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Estimating the effect of biofouling on ship shaft power based on sensor
measurements
Haakon Bakka a, Hanne Rognebakkeb, Ingrid Glada, Ingrid Hobæk Haffa and Erik Vanema,c

aDepartment of Mathematics, University of Oslo, Oslo, Norway; bNorwegian Computing Centre, Oslo, Norway; cDNV, Oslo, Norway

ABSTRACT
Marine biofouling on a ship’s hull and propeller increases the resistance of the ship moving
through water and reduces the propulsion efficiency of the ship. Estimating the effect of
fouling is difficult, as the biomass is rarely measured. In this paper, we present a new data-
driven model for the total shaft power use of a large containership, in order to estimate the
unobserved effect of fouling. Due to the limitations of both physical models and machine
learning models, we develop a Bayesian generalized additive model for our purpose. We
discuss issues of representative training data for the model. Further, we subset and
subsample the data to a representative sample. Models are compared by out-of-sample
predictive quality, physical appropriateness, and through autocorrelation of residuals. The
Bayesian generalized additive model combined with computational inference using
integrated nested Laplace approximations gives a robust estimate of the biofouling effect
over time. It also allows a decomposition of the total shaft power use into effects of speed,
weather, and other conditions. This model can be used to understand the effectiveness and
timing of different hull and propeller treatments.
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1. Introduction

Marine biofouling (fouling) on a ship’s hull and pro-
peller increases the roughness of the surfaces in con-
tact with water, and thus the frictional resistance of
the ship (Schultz et al. 2011). This significantly
increases the resistance of the ship moving through
water and seriously influences the propulsion
efficiency and fuel use of the ship. The efficiency lost
due to biofouling can be 5–15% of the total shaft
power and fuel usage (Molland et al. 2014; Wang
and Lutsey 2013; Hakim et al. 2017). Coraddu et al.
(2019) state that this contributes to approximately
2.7% of the global anthropogenic carbon dioxide
(CO2) emissions (Smith et al. 2015).

Fouling is removed by proper hull and propeller
cleaning in order to maintain efficiency, but such clean-
ing is costly and time consuming. Moreover, cleaning
may damage the anti-fouling system and hence acceler-
ate further marine growth. Therefore, hull and propeller
cleaning should only be performed when necessary and
the optimal time to clean the hull is a trade-off between
the cost of cleaning and the efficiency gain achieved. In
order to make qualified decisions regarding cleaning,
one needs models to estimate the effect of biofouling
on the ship resistance and propulsion efficiency, and
to separate the effect of fouling from other factors
such as ship speed, loading condition and weather con-
ditions. Such models can also be used to analyse the

effectiveness of different anti-fouling systems, including
the decision of which paint to use.

There has recently been a regulatory push for emis-
sion reduction and more environmentally friendly
shipping. There are global energy-efficiency require-
ments from the International Maritime Organization
(IMO) as well as global and regional caps on air pol-
lution from ships (MARPOL annex VI (IMO 2020)).
In 2018, IMO adopted a strategy for the reduction of
GHG emissions from ships, aiming at reducing total
GHG emissions from international shipping by at
least 50% by 2050 (IMO 2018). Hence efficiency is
high on the agenda in the maritime industries, and
optimized interventions to reduce the effect of biofoul-
ing could contribute to reduce emissions and meet
IMO goals. A number of technical measures to reduce
fuel consumption in shipping, both in design and
operation, are discussed in Sharifi et al. (2017). Fur-
thermore, the International Convention on the Con-
trol of Harmful Anti-Fouling Systems on Ships
(IMO 2005), adopted in 2001 and entered into force
in 2008, prohibits the use of some anti-fouling systems
that have previously been effectively used to reduce
biofouling. Hence, stricter requirements on anti-foul-
ing systems contribute to the challenge of optimizing
interventions to reduce biofouling.

Due to the importance of fuel efficiency and emis-
sion reduction in shipping, a number of numerical
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models have been developed to assess ship perform-
ance. Such models include various components related
to, e.g. calm water resistance, air resistance, added
resistance in waves and wind, propulsion and propel-
ler efficiency, see e.g. Tvete et al. (2020). The effect of
biofouling would be an important part of such models,
but, as pointed out in Tvete et al. (2020), this effect is
still not fully understood and there is a lack of reliable
models, see also Yeginbayeva and Atlar (2018). Hence,
this paper proposes a data-driven model to account for
the effect of biofouling, and this can be incorporated as
an important sub-model to improve the accuracy of
ship performance models.

For studying propulsion efficiency and fuel consump-
tion, models for relevant physical relations are often pro-
posed. A ship’s speed-power curve is typically
determined by sea trials and model tests prior to com-
missioning. Sea trials are ideally carried out under steady
conditions, with deep waters, no wind, no current and no
waves and with specified draught and trim conditions.
Different methods can be used to correct the effect of
waves and wind during such trials (Tsujimoto et al.
2021). Power curves are important in the calculation of
the attained energy-efficiency design index (EEDI) (Tu
et al. 2018) and in the overall assessment of a ship per-
formance and fuel consumption (Jalkanen et al. 2009;
Tillig et al. 2018; Bialystocki and Konovessis 2016).

Data-driven models for fuel consumption have
become more and more popular due to their ability
to take into account many phenomena by using
large amounts of data together with limited assump-
tions based on physical knowledge about the problem.
They can also take into account ship-specific and
environmental phenomena better than purely physical
models. A review of various data-driven methods can
be found in Gkerekos et al. (2019), who attempt to find
efficient ways to implement the fuel consumption
model. This includes Linear Regression (both with
and without regularization), Decision Tree Regressors,
Random Forest Regressors, Extra Trees Regressors,
Support Vector Regressors, K-Nearest Neighbours,
Artificial Neural Networks and ensemble method
algorithms. One of the conclusions of Gkerekos et al.
(2019) was that the quality of the model output corre-
lates with the quality of its training input. This is an
important finding that applies to all data-driven
models. A critical assumption is that the conditions
under which the model is trained are representative
for the time period where the model is used to perform
predictions. Various data-driven regression models
were explored by Brandsæter and Vanem (2018) to
account for the effect of environmental conditions
on ship speed. Newer studies that use various data-dri-
ven methods can be found in Laurie et al. (2021). They
use linear regression, decision trees (AdaBoost), K-
nearest neighbours, artificial neural network and ran-
dom forest to predict shaft power to identify

performance deterioration due to fouling. Kim et al.
(2021) use linear regression and an artificial neural
network to predict fuel consumption. The importance
of data preprocessing and filtering when using data-
driven models to predict ship propulsion is high-
lighted in Karagiannidis and Themelis (2021).

The aim of this paper is to analyse, based on sensor
data collected from ships in operation, the effect of
biofouling on the performance of the ship, and the
additional propulsion power that is needed due to
this effect. Flexible Bayesian models based on the sen-
sor data will be established, avoiding the pitfalls of the
machine learning methods mentioned above. As we
will use some physical knowledge when we formulate
the model, we first outline the necessary background
related to the resistance of a ship in water. Thereafter,
we comment on our experiences with the machine
learning approaches mentioned above and advocate
the use of more interpretable models.

In Section 2, we present the data, while the Bayesian
generalized additive model is introduced in Section 3,
the results in Section 4, and finally we conclude the
paper in Section 5.

1.1. Ship resistance

The resistance of a ship moving through water is typi-
cally described by the relationship between speed and
power demand, and is expressed by a speed-power
curve. Essentially, a ship’s resistance is a sum of the
resistance from several sources, such as water and
air resistance. It is influenced by the ship’s speed, dis-
placement and hull form. In particular, the frictional
resistance from water depends on the ship’s wetted
area, wave conditions, speed and fouling on the hull.

A simple model for the relationship between ship
speed, displacement and propulsion power demand is
expressed through the Admiralty coefficient (Brown
and Aldridge 2019). The Admiralty coefficient, A, is a
constant for a given ship and is defined as follows

A = ∇2
3v3

P
, (1)

where ∇ denotes the displacement, v is the ship speed
and P is the propulsion power need. It is generally
acknowledged that this is an approximate model.
Further, it assumes a cubic relationship between
power demand and speed, given displacement.
Hence, the Admiralty law translates to the following
approximate relationship between power need and
ship speed

P ≈ ∇2
3v3

A
= CAv

3, (2)

where CA is a constant (depending on displacement).
Another simplified model for the relationship between
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power need and speed is the propeller law (Brown and
Aldridge 2019), which is based on the power required
to drive a propeller with speed vp

P = cvnp , (3)
where c and n are coefficients defining the relationship.
It is seen that for n = 3 and c = CA, and by replacing the
engine power and propeller speed with the ship power
need and ship speed, the two laws are in general agree-
ment. Resistance-based models take other factors into
account and will typically be on the form (Brown and
Aldridge 2019)

P = rCTSv3

2hT
, (4)

where CT is the total resistance coefficient, ρ is the sea
water density, S is the hull-wetted surface area and hT

denotes the engine efficiency. A model for the instan-
taneous power used by a ship as a function of velocity
and technical parameters of the ship is expressed as fol-
lows in Jalkanen et al. (2009),

Ptransient = CF + CR+ CA+ CAA( ) 1
2
v3S

( )
1
10

, (5)

where CF, CR, CA and CAA are the frictional, residual,
appendage and air resistances, respectively, S is the wet
surface area and 10 is the propulsive coefficient.

In summary, different models based on physical
considerations suggest using a cubic relationship
between propulsion power and speed, but thesemodels
are all acknowledged to be approximations, see e.g. Tu
et al. (2018). The statistical modelling presented in this
paper will use an adaptive spline for the speed-power
relationship, to alleviate potential inaccuracies in the
cubic model, especially for slow or fast speeds. How-
ever, for the effect of biofouling, we will assume a pro-
portionality with speed to the power three.

1.2. Machine learning by training on clean hull
data and estimating the fouling effect from
residuals

One intuitive approach to the problem of estimating
the effect of fouling is to use a two-step procedure as
in Coraddu et al. (2019) in order to obtain predictions
of fouling. First, we use a Random Forest (RF) (Brei-
man 2001) to build a model for shaft power based on
the available covariates. This RF is trained on clean
hull data and used as a reference model. Secondly, we
use the estimated RF model to predict shaft power in
the entire period and compare this prediction with
observed shaft power. The difference between the pre-
dicted and observed shaft power is then assumed to
represent the biofouling effect. The critical assump-
tions here are that the estimated model is fitted to
data where marine fouling is essentially absent and

that the combination of covariate values in the training
period is representative for the entire time period. In
the training period with clean hull data, we need to
observe the ship in many operational and environ-
mental conditions, and these conditionsmust be repre-
sentative for the entire time period. It is not clear how to
define the training period in order to balance the need
of a clean hull and a sufficient number of representative
samples, and for some cases, there exists no good train-
ing dataset. In our case, the prediction model varied a
lot depending on how we defined the training period.
If we use the first year of data to train the model, we
find that the ship speed was overall much lower in the
training interval than in the succeeding period (see
Figure 1 and some additional details in Appendix).
Hence, the training periodwas not long enough to con-
tain representative values for the ship speed. At the
same time, the training period was already too large,
as our main results show that the hull was far from
clean at the end of the period.

The problems we encountered when fitting RF
models show that when using black box machine
learning models, we depend heavily on having repre-
sentative training data. It is also difficult, if not
impossible, to correct for this in retrospect. In fact,
the results of the RF model were so unreliable and
unstable that they were not even comparable to the
results of the main model in this paper. We believe
this was not a problem with RF, as both Gkerekos
et al. (2019) and Laurie et al. (2021) had good results
with RF, but a problem with the approach of training
on clean hull data. The main model we propose will be
based on a completely different approach; on fitting an
interpretable model to the entire dataset.

1.3. Interpretable, flexible additive models

Instead of dividing the dataset into training and pre-
diction sets, we chose to fit an interpretable model to
the entire dataset, to infer the unobserved effect of
fouling. Since we do not have a measured covariate
for the fouling level, this is not a typical regression
problem. Instead, we assume a flexible parametric
form for the effect of fouling, and use this as a time-
varying model component in a generalized additive
model (GAM) (Hastie and Tibshirani 1986).

Our proposed model is inherently interpretable,
which is a great advantage. As Rudin (2019) states,

but trying to explain black box models, rather than
creating models that are interpretable in the first
place, is likely to perpetuate bad practices and can
potentially cause great harm to society. The way for-
ward is to design models that are inherently
interpretable.

In the problem of estimating fouling, this is
especially relevant. In this application, there is no
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clear prediction target where we can choose whichever
model is the best at attaining good predictions. Rather,
we aim for a model that gives a good approximation of
the true data generating mechanism, and then we use
the fouling estimate from this model. In order to
investigate whether our fouling estimate is good, we
must be able to interpret and criticize the model.
The main assumption in a GAM is that the model
components fj add together to give the predictor

h = f1 + f2 + f3 + · · · + fJ ,

which is then used to fit the observations y through a
likelihood, or loss function, L(y|h). This additive
structure enables interpretable model building,

where relevant covariates and physical understanding
is used to build the model components. The main pur-
pose of using GAM for modelling fouling is to adjust
for all covariates unrelated to fouling, and simul-
taneously model the residual effect of fouling.

2. Data

For this study, a 2500 TEU containership of about
26,000 gross tonnage with a length of approximately
200 m and breadth approximately 30 m has been ana-
lysed. We utilize data from several sources. The pri-
mary data source for ship performance is various
sensors onboard the ship in operation. These data
are supplemented by combining Automatic Identifi-
cation System (AIS) data for the location of the vessel
with weather data from the ERA 5 reanalysis (Hers-
bach et al. 2020) to obtain the prevailing weather
and sea state conditions at all times. The covariates
we used from the ERA 5 reanalysis were Wave Direc-
tion, Wind Speed, Wave Period and Wave Height. In
addition, six dates at which cleaning was performed
were obtained from the ship owner, where the last
date was the end of our dataset. Unfortunately, we
were not able to obtain precise information about
the type of each cleaning, e.g. whether it was hull or
propeller cleaning.

Based on these data sources, a large number of cov-
ariates were available. From these, we selected a set of
covariates based on expert judgement and preliminary
analysis. The covariates sea water temperature, air
temperature, dew point temperature, and fraction of
sea ice, were available from the ERA 5 reanalysis but
excluded based on lack of significance in preliminary
models. See Table 1 for the response and all the

Figure 1. Weekly mean of ship speed for the ship data.

Table 1. The response and the covariates.
Code name Text name Details

Shaft_power_MW Shaft Power The response
Speed_knot Ship Speed Speed through

water
Accel1_knp15m Linear Acceleration Units: Knots per 15

minutes
Accel2_knp15m Turning Acceleration
Draft_mean_m Draft Mean Average of draft

forwards and aft
Draft_trim_m Draft Trim Half difference

between forward
and aft

Wave_dir Wave Direction
Wind_speed_knot Wind Speed Relative to ship
Tz_s Wave Period
Hs_m Wave Height
Clean.times Cleaning Events Hull or propeller

cleaning or
painting

Not a covariate, but
a list of
timestamps

Cleaning_period Cleaning Period E.g. 1: Before the
first Cleaning
Event

Time_since_clean_days Time_since_clean_days

4 H. BAKKA ET AL.



included covariates, together with a brief explanation.
Note that the last part of the code name gives the
measurement unit. The six cleaning events were con-
verted to the covariate Cleaning_period, an inte-
ger representing the six time periods before the
cleaning events. We note that wind direction was
not included directly, but used to compute Wind
Speed relative to ship direction.

2.1. Data preprocessing and cleaning

We have approximately 5 years of data. The sampling
frequency varied between the different variables, from
1 minute up to 15 minutes. In addition, the sampling
frequency for the performance monitoring data varied
throughout the period, but it was typically 15 minutes.
Hence, we aggregated all variables into 15-min inter-
vals using the mean value in the interval. We used
the circular mean value for the variables that were
measured in degrees.

In this paper, we study fouling by modeling shaft
power as a function of ship speed, weather and other
conditions. The fouling effect is a slowly varying com-
ponent that is best explained in steady-state con-
ditions, like when the ship is in transit. The
behaviour of shaft power is more complex when we
have low ship speed or high accelerations, which is
typically when the ship is manoeuvring close to
shore. Hence, to reduce noise in the data, we disregard
all time points where the ship speed was lower than 5
knots, and similarly, we disregard all time points
where the linear acceleration was greater than 1 knot
per 15 minutes and the turning acceleration greater
than 2.5 knots per 15 minutes.

3. Methods

3.1. Model definitions

We denote the models we propose as BGAM, for
Bayesian generalized additive models. The main
model we present, BGAM-main, is

y = h+ e (6)
h = Xb+ frw2(Speed)+ f2(Wave dir)

+ Speed3h(t∗), (7)
where y is the observed Shaft Power in MW, ε is the
residuals, η is the predictor, and the other terms are
referred to as model components. We use linear
effects (Xb) for the variables Linear Acceleration,
Turning Acceleration, Draft Trim, Draft Mean,
Wind Speed, Wave Height and Wave Period. The β’s
have approximately flat priors.

The effect frw2(Speed) is for the Ship Speed, and is a
second order spline, called a random walk order 2
spline (see e.g. Gómez-Rubio (2020) Chapter 9). We

chose this flexible spline, instead of e.g. a Speed3

curve, to account for any model misspecification at
low or high speeds. The scaling parameter srw2 of
this spline is given an exponential prior, based on
the penalizing complexity (PC) framework (Simpson
et al. 2017). The effect f2 is for Wave Direction and
is a two-parameter trigonometric function,
a1 sin(x)+ a2 cos(x). We could not use a linear
effect for Wave Direction because the minimal angle
and the maximum angle should have approximately
the same effect, as they represent the same direction.
The two parameters have approximately flat priors.
The residuals are modelled as iid. Gaussian variables,

ei � N (0, s2
e). (8)

The biofouling effect h(t∗) is a piecewise linear func-
tion in t∗, which is time at rest since the last cleaning
event,

h(t∗) = ak + bkt∗. (9)
The ak and bk are given approximately uniform priors.
The fouling effect is multiplied with Speed3 following
the theory in Section 1.1. The piecewise linear struc-
ture is due to our expectation of a jump in the fouling
effect after a cleaning event, and then a gradual
increase until the next cleaning event.

In addition to the main model, we present a few
secondary models for comparison. The model
BGAM-T is the same as BGAM-main, except that
the time t∗ used for the fouling effect, is clock time
since the last cleaning (not just when the ship was
standing still). The models BGAM-V1 and BGAM-
V2 are the same as BGAM-main, except for the expo-
nent of the Speed in Speed3h(t∗), which is changed to
Speed1 and Speed2, respectively. From the physical
principles in Section 1.1, we find it natural to use
Speed3, but we wanted to investigate alternatives.
However, as we see in Figure 2, the effect of using a
different exponent should not be large for this dataset.

3.2. Bayesian inference

We follow a Bayesian approach to inference for the
models we propose. We denote the prior model
p(y, h), giving a joint distribution for the predictor η
and the response y. This prior model is built as
p(y|h)p(h), where the first term is referred to as the
(observation) likelihood, and the second as the prior.
The prior of η is defined through the prior for all the
components of η as described above. The posterior is

p(h|y) = p(y, h)
p(y)

.

After training the model on a set of data, the model can
predict new observations by integrating over the
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parameters inferred by the old data

p(ynew|yold) =
∫
h

p(ynew|h)p(h|yold)dh.

To interpret the model, we compute the posterior esti-
mate and uncertainty for the individual model com-
ponents that make up η.

We present one main model and several other
candidate models. It is impossible to find the ‘one
true model’, as no model is a perfect representation
of reality. What we want is a good representation
of reality that is useful for answering questions and
provides reasonable uncertainty estimates. We
approach this in three ways. The first is to build
the model structure in line with a physical under-
standing of the process. The second is to study the
quality of out-of-sample predictions, in Section 4.1.
The third is to study whether the statistical assump-
tions are appropriate, e.g. whether the residuals are
independent.

For computational inference, we use the R pack-
age INLA (Rue et al. 2009, 2017), short for Inte-
grated Nested Laplace Approximations. The INLA
algorithm is based on quadratic approximations
of the likelihood function and sparse matrix rep-
resentations of Gaussian Markov random
fields (GMRFs) (Rue and Held 2005). These models
can also be extended to spatial models within
the same framework (Bakka et al. 2018; Krainski
et al. 2018).

3.3. Subsampling to correct bias and variance

When we use a Gaussian likelihood,

p(y|h) = p(e) = Pn
i N (0, s2

e)(ei),

= − n
2
log (2p)+ exp − 1

2s2
e

∑n
i

e2i

( )

or, equivalently, a quadratic loss function, where the
loss L is the negative log-likelihood

L(y) = 1
2s2

e

∑n
i

(yi − hi)
2 = 1

2s2
e

∑n
i

e2i ,

we assume that the eis are independent of each other.
Initial model exploration (with BGAM and RF)
showed that ε has a strong autocorrelation in time.
Informally, this autocorrelation hints that we are reus-
ing the data, as adjacent observations contain overlap-
ping information about the system we are modelling.
As an extreme example, consider measuring the ship
variables for only a single day, but every millisecond,
producing a large dataset. Such a dataset would not
be informative of fouling as the data would be mostly
redundant. Ignoring this problem could cause the
models to have a local bias, where different obser-
vation frequencies, e.g. due to missing data, imply
different levels of informativeness on different days.
Worse, however, is that all uncertainty estimates
would be rendered useless. Inference on repeated
data gives results which are overconfident about
their own certainty. Fitting models to the full dataset

Figure 2. Polynomials x, x2, x3 evaluated at ship speeds in our dataset and rescaled to be similar. The red line is x, the black line is
x2, and the blue line is x3.
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gave very small uncertainty estimates which were
clearly wildly inaccurate.

To reduce or eliminate this correlation, we sub-
sampled the data. First, denote by subset 1 the full,
processed data set. Then subset 2 is this data sub-
sampled to every hour, subset 3 to every 4 hours,
and subset 4 to every 24 hours (daily). Later we present
results for the different levels of subsampling. Even
with subset 4, there were missing data.

3.4. Size decomposition of additive models

Consider the model in Equation (7) as a sum of vec-
tors, we can then take the length, or norm, of each
of the vectors, and consider whether they sum up

‖y‖? = ‖Xb‖ + ‖frw2(Speed)‖
+ ‖f2(Wave dir)‖ + ‖Speed3h(t∗)‖
+ ‖e‖.10 (10)

If we take ‖ − ‖ to be the Euclidean norm, after cen-

tring the vectors, i.e. ‖y‖ =
��������������∑

i (yi − y)2
√

, and

assume that all the vectors are parallel, i.e. correlation
1, then the equation holds. This ‖ − ‖ is the empirical
standard deviation (StDev), and leads us to decompose
the standard deviation of y in terms of standard devi-
ations of the model components. Because the corre-
lation is not 1, the sum of the standard deviations
will not equal the standard deviation of y. However,
presenting the numbers gives us an understanding of
the relative sizes. Alternatively, if we take ‖ − ‖ to be
the Euclidean norm squared, i.e. ‖y‖ = ∑

i (yi − y)2,
and assume that all the vectors are orthogonal, i.e.
uncorrelated, then this equation is the Pythagorean
theorem. This ‖ − ‖ is the empirical variance (Var),
and leads us to decompose the variance of y in terms
of variances of the model components. Because the
variables are not independent, the sum of the
variances will not equal the variance of y. However,
presenting the numbers again gives us an understand-
ing of the relative sizes.

3.5. Cross validation for out of sample
performance

We use out of sample predictions to study the per-
formance of the models. We name the scheme CVC,
for cross validation of cleaning intervals. Here, for
each cleaning interval, we fit the model to all the
data except for the last 1/3 of observations in that
cleaning interval. Because we have 6 cleaning intervals,
we get 6 training-test combination sets.

To summarize the predictive quality we use the
mean squared error (MSE)����������������������������

1
nk

∑nk
i

yi,predicted − yi,true
( )2√

,

and mean absolute error MAE

1
nk

∑nk
i

yi,predicted − yi,true
∣∣ ∣∣,

where we for each of the k test sets sum over
i [ [1, 2, . . . , nk], nk being the number of obser-
vations in that test set. To summarize the calibration
of prediction uncertainty we present the coverage of
90% prediction intervals.

4. Results and discussion

In this section, we compare the different candidate
models, we select the main model, and then we detail
the results of the main model.

4.1. Model comparison and selection

We give an overview of all the models’ out-of-sample
predictive quality in Table 2, with the assessment
described in Section 3.5. The first row of the table con-
tains the model we will give detailed results on. We
also report the measure of the single worst fold in par-
enthesis. Because we are mainly interested in robust
estimation of the fouling effect, the worst performance
across the folds is as interesting as the mean perform-
ance. If this were a prediction problem, and we knew
that our predictive scheme and our predictive RMSE
summary matched exactly the goal of the model, we
would have picked the model with the lowest RMSE.
However, in this application, we want to estimate
the hidden fouling effect, thus we want a model with
good overall behaviour.

In Table 2, the four first lines are with the same
model, but with different subsets (see Section 3.3).
The less subsetting, the higher the mean RMSE and
MAE for prediction accuracy. This is expected due
to using more data for prediction. However, the
worst-case RMSE is the best for BGAM-main on sub-
set 3. For the smaller subsets, both the 90% coverage is
better (larger), and the autocorrelation of the residuals

Table 2. Out-of-sample model comparison, mean across
training-test folds. CVC is defined in Section 3.5. The ‘90%’
refers to the coverage of 90% prediction intervals.
Subset Model CVC RMSE CVC MAE CVC 90% Core

3 BGAM-main 1.16 (1.3) 0.86 (0.98) 0.830 (0.80) 0.52
1 BGAM-main 1.12 (1.4) 0.83 (0.90) 0.820 (0.79) 0.77
2 BGAM-main 1.13 (1.4) 0.84 (0.90) 0.826 (0.80) 0.68
4 BGAM-main 1.24 (1.4) 0.96 (1.1) 0.847 (0.79) 0.22
3 BGAM-V1 1.13 (1.3) 0.86 (0.99) 0.842 (0.81) 0.53
3 BGAM-V2 1.16 (1.3) 0.87 (0.99) 0.832 (0.79) 0.52
3 BGAM-T 1.17 (1.4) 0.87 (1.1) 0.818 (0.73) 0.52
** BGAM-main 1.09 (1.3) 0.80 (0.94) 0.839 (0.77) 0.47

In parenthesis, we show the highest value across the training-test folds for
RMSE and MAE, and the lowest for coverage. The ∗∗ subset puts stricter
limits on covariate values for both training and test, and then subsets to
one observation every 4 h, hence the numbers cannot be fairly com-
pared to the above.
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is better (smaller). We chose subset 3 as a good trade-
off between predictive accuracy, reasonable coverage
and low residual autocorrelation. However, we find
subset 4 to also be a reasonable choice, due to the
residual autocorrelation being substantially lower.

Lines 5 and 6 in Table 2 represent the models with
different exponents for the Speed multiplier in the
fouling component. We observe that using a smaller
exponent (1 or 2) gives better predictive performance
and coverage. However, the improvement is minimal,
so due to the physical arguments in Section 1.1, we did
not select one of these models.

BGAM-T is clearly worse than the main model,
which is the reason why we used t∗ (time at rest) in
this paper. Our experimentation showed that t∗ was
superior to using clock time across a wide range of
models.

The last row of Table 2 uses a different approach to
subsetting, where more of the data was removed for
being ‘extreme’ before the data was subsampled.
Here, Ship Speed > 7 knots, Linear Acceleration < 1,
Turning Acceleration < 2.5, Scaled Wind Speed < 1.9
and Scaled Wave Height < 1.9. A scaled variable has
the mean removed and is divided by the standard
deviation. After this, the observations were subsetted
to every 4 hours (similarly to subset 3). We note that
the performance is improved across all criteria. How-
ever, the results from this row are not directly compar-
able with the other rows, due to the test set being
substantially different; informally, this is an easier pre-
diction task.

4.2. Results from the selected Bayesian
generalized additive model

We present the results from the main model (BGAM-
main) fitted to subset 3. We present the posterior esti-
mates of the various model components and the var-
iance decomposition in Table 3. The variance
decomposition is used to understand how much
each model component contributes to the model,
and to compare effect sizes, as introduced in Section
3.4. The row named Sum is the sum of the above var-
iances (similar for Stdev). If the model components
were independent, the sum of variances should equal
the variance of the predictor, which they do not,
hence they are not independent. If the model com-
ponents were completely dependent, the sum of
Stdev should equal the Stdev of the predictor, which
they do not, hence they are not completely dependent.
The predictor variance and the residual variance do
sum to the total Shaft Power variance, meaning that
the predictor and the residuals are (approximately)
independent.

Care must be taken when interpreting the size of
the model components according to the variance
decomposition. As an example, take the residuals.

With a variance contribution of 4.1%, one could intui-
tively say that the model explains 95.9% of the data
variability and that 4.1% is not explained by the
model. However, by looking at the Stdev decompo-
sition we see that the variability of the residuals is
roughly 1/5 of the variability of the Shaft Power,
which does not agree with only 4.1% residual vari-
ation. When comparing sizes, it is important to have
the right measurement unit, which in this case is
MW, and not MW2 as it would be for the variance.

From the variance decomposition we conclude that
the Speed covariate is by far the most important pre-
dictor of Shaft Power, which comes as no surprise.
The only other component more important than Foul-
ing is the Wind Speed. Fouling is more important than
any other covariate, even more important than the
Draft. Using the Stdev decomposition, we see that
the Fouling effect represents roughly 15% of the total
variation of the raw data, measured in MW.

For the linear effects, we see that they are all statisti-
cally significant at the level of 95% credible intervals.
From the posterior estimates of the linear effects, we
see that increased acceleration, Trim, Wind Speed
and Wave Height all lead to increased shaft power
use, which is sensible. A larger Draft Trim leads to
slightly less shaft power use. This is a questionable
relationship, and cannot be true for extreme values
of the Draft Trim variable. The Draft Trim effect
could be related to other operational conditions that
are strongly correlated with Draft Trim. However,
the effect is small, approximately 1% of the data varia-
bility. A larger wave period results in slightly less shaft
power use, but again the effect is very small.

Figure 3 shows the estimated effect of ship speed.
This effect is adjusted for weather, draft, fouling, and
other effects. In reality, this should be a strictly
increasing function, with an increasing derivative,
which is close to true for this graph. However, there
are some discrepancies between the theory and this
graph, especially near the endpoints. This can be due
to unmeasured effects or biases at low and high speeds,
and the estimate is not trustworthy at these extreme
values. In the statistical model, an unmeasured effect
at low speed can be accounted for by this model com-
ponent. This is in contrast to models with strong phys-
ical constraints, where such unmeasured effects are
carried into the estimation of fouling instead. From
the figure, we see that the uncertainty is large at the
endpoints. This implies that there is not enough data
in these regions to support a good estimate. However,
it also implies that the estimate in these regions will
not greatly influence the model.

Figure 4 shows the estimated fouling effect. This
effect is more complicated to interpret than other
effects as it depends on both speed and fouling. To
make interpretation easier, we infer the fouling effect
at 12 knots and show this in Figure 5. This figure
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shows what the fouling effect would have been,
according to our model, had the ship been going at
12 knots. The estimates are linear in t∗, which is the
time the ship was at rest. The slopes of the fouling
trends are different in the different time intervals.
This could be due to operational conditions causing
either faster biological growth or a larger impact of
the fouling under some operational conditions. The
general trend is that the biofouling effect worsens
over time, is reduced by cleaning, but never resets to
the low effect of a new ship. The most important
source of efficiency loss is the gradual loss, i.e. that
the ship never returns to its initial biofouling effect.
This gradual worsening might be partly due to other
factors than biofouling. If there are other age-related
inefficiencies, e.g. small damages to the hull, or ineffi-
ciencies in the propeller, these will be included in our

global biofouling effect. If a cleaning event completely
restores the hull to the conditions of a new ship, the
biofouling effect in our plots still may not revert to
zero after the cleaning, due to these other inefficien-
cies. The red points in Figure 5 shows the residuals
added to the estimated effect. These illustrate the
variability from which the estimates and uncertainty
are computed. Note that the blue lines are not predic-
tion intervals, and so the red points are not supposed
to be comprised by the blue lines.

Figure 6 illustrates how the fouling effect varies
with different ship speeds. Each piecewise function
represents one speed scenario, the lowest speed gives
the smallest fouling effect, and the highest speed
gives the largest fouling effect. This model implies
that the fouling effect becomes extremely problematic
at very high speeds.

Table 3. Table of variance (and Stdev) decomposition, in percentage of Shaft Power variance (or Stdev), for BGAM-main on subset
3, together with standard deviations measured in MW, as detailed in Section 3.4.
Model component Var Stdev Description

Speed_knot 56.9% 75.4% (3.35 MW) Spline, increasing super-linear
Fouling 2.2% 14.9% (0.66 MW) PWS
Accel1_knp15m <0.1% 1.2% (0.05 MW) Linear, b = 0.235 (0.144, 0.327)
Accel2_knp15m <0.1% 0.8% (0.03 MW) Linear, b = 0.059 (0.020, 0.099)
Draft_trim_m <0.1% 1.1% (0.05 MW) Linear, b = −0.090 (− 0.150, − 0.030)
Draft_mean_m 0.8% 8.8% (0.39 MW) Linear, b = 0.282 (0.257, 0.306)
Wind_speed_knot 2.2% 14.8% (0.66 MW) Linear, b = 0.054 (0.052, 0.056)
Tz_s <0.1% 1.6% (0.07 MW) Linear, b = −0.045 (− 0.066, − 0.023)
Hs_m 0.5% 7.3% (0.32 MW) Linear, b = 0.382 (0.341, 0.424)
Wave_dir <0.1% 1.2% (0.05 MW) Sinusoid, max at 184 degrees
Sum 62.7% 127.0% (5.70 MW) Sum of above percentages
Predictor 95.9% 97.9% (4.35 MW) Model structure
Residuals 4.1% 20.2% (0.90 MW) Model noise
Shaft_power_MW 100% 100% (4.44 MW) Observations

The last column gives parameter estimates and 95% credible intervals for linear effects, otherwise a description.

Figure 3. Estimated Shaft Power as a function of ship speed, with residuals added in red, from the model BGAM-main on subset 4.
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We considered presenting the model applied to
subset 4, instead of subset 3. Therefore, we show the
inferred fouling effect in that model in Figure 7. The
general trends of the fouling effect are very similar
to those of subset 3, but the uncertainty is significantly

larger. Additionally, our results for the fouling effect
from the other models in Table 2 were qualitatively
similar to the effects presented in Figures 5 and 7,
hence the estimation of the fouling effect is very
robust.

Figure 4. Estimated fouling effect in black, from the model BGAM-main on the subset 4 data. Uncertainty is not shown. The esti-
mated fouling effect includes the term Speed3; hence, it varies quickly in time because the ship speed varies quickly in time. The
vertical lines show the six cleaning events.

Figure 5. Estimated fouling in black at a constant 12 knots speed, from the model BGAM-main on the subset 3 data. The back lines
are linear in t∗ but not linear in time. Uncertainty is shown as blue lines. The red points show the residuals ei added to the esti-
mates (black lines). The vertical lines show the six cleaning events.
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5. Conclusion

In this paper, we presented a Bayesian Generalised
Additive model (BGAM) for modelling shaftpower
as a sum of model components and for obtaining a
robust estimate of the fouling effect.

The BGAM presented here is a good tool for
decomposing shaft power into model components in
roder to describe how shaft power increases or
decreases as a result of the speed, operational con-
ditions and weather conditions. We have shown how

Figure 6. Estimated fouling at constant speeds, assuming the same conditions as in the dataset. The five curves are with speed 10
knots (lowest black), 12 knots (lowest green), 14 knots (middle black), 16 knots (highest green), and 18 knots (highest black). The
results are from the model BGAM-main on the subset 3 data.

Figure 7. Estimated fouling in black at a constant 12 knots speed, from the model BGAM-main on the subset 4 data. Uncertainty is
shown as blue lines, and residuals as red points.
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to deal with too few or too many samples on any given
day by fitting the model jointly to a subsampled data-
set with missing values.

The BGAM is a good tool for estimating the fouling
effect. We get robust and statistically significant esti-
mates of the fouling effect, together with reasonable
uncertainty bands. There is an obvious positive short-
term effect of every cleaning, and the cleaning is more
impactful when the fouling is larger (see Figure 5).
After each cleaning, we get a visualization of how fast
the fouling effect returns, and we observe a gradual
worsening throughout the lifetime of the ship.

The BGAM can be a useful tool for decision makers
as an input to cost/benefit analysis of cleaning. For any
ship where similar data are collected, a figure similar
to our Figure 5 can be produced and used to argue
for less or more cleanings. Such an analysis can also
be used to retrospectively study the effect of different
types of cleaning on the overall fouling trend. The
practice of reducing speed when there is a lot of foul-
ing can be quantified for improved decision making
on the choice of speed. More efficient strategies for
dealing with fouling will give both economic and
environmental benefits. These models can also
increase the understanding of the environmental
impacts of fouling through increased energy demand.

There is more work that can be done to improve the
BGAM. We have presented a model of limited com-
plexity on data which we believe are attainable for a
large range of ships. In situations with less noisy or lar-
ger datasets, one should consider more covariates,
more complex interactions between covariates, and
also, other functional forms for h(t). For example,
sea and air temperature may be included. Addition-
ally, all the covariates measured here have some level
of measurement uncertainty. If one can quantify it,
it is possible to extend the model to incorporate
measurement uncertainty, through the use of multiple
likelihoods. We can gain a deeper understanding of
the fouling and biological growth by measuring the
amount/type of biological material before and after
each cleaning. Then we could combine the results
from BGAMs on several ships to understand how
fast the biomass grows on the hull and propeller,
and again combine this with AIS and weather data
to understand under which conditions the biomass
grows faster and slower.
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Appendix. Random forest model

We tried different lengths of training periods for the model,
from the first half year of data to the first whole year of data.
We must assume that the fouling is small in this period. It is
possible to include data from periods after the ship has been
cleaned. However, from the results with the BGAM model,
we see that after cleaning, the ship never returns close to its
initial state. We have tested a number of combinations of
variables to include in the model. The results for the differ-
ent variable combinations were quite similar, but changing
the training period slightly altered the results. The reason
for this is probably that the conditions experienced by the
ship have changed after the training period. Figure 1
shows weekly mean of Ship Speed, which is the most impor-
tant variable in the model. We see that the speed is overall
much lower in the training period than in the succeeding
period. Hence, the final results for the estimated fouling
effect are quite unstable and not reliable. This illustrates
the importance of having representative training data
when using machine learning methods on complicated
datasets.
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