D - c.1248-1G>A - - -

ALOX15 p.Phe203Ser c.608T>C - - -

7 � VWa5A p.Pro638Leu c.1913C>T MED12 p.Gly44Ser c.130G>A

DUSP10 p.Lys185Arg c.554A>G MET p.Pro475Ser c.1423C>T

NR1H4 p.Ser164Arg c.492C>A - - -

TES p.Ala99Ser c.295G>T - - -

7 �� TUSC2 p.Gln74Lys c.220C>A MED12 p.Gly44Ser c.130G>A

DUSP10 p.Lys185Arg c.554A>G TGFB1 - c.356-2A>G

LIF p.Ter203GlnextTer33 c.607T>C ADAR p.Leu1067Phe c.3201G>T

NR1H4 p.Ser164Arg c.492C>A - - -

17 ING1 p.Ser362Pro c.1084T>C FOXM1 p.Ser472Pro c.1414T>C

TUSC3 p.Leu29Pro c.86T>C PELP1 p.Gly179Val c.536G>T

USP9X - c.6210-1G>T SMYD3 p.Lys94Glu c.280A>G

PTPRJ p.Tyr182His c.544T>C RET p.Leu132Pro c.395T>C

PTPRG p.Met862Val c.2584A>G MED12 p.Ala860Thr c.2578G>A

NOTCH2 p.Ile707Thr c.2120T>C HK2 p.Val412Ala c.1235T>C

- - - RAB22A p.Phe93Leu c.277T>C

- - - AHI1 p.Ser1108Gly c.3322A>G

23 ESRP1 p.Tyr557Ter c.1671C>A GLI2 p.Al1364Thr c.4090G>A

- - - SLC2A1 p.Pro187Thr c.559C>A

- - - EIF3 p.Gly40Val c.119G>T

Genes with detected variants in patients 1, 4, 5, 7, 9, and 11, 12, 14, 16,17, 18, and 20 at the time of diagnosis, classified into Tier 3.

Genes with detected variants in patients 1, 6, 7, 9, 17, and 23 at the time of relapse, classified into Tier 3. Samples 7 � and 7 �� are two subsequent relapses in the same

patient; -, not applicable

https://doi.org/10.1371/journal.pone.0273280.t003
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mutations of the OR6C68 gene at 12q13.2 showed copy number gains of the corresponding

part of 12q (unpublished data). We observed a tendency to obtain mutated variants more fre-

quently in the primary tumor samples of patient 1 and 12.

Gene ontology analysis

Gene ontology analysis (GOseq) for non-synonymous variants revealed several pathways with

potential biological impact on NBL, including neuron cell-cell adhesion, biological adhesion,

and PI3K/Akt signaling pathway, immune response-regulating cell surface receptors, or innate

immune response activating cell surface receptors (Table 7). In these pathways, the RET,

PIK3CA, PHLPP1, KRAS, NFKB1, MUC5B, and MUC6 genes were found to be mutated in at

least two patients (Table 5). Further signaling pathways with potential biological significance

in NBL and details of the analysis are presented in S5 Table.

Table 4. Variants detected in patient 1.

Patient ID PT PT & RT RT

Gene Variant Gene Variant Gene Variant

1 GLIPR1 p.Thr234Asn c.701C>A PRKDC p.Val646Met c.1936G>A CDC73 p.Val442Ile c.1324G>A

DLC1 p.Gln1326Ter c.3976C>T FBLN1 p.His671Tyr c.2011C>T INPP4B p.Lys782Asn c.2346G>T

BTG1 p.Trp56Ter c.167G>A FBP1 p.Ala5Val c.14C>T TMPRSS11A p.Gln240Arg c.719A>G

PRUNE2 p.Ala2067Thr c.6199G>A MYCL p.Arg214Gln c.641G>A KANK1 p.Asp29Asn c.85G>A

MUC2 p.Gln736Ter c.2206C>T CDH2 p.Ala30Thr c.88G>A PTPN13 p.Leu1225Met c.3673C>A

MUC2 p.Ser1698Thr c.5092T>A ITGB1 p.Arg240His c.719G>A PML p.Arg670Cys c.2008C>T

MAP2K4 p.Glu221Ter c.661G>T LMO3 p.Gln86Ter c.256C>T DNMT3A p.Pro569Leu c.1706C>T

CREBBP p.Val2376Ile c.7126G>A USP15 p.Arg429Ter c.1285C>T AKT1 p.Arg328Cys c.982C>T

ZFHX3 p.Met887Thr c.2660T>C WNT10A p.Ala148Val c.443C>T PRSS21 p.Ala224Val c.671C>T

TCHP p.Arg285His c.854G>A - - - PLK2 p.Asp443Asn c.1327G>A

DMD p.Ser42Gly c.124A>G - - - PLK2 p.Arg174Ile c.521G>T

AKR1B10 p.Ala209Thr c.625G>A - - - SULF1 p.Met255Thr c.764T>C

MYBL1 p.Asp263Gly c.788A>G - - - LMO7 p.Arg119Cys c.355C>T

NUAK1 p.Ser499Asn c.1496G>A - - - PCDH20 p.Ala769Thr c.2305G>A

EHMT2 p.Arg1053Cys c.3157C>T - - - NOTCH3 p.Gly2052Asp c.6155G>A

IQGAP1 p.Thr292Met c.875C>T - - - ARHGAP10 p.Ile332Val c.994A>G

MN1 p.Asp1020Gly c.3059A>G - - - PHLDA2 p.Gly29Val c.86G>T

PDGFB p.Thr169Met c.506C>T - - - MAPK7 p.Glu783Lys c.2347G>A

IRS2 p.Ser731Ala c.2191T>G - - - RET p.Arg694Gln c.2081G>A

G6PD p.Arg469His c.1406G>A - - - NUP214 p.Gly1727Arg c.5179G>A

- - - - - - IRF4 c.56+1G>A

- - - - - - PHGDH p.His532Arg c.1595A>G

- - - - - - CTTN p.Gly440Asp c.1319G>A

- - - - - - WBP2 p.Gly151Arg c.451G>A

- - - - - - GTPBP4 p.Thr189Met c.566C>T

- - - - - - EIF3A p.Arg959Gln c.2876G>A

- - - - - - KDM5C p.Arg909Trp c.2725C>T

- - - - - - FOXC1 p.Gln530Arg c.1589A>G

- - - - - - GLI3 p.Leu68Phe c.202C>T

- - - - - - MEF2C p.Ser350Ile c.1049G>T

PT, variants unique for primary tumor sample; PT and RT, variants shared between PT and RT samples of patient 1; RT, variants unique for the relapse sample, and -,

not applicable

https://doi.org/10.1371/journal.pone.0273280.t004
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Genes reported with different ranking rules

In all of the investigated samples, a total of 2722 out of 20805 genes of the human reference

genome 37 (grch37) revealed at least one mutation. To identify cardinal genes of NBL and to

evaluate the identified mutated genes, different ranking rules were applied. First, genes were

Table 5. Variants detected in patient 7.

Patient ID PT PT & RT1 RT1

Gene Variant Gene Variant Gene Variant

7 FAS - c.569-1G>C - - - VWa5A p.Pro638Leu c.1913C>T

RP1 p.Met508Leu c.1522A>T - - - DUSP10 p.Lys185Arg c.554A>G

AFP p.Ala439Ser c.1315G>T - - - NR1H4 p.Ser164Arg c.492C>A

HOXA1 p.Gly122Trp c.364G>T - - - TES p.Ala99Ser c.295G>T

- - - - - MED12 p.Gly44Ser c.130G>A

- - - - - MET p.Pro475Ser c.1423C>T

7 RT1 RT1 & RT2 RT2

Gene Variant Gene Variant Gene Variant

VWa5A p.Pro638Leu c.1913C>T DUSP10 p.Lys185Arg c.554A>G TUSC2 p.Gln74Lys c.220C>A

TES p.Ala99Ser c.295G>T NR1H4 p.Ser164Arg c.492C>A LIF p.Ter203GlnextTer33 c.607T>C

MET p.Pro475Ser c.1423C>T MED12 p.Gly44Ser c.130G>A TGFB1 - c.356-2A>G

- - - - ADAR p.Leu1067Phe c.3201G>T

PT, variants unique for primary tumor sample; PT and R1, variants shared between PT and the first relapse of patient 7; RT1, variants unique for the first relapse sample;

RT2, variants unique for the second relapse; RT1 & RT2, variants shared by RT and RT2; and -, not applicable.

https://doi.org/10.1371/journal.pone.0273280.t005

Table 6. Genes with non-synonymous variants detected in primary tumor samples, predicted to be damaging by the MutationAssessor program, found in more

than one patient.

Gene name Chromosome location SCA region Protein Patient ID CNV

RHBG 1q22 c.251G>A p.Arg84His 1 0

c.428T>A p.Val143Asp 12 0

SHROOM3 4q21.1 c.905C>T p.Ala302Val 1 0

c.3160G>T p.Val1054Leu 12 0

c.3869C>T p.Pro1290Leu

TTN 2q31.2 c.101809C>T p.His33937Tyr 1 0

c.78674T>C p.Ile26225Thr 12 0

FLG 1q21.3 c.1815G>T p.Gln605His 1 0

c.3176G>T p.Arg1059Ile 5 0

UTRN 6q24.2 c.1614G>T p.Gln538His 1 0

c.1967T>G p.Val656Gly 4 0

HLA-DRB1 6p21.32 c.654A>T p.Arg218Ser 5 0

12 0

OR6C68 12q13.2 c.416G>A p.Cys139Tyr 7 gain/ampl

c.456G>T p.Met152Ile 12 gain/ampl

XIRP2 2q24.3 c.6168G>T p.Leu2056Phe 11 0

c.5402G>A p.Arg180His 12 0

TMEM14B 6p24.2 c.322C>T p.Arg108Cys 14 na

17 0

SCA, structural chromosome abnormality; CNV, copy number variant; ampl, amplification, and na, not available.

https://doi.org/10.1371/journal.pone.0273280.t006
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ranked according to the average number of mutations, resulting in a tendency to rank long

genes higher. Next, ranking by average divided by gene length was performed and finally,

genes were ranked by the total number of observations with mutations in the gene (Table 8).

The TTN gene was reported among the top 10 under two different applied ranking rules.

Besides TTN, there were no predominant findings detected except two genes listed (TRIM9,

PKHD1) in top 10, previously reported in the context of NBL.

Discussion

Different research groups have used sequencing and CNVs analysis in various efforts to

explore the nature of NBL and to find novel strategies for prognostic assessment and

Table 7. Pathways with a potential biological impact on NBL verified by GOSeq analysis.

Pathways with a potential biological impact

on NBL

Nr of patients with significant

GO term

Genes

neuron cell-cell adhesion 4 RET
biological adhesion 4 PIK3CA, RET
PI3K/Akt signaling 4 PHLPP1

immune response-regulating cell surface

receptor signaling

3 KRAS, NFKB1, MUC5B,

MUC6, PIK3CA
innate immune response activating cell surface

receptor signaling

2 KRAS, NFKB1, MUC5B,

MUC6

https://doi.org/10.1371/journal.pone.0273280.t007

Table 8. Results of ranked genes according to different ranking rules.

G nG B

OBSCN THSD7B TTN
LRRC8B GBP4 LPO

SSPO MIR519C HPRT1
ASTAB1 RTN3 TNS1

TTN ZFHX2 EPB41L2
DHRSX CRB1 VAC14

ACE NHSL1 MACF1
RASGEF1B TRIM9 RHPN2
MIR4472-1 CAV2 KIF2B

ZBTB17 FOXS1 OBSCN
YWHAZ - PKHD1
PKD1L2 - CSPG4
DNAH3 - MUC16
PMPCA - AHNAK2
POU5F2 - SSPO
MED25 - DMD
DKK1 - UPB1

DOCK5 - LRRN4
RNF217-AS1 - RABL2A
EEF1AKNMT - ADAM33

G, ranking by average, nG; ranking by average normalized with exome length; B, ranking based on the total number

of observations with mutations in the gene. TTN ranked under two different rules among the top 10. No other

predominant findings were detected.

https://doi.org/10.1371/journal.pone.0273280.t008
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therapeutic stratification of NBL with variable results [15, 28, 33, 40–43]. However, the

remarkable heterogeneity of the disease makes it difficult to discover novel candidate genes,

relevant for biological behaviour or targeted treatment. Moreover, this heterogeneity may

increase under the treatment, and influence clinical interpretation of genetic findings and

treatment strategy as pointed out recently [44]. In our study, we identified novel coding vari-

ants of genes possibly contributing to the understanding of these processes. Beside the confir-

mation of known mutations in ALK, we identified changes in genes of the RET signalling

pathway, the RAS-MAPK and p53 signalling pathway, immune response genes, and other pre-

viously described NBL-related genes. We also detected specific features of the relapse tumor

samples, several over-represented genes, and novel non-synonymous variants of genes occur-

ring in more than one patient sample. Presumably, an increased allelic frequency correlates

with the oncogenic potential of identified gene variants [45]. In our study, the average TAF for

all detected variants is higher than 48%, supporting the assumption that the detected muta-

tions could influence the NBL progression.

ALK mutations and the RET signalling pathway

ALK activating mutations were identified in five patients, all at hotspot positions, that might

be candidates for using ALK-targeted inhibitors [22]. Three of the patients carrying these

mutations were above the age of 18 months at the time of diagnosis and one was exactly at the

critical age of 18 months. In patient 9, an ALK mutation was found in addition to a mutated

variant of the PHLPP1 gene. PHLPP1 is related to the RET signalling pathway and known for

the promotion of tumor progression [46]. The RET gene is involved in neural crest develop-

ment and ontogenesis of the enteric nervous system. Besides, RET is commonly expressed in

NBL [47]. The PHLPP1- and additional genes of the RET signalling pathway were detected in

six other primary and relapse tumor samples included in the study (Table 3). All of these

patients were 18 months of age or older at time of diagnosis. Additionally, five out of seven

patients presented an 11q deletion, one was MNA and for one there was no clinically relevant

genomic changes detected. Our analysis detected two different variants of the RET gene in the

relapsed samples of patient 1 and patient 17; however, they were classified by MutationAsses-

sor as predicted to be tolerated. Moreover, in six patients GOSeq analysis identified neuron

cell-cell adhesion and biological adhesion pathways, both pathways include the RET gene

(Table 7).

The RAS-MAPK and p53 signalling pathway

Mutations in the RAS-MAPK signalling pathway in patients with NBL are associated with

poor prognosis [37, 48]. An example for this statement is patient 16, where all clinical charac-

teristics typically indicate an unfavourable outcome of the disease: MNA, age>18 months at

diagnosis, metastasis to skeleton, lymph nodes, and BM. This patient relapsed and died 7

months after diagnosis. So far, KRAS mutations have been linked mostly to relapses [37, 49],

while WES results for patient 16 detected a KRAS variant in the primary tumor sample classi-

fied into Tier 2. Parallel to ALK as being an activator of RAS-MAPK pathway, there are other

genes promoting its oncogenic function in NBL, like PHOX2B or DMD [48]. Both of these

genes show mutated variants in a relapse sample of patient 6 and primary tumor samples of

patient 1 and 12; all three patients present an 11q deletion and were above 18 months at the

time of diagnosis.

Poor prognosis in NBL patients is also associated with mutations in genes of the p53 signal-

ling pathway, e.g. CREBBP [28]. A mutated variant in the CREBBP gene (c.7126G>A) was

detected in the primary tuomr of patient 1, presenting an 11q deletion and relapse disease.
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Previously described NBL-related genes

Additional mutations were detected in genes, previously reported to play a potential role in

NBL disease development, including TP53, DMD, ROS, LMO3, PRUNE2, and ERBB3, mem-

bers of the MAPK family (MAP2K4 and MAP2K7) and the ABCA2 gene [48, 50, 51]. In three

patients with MYCN amplification mutated variants of NFKB1, ALK, and SULF2 were

detected. There is evidence that SULF2 is over-expressed in MNA NBL cell lines [52]. All three

patients were older than 18 months at the time of diagnosis.

Immune response genes

Immunotherapy with the anti-GD2 antibody is an important step of standard treatment proto-

col for high-risk NBL patients. It is based on inducing immune responses, e.g. by infusing

monoclonal antibodies against the tumor-associated disialoganglioside GD2, combined with

for example granulocyte–macrophage colony-stimulating factor and interleukin-2 [53]. Yet,

40% of NBL patients relapse [54]. Following GOSeq results, we identified mutations in genes

involved in immune response-regulating cell surface receptor signalling pathways, e.g.

mucines (MUC5B, MUC6, and MUC16), KRAS, PIK3CA, and NFKB1 genes. All changes were

found in the relapse samples, except the KRAS variant. Mutations in immune–response related

genes detected in relapse tumor, followed by specific functional studies, could provide an

important answer what differs in responders and non-responders of immunotherapy and why

it is still not that effective. There is no reported association of genes of the MUC gene family

with NBL, but these genes are known to play a role in cancer cells differentiation and prolifera-

tion, interacting, and regulating tumor microenvironment [55, 56].

Specific features of the relapse tumor samples

The relapsed samples examined in our study exhibited more mutated variants in compari-

son to the primary tumor (both non-synonymous and synonymous), confirming previous

findings [33]. This leads to genetic instability and diversity being a major obstacle in the

research on prognostic markers and successful treatment in NBL. Five out of six patients

who experienced a relapse presented an 11q deletion and one was MNA. All these patients

died from the disease. Genes found mutated in relapse of patient 1, such as LMO3 or RET,

are associated with unfavourable outcome of the disease and tumor progression [57, 58].

The TAFs of these genes were 83 and 56%, respectively (S7 Table). Based on our findings,

the clinical outcome of the patient and the published literature, we speculate that the

detected mutations may have rendered these genes to become oncogenic drivers contribut-

ing to an unfavourable prognosis and disease development.

Recent studies suggest that AKT is a critical prognostic factor for NBL and that its expres-

sion is correlated with poor prognosis of the disease [59]. Additionally, we observed recurrent

mutations in DUSP10 in relapse samples of patient 7. DUSP10 is a member of regulators of

neuronal cell growth and differentiation [60]. Taking into account that the TAF of DUSP10
amounted to 48%, and the tumor cell infiltration was 80%, indicates the possibilities of a driver

oncogene in this relapse.

Specific over-represented mutated genes

The purposes of this study were to discover novel mutations crucial for the origin, progression,

or treatment on high-risk NBL. To this end, we asked whether certain mutations were over-

represented in our samples. Despite the relatively low number of patients, we were able to find

novel candidates. Due to the high diversity in the mutated genes, different ranking rules were
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applied in various analytic attempts. Of the top 10 candidates in the various lists, only the

TRIM9 and PKHD1 genes have been previously reported in the context of NBL [61, 62].

Novel non-synonymous variants of genes occurring in more than one

patient

The biological relevance of non-synonymous variants of genes occurring in more than one

patient and predicted to cause protein changes were analysed by the mutation effect predictor

MutationAssessor algorithm. Here, we describe some interesting candidates detected in this

group: TMEM14B, OR6C68, TTN, SHROOM3, and UTRN.

There is no record of TMEM14B being linked to NBL and the association of TMEM14B to

cancer is not clear [33]; however, other members of the TMEM protein family have been

found in some NBL samples. There is no clinical pattern between patients with mutated vari-

ant of TMEM14B, but one of two presents 11q deletion together with an age above 18 months

at the time of diagnosis.

A possible association of OR6C68 to cancer has so far not been described, but the expres-

sion of other members of the odorant receptor family genes is documented in olfactorial NBL

[63], a central nerve-derived neoplasm, which does not belong to the family of sympathic

peripheral neuroblastic tumors (PNTs). In our study, both patients with a detected variant of

OR6C68 have in addition important risk factors as an 11q deletion and age above or equal to

18 months at the time of diagnosis.

Titin (TTN) is one of the longest genes in the human genome and therefore exposed to a

higher risk of random mutations. Nevertheless, this pure statistical statement does not exclude

the possibility of biologically relevant mutations in this gene [64]. Mutations in TTN have been

previously observed in NBL and olfactorial NBL; however, no obvious conclusion of its biolog-

ical function was described [65–67].

We observe mutated variants of SHROOM3 in patients presenting an 11q deletion with

additional detected mutations in DMD, PRUNE2, and RHGB genes. There is no established

relation between SHROOM3 and NBL, but SHROOM3 has been identified as a strong candi-

date involved in the pathogenesis of craniofacial microsomia, which is a disease believed to be

partially caused by disturbances of neural crest cells during embryogenesis [68]. NBL arise like

other PNTs of sympathic origin from neural crest-derived cells. Thus, sequence variations of

SHROOM3 might occur, and a possible impact of NBL development is not unlikely. Mutations

in SHROOM3 have also been observed in relapsed acute lymphoblastic leukaemia [69].

Different non-synonymous variants for UTRN located on chromosome 6q were detected in

two of the patients (1 and 4). We observed different variants of EIF3A gene in the primary

tumor of patient 4 and the relapse sample of patient 1. The 6q24 region is commonly deleted

in several types of cancers. Mutations in this region have previously been observed in NBL

[70]. However, none of our patients with detected variants showed CNVs in that region

(unpublished data).

Our findings demonstrate a remarkable divergence in both clinical and molecular character-

istics of NBL, highlighting again the registered enormous heterogeneity observed in this disease.

In summary, we were able to confirm an unfavourable effect of mutations in RAS-MAPK,

RET, or p53 signalling pathway genes. Moreover, some reported variants correlated with the

occurrence of relapses and fatal outcome of the disease. In addition, we detected mutated vari-

ants of immune–response genes in the majority of relapse tumor samples. Primary refractory

or relapsing disease significantly limits the survival of high-risk NBL patients.

Comparing primary versus relapse tumor samples, only nine shared genes identified in

patient 1 may have a driver gene potential for tumor evolution. Concerning the other patients,
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no such shared genes were classified into Tier 3, suggesting that these genes are more likely

passenger-genes, or alternatively, that the relapse is a rare de novo tumor. However, dividing

driver- versus passenger-genes is challenging and should be addressed in larger cohorts or

functional studies.

Genetic diversity complicates our understanding of treatment failure. Hopefully, our study

will complement to the existing knowledge in the field and aid to select genes which in subse-

quent functional studies might prove to act as potent future biomarkers in NBL.

Material & methods

Ethical statement

The study protocol was approved by the Regional Committee for Medical and Health Research

Ethics (REK nr: 2014/2010/REK Sør-Øst C). For all patients, written informed consents have

been signed and approved by the patient or the parents of the patient, depending of the age at

time of diagnosis (below/above 16 years) (REK nr: 2014/2010/REK Sør-Øst C). The parents

made a voluntary and deliberate decision regarding their child’s participation in the study,

based on what is best for their child, their child’s opinion, as well as their own perspectives. All

methods were performed in accordance with the relevant guidelines and regulations enacted

by the Genomics and Bioinformatics Core Facility, Oslo University Hospital, the South-East-

ern Norway Regional Health Authority and the University of Oslo.

Patient material

Primary and relapse tumor samples were collected for diagnostic purpose at the Department

of Pathology at Oslo University Hospital Radiumhospitalet, Oslo, Norway. According to the

INRG pre-treatment risk classification [9, 10] 16 patients included in the study were primarily

diagnosed with high-risk NBL, one with intermediate risk, and one with very low risk disease.

Patients have been treated individually but all following the HR-NBL1/SIOPEN protocol

(ClinicalTrials.gov:NCT01704716) or non-HR NBL protocols when diagnosed with intermedi-

ate- or very low risk (ClinicalTrials.gov:NCT01728155) [71–75]. All high-risk cases received

high dose treatment. The relapsed patients did not follow defined protocols. Blood or BM

from included patients, were used as normal control material for WES analysis.

DNA isolation

For DNA extraction different extraction kits were used, depending on the origin of the material:

for fresh frozen primary tumor samples the Qiagen Allprep kit or QIAamp DNA mini kit was

applied (Qiagen), for bone marrow cells the QIAamp DNA mini kit was used, and for blood the

Qiagen EZ1 DNA blood kit was utilized (all Qiagen). For the majority of the samples, an addi-

tional cleaning step was applied using the Genomic DNA Clean & Concentrator TM10 (Zymo

Research). DNA was quantified using the Qubit dsDNA HS Assay Kit (Invitrogen).

Whole exome sequencing

The library preparation was performed using the Agilent SureSelect Human All Exon V5 fol-

lowing the default protocol and sequencing was performed on the HiSeq2500 using SBS chem-

istry V3 and paired end-sequencing (2x100bp).

Data analysis

Variant calling. The raw reads from each sample, in FastQC format, were mapped (lane-

wise) using BWA MEM to the human reference genome (build b37 with an added decoy
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contig, obtained from the GATK resource bundle) [76]. Sample-wise sorting and duplicate

marking was performed on the initial alignments with Picard tools (http://broadinstitute.

github.io/picard). GATK tools were subsequently used for two-step local realignment around

indels, with matching samples (i.e., primary tumor and its corresponding normal) being pro-

cessed together [77]. Each sample’s pair-end read information was checked for inconsistencies

with Picard, and base-quality recalibration was performed by GATK. Somatic variant calling

on the matching paired samples was done by using the intersection of MuTect and Strelka [78,

79]. Block substitutions were defined as somatic mutations at consecutive positions, where the

variant allelic frequency of each was within 5% of the average allelic frequency of the two vari-

ants. GATK tools were used for computing coverage statistics based on the recalibrated align-

ment files. Details of the variant calling pipeline have been described elsewhere [80].

Variant annotation. Functional annotation of somatic variants were detected using the

PCGR [81]. The detected variants were categorized into Tier 1 (strong clinical significance),

Tier 2 (potential clinical significance), Tier 3 (uncertain clinical significance), or Tier 4 (other

non-synonymous). The VCF files from the variant calling pipeline were compressed and

indexed using bgzip and tabix, respectively, as recommended by PCGR. The PCGR script,

pcgr.toml, was modified to turn off VCF validation and configured with specific parameters

(Peripheral_Nervous_System_Cancer_NOS) for this analysis, as NBL falls inside this main cat-

egory. The PCGR provided a list of variants in each of our 18 patients. In the PCGR, every

somatic variant presented to the program is classified either as Tier 1, Tier 2, Tier 3, Tier 4, or

synonymous variant. Tier 1 variants are variants known to be of strong clinical significance for

the cancer type specified by the user, in our case NBL. Tier 2 variants are described as variants

with potential clinical significance: either strong evidence that the variant has a clinical signifi-

cance in another cancer type or weak evidence that the variant has clinical significance in the

cancer type specified by the user. Tier 1 and Tier 2 variants have to be classified in the CIViC

database or the Cancer Biomarkers Database [82, 83]. Tier 3 variants are variants of uncertain
clinical significance, which are unspecified non-synonymous variants located within a known

tumor suppressor gene or proto-oncogene. All other non-synonymous variants are classified

into Tier 4.

The PCGR uses mutation effect predictors to estimate the biological effect of the non-syn-

onymous variants. In this study, the mutation effect predictor MutationAssessor was chosen to

identify biologically relevant variants [39]. When MutationAssessor predicts a variant with

damaging effect, the amino acid change caused by that variant is predicted to cause damage to

the protein product that impacts the function of the protein. If the variant is predicted to be

tolerated, this means that the resulting amino acid change in the protein is predicted to have

no functional impact. In this study, we use this definition for a variant to be: predicted to be

damaging or predicted to be tolerated. Variant annotation was performed in this study by

using the MutationAssessor with high sensitivity as a variant effect predictor [84]. This choice

was necessary to avoid losing data of possible interest. Therefore, there might be some false

positives (variants that are not damaging) amongst the variants that we classify as biologically

relevant, hence the functional importance of candidate genes and variants should be validated.

The other feature of PCGR utilized in this study is Oncoscore [85]. This is a score between

0 and 1 expressing the frequency of whether a gene has been reported in relation to cancer in

the scientific literature. A low score represents a low association, while a high score represents

high association. If a variant is classified into Tier 4, Oncoscore can help identify its potential

as a target for further investigation.

Statistical analysis. Data analyses after utilizing PCGR, including frequency analysis, sta-

tistics, and plotting, were performed using the programming language R in the integrated

development environment RStudio. Various statistical algorithms for analysis of sequencing
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data were tested and evaluated. Genes were ranked based on their average amount of muta-

tions across patients (G), their average amount of mutations normalised by gene length (nG),

and the total number of patients with mutations in the genes (B).

Pathway analysis. To identify pathways impacted by the identified mutated variants

GOSeq analysis was performed. [86] The analysis was carried out separately for each sample

and all genes with at least one somatic mutation (Tier 1—Tier 4) based on the PCGR analysis

were included. We looked at mutations in the coding region. The output of this analysis was a

ranking of the Gene Ontology (GO) categories according to the number of samples for which

the GO category was significant (p<0.05).
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