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Abstract—Multifrequency echosounder data can provide a
broad understanding of the underwater environment in a non-
invasive manner. The analysis of echosounder data is, hence, a
topic of great importance for the marine ecosystem. Semantic
segmentation, a deep learning-based analysis method predicting
the class attribute of each acoustic intensity, has recently been in
the spotlight of the fisheries and aquatic industry since its result can
be used to estimate the abundance of marine organisms. However, a
fundamental problem with current methods is the massive reliance
on the availability of large amounts of annotated training data,
which can only be acquired through expensive handcrafted anno-
tation processes, making such approaches unrealistic in practice.
As a solution to this challenge, we propose a novel approach, where
we leverage a small amount of annotated data (supervised deep
learning) and a large amount of readily available unannotated data
(unsupervised learning), yielding a new data-efficient and accu-
rate semisupervised semantic segmentation method, all embodied
into a single end-to-end trainable convolutional neural network
architecture. Our method is evaluated on representative data from
a sandeel survey in the North Sea conducted by the Norwegian
Institute of Marine Research. The rigorous experiments validate
that our method achieves comparable results utilizing only 40% of
the annotated data on which the supervised method is trained, by
leveraging unannotated data.

Index Terms—Acoustic target classification, convolutional
neural networks, deep clustering, deep learning, marine acoustics,
multifrequency echosounder data, semisupervised semantic
segmentation.

I. INTRODUCTION

S EMANTIC segmentation is one of the fundamental com-
puter vision tasks, where the aim is to assign each
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image pixel to a semantic class [1], [2], [3]. When analyzing
echosounder data, the aim is to assign an observed acoustic
backscattering intensity to one of several given acoustic classes,
often referred to as acoustic target classification [4], [5], [6], [7].
In practice, semantic segmentation of the echosounder data is
still a manual and heuristic process, which is rather vulnerable
to human error and bias. It is also expensive in terms of cost and
time [8].

There are a few studies that intend to automate the semantic
segmentation based on statistical modeling and machine learn-
ing techniques [9], [10], [11], [12], [13]. However, they are
exposed to limitations such as relying heavily on handcrafted
feature selection and not being able to scale well to large amounts
of data. As recent echosounder technology leverages increasing
numbers of frequency channels and wider bandwidth [14], au-
tomated analysis methods should therefore be scalable to cope
with increased resolution and multifrequency data.

Convolutional neural networks (CNN) is a framework
renowned for excelling at image segmentation tasks [15]. Re-
cent echosounder segmentation studies introduce CNN-based
segmentation methods as alternative strategies [5], [16], [17],
[18], [19], where the main advantage is the capacity to learn
discriminating features from the training data without requiring a
handcrafted process, allowing the analysis to scale to large-sized
data. Note that these methods are trained in a fully supervised
manner, indicating that the network learns from fully annotated
training data. The fully supervised approaches achieve good
performance provided that high-quality training data and an ap-
propriate choice for the prediction model are assured. However,
it is highly challenging for the echosounder data to obtain the
class annotation for each backscattering intensity pixel because
this relies on the manual annotation process, which is expensive
and error-prone.

Hence, a new learning scheme is required to considerably
reduce the dependence on the manual annotation process while
still facilitating powerful deep-learning approaches for the seg-
mentation of the echosounder data. As a key step in this
direction, we propose a novel deep semisupervised semantic
segmentation method that efficiently uses a small amount of
manually annotated data by combining it with a large amount of
readily available unannotated data in the learning process [20],
[21], [22].

The key concept invoked to train the semisupervised segmen-
tation network is to alternate between two objective functions,
namely, an unsupervised clustering objective and a supervised
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segmentation objective, encapsulated by a single CNN. The
unsupervised clustering objective is to search the underlying
structure within the training data without using the class anno-
tation. In contrast, the supervised segmentation objective is to
map the input echosounder data to the given classes presented
in the available annotated data. These two objective functions
alternatively optimize the single CNN and gradually integrate
the underlying clustering structure to the class decision bound-
aries presented in the small amount of annotated training data.
Our proposed method can create pixel-level prediction maps
using the same CNN architecture as [5] and [23]. Still, it is
data-efficient because it can significantly reduce the use of the
annotated data. To the best of our knowledge, our work is the
first semisupervised semantic segmentation method for multi-
frequency echosounder data that provides prediction maps on
a pixel scale, advancing the existing semisupervised method of
providing patch-scale prediction maps (see Section III-C) [22].
In addition, our proposed method is end-to-end trainable, which
refers to a holistic gradient-based learning system where a
formulated objective function reflects the principle of a given
task without requiring extensive human intervention and prior
knowledge [24].

Extensive and rigorous experiments are conducted on the
multifrequency echosounder data collected at the North Sea
by the Norwegian Institute of Marine Research. A severe class
imbalance in the echosounder data is an ever-present source of
bias that prevents training of the neural networks, where 99%
of the entire acoustic backscattering intensities is occupied by
the background class [5], [25]. We introduce a class-rebalancing
weight to each learning objective to mitigate the bias, where the
weight is calculated with respect to the model prediction without
relying on the annotation.

The contributions of the article are the following.
1) To propose a novel deep semisupervised semantic segmen-

tation method for the multifrequency echosounder data,
which considerably advances the existing methods.

2) To achieve comparable results with the fully supervised
segmentation method by leveraging a small amount of the
annotated data in addition to unannotated data.

3) To exploit the underlying structure of the training data
using unsupervised deep clustering in a semisupervised
learning manner.

4) To demonstrate the innovation potential of the proposed
method in a real-world test case.

5) To regulate the class imbalance based on the model pre-
diction without leveraging the annotated part of data.

6) To operate in an end-to-end and mini-batch training
scheme.

II. BACKGROUND

Semantic segmentation is the process of partitioning an image
into mutually exclusive subsets by assigning a class annotation
to each intensity of the data, in which each subset represents a
meaningful region of the original image [26]. It thereby provides
a comprehensive scene description that includes object class,
location, and shape. A wide range of real-world problems require

semantic segmentation [27], [28], [29], [30], [31], [32], such
as self-driving vehicles [33], and polyp detection [34], [35], to
name a few, all depending on different types of image data.

Semantic segmentation has been considered as a challenging
computer vision task due to the large distribution variance as
well as the huge class imbalance among objects in the input
data [25]. In recent years, however, deep learning has been
rapidly advancing and has become a game-changer in many
image analysis tasks including semantic segmentation. The
CNN [36] is a deep learning framework that has had particular
success for grid-structured data such as images. Traditional
CNNs consist of convolutional layers and pooling layers, where
these layers are stacked in a deep and hierarchical architecture
in a particular order, providing unique properties to the analysis.
For example, the weight-sharing property of the convolutional
filters provides a symmetric transformation between the input
space and the output space, referred to as “equivariance to
translation.” The pooling layers help the learned representation
becoming approximately invariant to small translations of the
input [15], [37]. Another advantage of the CNN is a relatively
more straightforward learning process than the conventional
methods, where the CNN-based models learn by minimizing
a formulated objective function that reflects the strategies of a
given task without requiring extensive human intervention and
prior knowledge, referred to as an end-to-end learning.

CNN-based segmentation models are distinguishable through
their model architecture. Their architecture consists of a down-
stream module that extracts the abstracted feature representa-
tions of the input data and an upstream module that recon-
structs the prediction map exhibiting the class attributes of
each intensity in the input data based on these extracted feature
representations. Thanks to the dual architecture, those models
can make class predictions on arbitrary-sized inputs [38]. Fully
convolutional networks [1] and U-Net [23] are representative
architectures, where the models are composed of (transposed)
convolutional layers and pooling layers, and end-to-end train-
able depending on their formulation of the objective functions.

A. Echosounder Data

For the sustainable management of commercially harvested
marine organisms, reliable information on their abundance is
essential. For example, lesser sandeel, a species of fish of interest
in this study, is the primary food source in the North Sea food web
thanks to its ample population [39], which are the preferred prey
of a variety of predators, including marine mammals, seabirds,
and piscivorous fishes [40]. Therefore, monitoring sandeel stock
is critical for the sustainability of the marine ecosystem and
fishery management in the North Sea. The echosounder data
can contribute to estimating the abundance, leveraging the char-
acteristics of the backscattered responses and knowledge of the
target species [8]. The multifrequency echosounder data that we
use in this study has been collected by multifrequency Simrad
EK60 echosounder systems operating at four different frequency
channels on the vessel (18, 38, 120, 200 kHz), where the vessel
speed is approximately ten knots. The Norwegian Institute of
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Marine Research has collected the data through the annual trawl
surveys in the sandeel areas in the North Sea [41].

We leverage the data preprocessing protocol from the earlier
works [5], [22], for which we share the echosounder data.
For each frequency channel, a volume backscattering coeffi-
cient sv, an average amount of backscattering intensity per
cubic metre [42], is stored in the 2-D echosounder data. In the
physical context, the horizontal and vertical lengths of a sin-
gle backscattering coefficient are, respectively, one second and
19.2 cm based on the pulse duration of 1.024 ms with respect to a
common time-range grid based on the resolution of the 200 kHz
echosounder data. All the volume backscattering coefficients
sv are first converted to a decibel unit (dB re 1 m-1). We set
the minimum value as −75 dB re 1 m-1. The coefficients less
than −75 dB re 1 m-1 or missing coefficients are imputed to the
minimum values.

For segmentation of the echousounder data, one common
approach is a manual annotation method, which relies on the
operators’ domain expertise of the acoustic properties, such as
relative frequency response [43], [44], echo traces [45], and
trawl sampling [46]. For that reason, the manual process is
vulnerable to bias from the operators. In extreme cases, the
systematic error associated with the manual method can be as
high as ± 80% [8]. Hence, more structured and automated ap-
proaches are required to apply consistent criteria to the analysis
while reducing dependence on human intervention. To this end,
postprocessing systems, including the large scale survey system
(LSSS) [9], are developed to facilitate the manual process. The
systems support thresholding, error-checking, noise removal,
and manipulation of the echosounder data. By adjusting the
threshold of backscattered intensities, the postprocessing sys-
tems visualize the corresponding morphology of the fish schools
to enable the operators to detect and delineate the most plausible
morphology. In addition, these postprocessing systems enable
relatively consistent criteria for the analysis by leveraging their
acoustic feature libraries. The library consists of a selected part
of the backscattered responses and their manually annotated
class attributes. By comparing the statistical properties of the
collected data to the feature library, the postprocessing system
predicts the class attribute of the fish school, where the prediction
is verified by the scattering model for the corresponding marine
organism if available [47], [48].

The sandeel data in this study are manually annotated with
the aid of LSSS, where expert operators determine the class
of each backscattering coefficient as sandeel (SE), other fish
species (OT), or background (BG) class. The primary frequency
for LSSS is chosen to 200 kHz considering the highest sandeel
signal-to-noise ratio [49]. The operators alter the detection
threshold centered at −63 dB at the primary frequency to
discover the fish school boundaries visually. The delineated
boundary is refined using binary morphological closing to have
smoother and pragmatic edges [5]. However, the final decision
for both morphology and species is still a manual process, which
is time-consuming and requires tacit knowledge that can be
potentially biased as with any expert system.

Therefore, recent studies have focused on the automated iden-
tification of the fish species using machine-learning methods

while leveraging the conventional detection algorithm to detect
and delineate the morphology of the schools. Shoal analysis and
patch estimation system (SHAPES) [50], [51] is often chosen
for the fish school detection algorithm, which extracts a feature
vector from each fish school leveraging a single frequency
channel of 38 kHz. A random forest-based classifier [12] is
introduced to classify feature vectors of silver cyprinid from
the other species in Lake Victoria. Aronica et al. [52] propose a
classifier leveraging a shallow feedforward network and classify
the pelagic Mediterranean fish schools such as anchovy, sardine,
and horse mackerel. Those studies show that the automated
identification can save time and cost while also achieving robust
performance. However, they have limitations in generalizability
and scalability because the SHAPES algorithm only exploits a
single channel of the echosounder data, and a handcrafted feature
selection is required to improve the performance.

Deep learning-based models generalize and scale well on
various types of data using their flexibility [15], [37]. Among
them, the fully supervised deep learning approaches, approaches
that learn from the fully annotated training data, achieve a good
level of performance provided a high quality of the training data
and an appropriate choice of the prediction model are assured.
To take advantage of supervised deep learning in the analysis of
echosounder data, CNN-based semantic segmentation model [5]
is introduced to segment the schools of lesser sandeel from the
other species leveraging the U-Net architecture [23]. Without
relying on the deterministic school detection algorithms and the
feature vectors as input, the model constructs the prediction map
directly from the input echosounder data.

B. Deep Clustering

We here discuss deep clustering since our novel CNN-
based semisupervised semantic segmentation for echosounder
data, presented in Section III, relies heavily on this concept.
Deep clustering refers to unsupervised deep learning-based ap-
proaches, that aim to cluster data into underlying groups without
requiring the class attributes of the data [53]. Deep clustering
leverages the representation power of the neural network in
conjunction with clustering algorithms, and partitions the input
data into clusters with respect to the learned representation. As
clustering performance heavily depends on the underlying struc-
ture of the data, deep clustering leverages the neural network to
encode the training images in the feature representations where
the clustering task becomes much easier [54].

Our proposed method is inspired by a well-known deep clus-
tering framework, referred to as DeepCluster [53], which ex-
plicitly models the density of datapoints leveraging the k-means
clustering algorithm. For a given image data set, the k-means
algorithm partitions the feature representation into K different
densities, where each density refers to an image descriptor or a
visual feature. This has the advantage that it is easy to increase
the capacity of more visual features by simply increasing the
number of clusters K, leading to all-purpose visual features.
The neural network produces cluster indices that can be thought
of as clustering-induced annotations for the training data. The
network is then updated in a supervised manner to learn the
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Fig. 1. Overview of the proposed method. Each backscattering intensity in
the input is mapped into an arbitrary space shown in (a). The point in gray
is unannotated while the point in color (red, green, or blue) indicates the
annotated one with respect to the class. (b) Clustering structure incorporated
by the unsupervised clustering objective without leveraging the annotation.
The clustering structure becomes the pseudolabel to train the model in an
unsupervised manner. (c) indicates that the annotated data (ground-truth where
available) and the supervised segmentation objective optimize the CNN in a
supervised manner. (d) indicates that the iteration of (b) and (c) constructs the
decision boundary with respect to given classes, where the unannotated points
take their place inside the boundary according to their own clusters.

clustering structure. This annotation technique is referred to as
pseudolabeling, allowing the supervised deep learning approach
to be applied to unannotated training data [55].

III. PROPOSED METHOD

In this article, we propose a novel semisupervised semantic
segmentation method, PredKlus, that enables a CNN to simul-
taneously learn from large amounts of unannotated data and a
few annotated data, all in the same network.

The major novelty of our work is the methodology of how the
network learns in a semisupervised manner, illustrated in Fig. 1.
Our proposed segmentation network operates for two different
goals: 1) searching for the internal structure of the training
data without relying on external information, e.g., ground truth;
2) mapping input echosounder data to given classes. The former
goal can be achieved by an unsupervised clustering objective,
which clusters every pixels in the input based on their features to
reveal a clustering structure of the input data in an unsupervised
manner. Fig. 1(b) illustrates the clustering structure. A super-
vised segmentation objective, on the other hand, aims to map the
input to given classes by leveraging the annotated part of training
data, albeit in a small amount. Fig. 1(c) illustrates this. As these
two objective functions alternately optimize the network using
gradient descent, the segmentation network gradually learns
the class decision boundaries (supervised) with respect to the
clustering structure (unsupervised), as illustrated in Fig. 1(d). We
implement the entire learning process in an end-to-end manner
and a mini-batch setting, which are additional novelties of our
method.

A. Model Architecture

Fig. 2 describes the model architecture of our proposed
method. The encoder–decoder architecture with the skip con-
nections is inspired by U-Net [23] and the recent segmentation

study of the echosounder data [5]. The encoder part extracts
the abstracted feature map of the echosounder input with a
shape of 256 × 256 × 4 over five stages, where the area of
the feature map is reduced to one-fourth at each stage due
to a 2 × 2 max-pooling layer. By processing two sets of a
3 × 3 convolutional layer, a batch-normalization layer [56], and
a rectified linear unit (ReLU) [57] at each stage, we abstract
the feature map by doubling the depth. The encoder eventually
creates five feature maps of different area sizes and depths, where
the shape of the last feature map is 16 × 16 × 1024.

The decoder part reconstructs the prediction map leveraging
five feature maps from the encoder. At each stage, a 2 × 2
transposed convolutional layer and the concatenation of the
feature maps along the depth axis play an important role. The
2 × 2 transposed convolutional layer increases the area of the
feature map fourfold while halving the depth. The halved feature
map is concatenated with the feature map in the same shape from
the encoder. The concatenated feature map is processed by two
sets of a 3 × 3 convolutional layer, a batch-normalization layer,
and an ReLU, where the depth becomes halved.

The novelty in our architecture is to introduce a convolutional
layer for each objective function at the end of the CNN to employ
two objective functions in one network. The alternation of the
two objective functions takes place at the end of the decoder,
where the decoder reconstructs the feature map with a shape of
256× 256× 64. To alternately leverage two objective functions,
we append a 1 ×1 convolutional layer at the end of the network
for each objective function, namely, conv1 for the unsupervised
clustering objective and conv2 for the supervised segmentation
objective. Note that the number of filters in conv1 matches the
number of clusters or pseudoclasses K. Similarly, the number
of filters in conv2 is equal to the number of classes C.

B. Two Objective Functions

Our proposed method leverages two objective functions,
where those objectives alternately optimize the model. Through
the alternating optimization, the CNN indirectly incorporates
the class annotations (supervised) to a structured representation
(unsupervised) and eventually discovers a structured representa-
tion consistent with the available annotations. The yellow box in
the middle of Fig. 2 shows the overview of our semisupervised
segmentation method. The first two steps of the figure, i.e.,
Fig. 2(a) creating pseudolabels using k-means, and Fig. 2(b)
updating the model to learn the clustering structure with the
pseudolabels using conv1, contribute to learning the struc-
tured representation in an unsupervised manner. The next step,
Fig. 2(c) training with the partially available annotation using
conv2, represents how the CNN learns in a supervised manner
using the supervised segmentation objective and the available
class annotations. Note that a cross-entropy loss (CE) is lever-
aged to update the model, as depicted in Fig. 2(b) and (c).

1) Unsupervised Clustering Objective: The unsupervised
clustering objective exploits the underlying structure of the data
using the unsupervised clustering algorithm, such as k-means, to
create pseudolabels with respect to the clustering structure [53].
Defining the number of clusters K beforehand, the proposed
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Fig. 2. Proposed model architecture. The application of the two objective functions takes place at the yellow box at the end of the decoder. The unsupervised
clustering objective involves in the first two steps. (a) Creating pseudolabel using k-means and (b) updating model to learn the clustering structure with the
pseudolabel using conv1. The supervised segmentation objective involves in (c) training with the partially available annotation using conv2. The rectangular bars
in blue or gray represent feature maps, where the size of each feature map is specified around it, e.g., 2562 or 162. We omit to specify the depth for a few feature
maps, as the depth is the same as the feature map on its right, e.g., 64 or 512.

model partitions the feature map Z =
{
z(i)

}N

i=1
located at the

end of the decoder into K clusters in a way to find the best
assignment by minimizing the k-means loss

Lkmns =
1

N

N∑

i=1

min
ck

d
(
z(i)PC , ck

)
. (1)

In this expression, N is the number of feature vectors in a
mini-batch of the feature map. If the batch size Bs is equal
to one, N becomes 65 536 as each feature map consists of
65 536 vectors (256× 256). The function d(·, ·)measures theL2

distance between two vectors, where ck ∈ R32 is the centroid
of cluster k, and z(i)PC ∈ R32 is the dimensionality-reduced
training set consisting of the feature vectors z(i) ∈ R64. For
dimensionality reduction, we use principal component analysis
(PCA) [58], which computes the principal components and use
only the first few principal components corresponding to the
largest eigenvalues for manageable computational complexity.

The clustering result creates the pseudolabels, having K dif-
ferent pseudoclass attributes according to the K cluster indices.
The CNN learns the structured representation from the pseudola-
bels using the cross-entropy loss. The unsupervised clustering
objective is depicted as

Lcls =
1

N

N∑

i=1

w(i)
cls,kCE

{
gθ(z

(i)), ŷ(i)
}

(2)

where CE(p, q) = −
∑

k qk log(pk) is the cross-entropy loss
of the probability distribution p for the one-hot encoded label q,
ŷ(i) ∈ {0, 1}K is the one-hot encoded pseudolabel, and gθ(z(i))
is a probability distribution of the output from the CNN, where
conv1 is appended at the end of the decoder. The scalar w(i)

cls,k
indicates the class-rebalancing weight to penalize the class
imbalance of the pseudolabels. How to obtain this scalar will

be explained in Section III-C. Once updating the CNN with
the unsupervised clustering objective, we assign the current
centroids of K clusters to the initial centroids for the next
clustering to provide consistency of the pseudolabels over the
mini-batches.

2) Supervised Segmentation Objective: To enforce consis-
tency of predictions with regard to the given classes, we train the
CNN using the partially available annotated data. The supervised
segmentation objective is involved here, where conv2 layer, an-
other 1× 1 convolutional layer, replaces the conv1 layer to allow
end-to-end training. The supervised segmentation objective is
depicted as

Lseg =
1

N

N∑

i=1

w(i)
seg,cCE

{
fθ(x

(i)),y(i)
}

(3)

where C represents the number of given classes, y(i) ∈ {0, 1}C
represents the one-hot encoded vector of the available annota-
tion. fθ(x(i)) a probability distribution of the output from the
CNN, where conv2 replaces conv1.

3) Training Procedure: In addition to end-to-end learning,
the proposed method operates in a mini-batch training manner,
indicating that the network is updated once after each objec-
tive processes information in each mini-batch [59]. We form
two training subsets for each objective function to facilitate
the alternating mini-batch training. The training subset for the
unsupervised clustering objective consists of the entire training
input data, whether annotated or not, and does not include any
class annotation of the data. On the other hand, the training
subset for the supervised segmentation objective includes the
annotated part of the training data, which takes a small amount of
the entire training data in the semisupervised learning scheme.
Algorithm 1 illustrates the semisupervised training procedure
with two training subsets.
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Algorithm 1: Training by Alternating Two Objectives.
Input:
X : training input data
XA ⊂ X : the annotated part of the training input data
YA: class annotation of XA

X: an unannotated mini-batch of X
(XA,YA): an annotated mini-batch of XA and YA

Output:
Z: feature map of the mini-batch X at the end of the
decoder
Ŷ: created pseudolabel of the mini-batch X
PA: class prediction of the mini-batch XA

Procedure:
for (X,XA,YA) ∈ (X , XA, YA) do

– Compute Z by processing X through the model
– Create pseudolabel Ŷ by clustering the principal
components of Z

– Compute wcls with respect to Ŷ
– Append conv1 at the end of the decoder
– Update the model end-to-end using (X, Ŷ) and the
unsupervised clustering objective in (2) with
gradient descent

– Replace conv1 by conv2
– Compute PA by processing XA through the model
– Compute wseg with respect to PA

– Update the model end-to-end using (XA, YA) and
the supervised segmentation objective in (3) with
gradient descent

end for

C. Advance on the Semisupervised Image Classification for
Echosounder Data [22]

The problem of being able to obtain manual annotations
is much more severe for semantic segmentation compared to
image classification, since in the former case annotations refer
to the pixel level and not the entire image. The semisupervised
method we propose in this article therefore solves a much more
challenging problem compared to our previous preliminary work
on semisupervised echosounder data patch classification [22],
which is only able to classify whole image patches and not do
proper segmentation. Some elements of the new segmentation
method resembles the previous classification method, however
with significant differences due to the completely different aims
of the two approaches. For the benefit of the reader, and since
we use [22] as one of the comparison models in experiments
(referred to as SemiClf, Section IV-D), we will elaborate on
these differences in this section.

SemiClf [22] is an image classification method, which is also
semisupervised by design, built around two alternating objective
functions. However, this semisupervised algorithm has some
critical drawbacks. The minimum patch size that the method can
classify is 32× 32 intensity pixels. This is far too coarse-grained
to provide information at a pixel level. Second, the training
procedure is inefficient. During training, the method samples the
patches to tackle the imbalance in the cluster size. The sampling

TABLE I
OVERVIEW OF THE ECHOSOUNDER DATA USED FOR TRAINING AND

TEST/VALIDATION

hinders mini-batch training, degenerating training efficiency. We
highlight benefits of our new semantic segmentation method
below.

1) Obtaining Fine-Grained Segmentation Maps: Semi-
Clf [22] classifies echosounder patches with a shape of
32 × 32 × 4 into three classes using the modified architecture
of VGG-16 [60], where 4 in the patch shape indicates the num-
ber of frequency channels. The architecture corresponds to an
encoder of the neural networks. The result can be interpreted as
a coarse-grained segmentation, where the minimum resolution
of prediction is equal to the patch shape. On the contrary, our
method leverages the modified U-Net architecture [23], provid-
ing a fine-grained segmentation where the minimum resolution
is 1 × 1 × 4.

Training the CNN for semantic segmentation is much more
challenging than the one for classification because the large and
sophisticated architecture may hinder the backpropagation of
the gradient to the other end of the network. We leverage the
coupled architecture of encoder and decoder using dilations and
concatenation functions to facilitate the backpropagation of the
gradient, as suggested in U-Net. In addition, we simplify the data
preprocessing by avoiding applying the criteria for determining
which class each patch belongs to, which is required for the
classification task.

2) Annotation-Free Class-Rebalancing Weight: Our method
utilizes the cross-entropy loss for both the unsupervised and
supervised learning schemes. However, the cross-entropy loss
does not account well for imbalanced classes as it sums over
all the intensities [61]. A common approach to tackle the class
imbalance problem is to allocate class importance to mitigate
the imbalance based on the class distribution. This includes
rebalancing the class weights [62], [63], [64] and regulating
the learning frequency by sampling [22], [53], [65]. Table I
shows that the echosounder data are severely class-imbalanced
to the given classes, where more than 99% of the backscattering
intensities belong to the background (BG) class consisting of
the water and seabed features. The supervised segmentation ob-
jective, therefore, should deal with the class imbalance problem
in the echosounder data.

The unsupervised clustering objective should also tackle the
class imbalance problem. The clustering approaches based on
DeepCluster [53] can result in a trivial solution, such as empty
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clusters or immensely larger clusters than their average size.
This causes the imbalance among the pseudoclasses, hindering
the CNN to address the structured representation. To tackle
the imbalance, approaches based on DeepCluster [22], [53]
purposely equalize the cluster size by sampling to uniformly
distribute the pseudoclasses. For the segmentation task, however,
sampling pixels to create the class-balanced pseudolabels is
not a strategic choice in terms of the learning efficiency as the
discarded pixels may create a mask in the pseudolabel, hindering
end-to-end mini-batch training.

Hence, we apply the class-rebalancing weight technique to
the objective functions to bypass the sampling procedure. The
weight leverages the number of predictions to each pseudoclass
or class attribute instead of leveraging the available class anno-
tation, differentiating our method from the previous studies [5],
[22]. The class-rebalancing weight wcls,k for the unsupervised
clustering objective Lcls in (2) is depicted as

wcls,k =
ŵcls,k∑

k∈K ŵcls,k
, where ŵcls,k =

N

KNk
. (4)

In this expression,N represents the total number of pseudolabels
in a mini-batch. K represents the number of pseudoclasses
or clusters that we predefined. Nk represents the number of
pseudolabels of the pseudoclass k, where the sum over the K
pseudoclasses is equal to N (N =

∑
k∈K Nk). Equation (4)

indicates that the pseudoclasses larger than the average size
N/K are penalized by the smaller weight than the other classes.

In this study, rather than forcing the balance in a few available
annotations, we introduce the class-rebalancing weight wseg,c

for the supervised segmentation objective Lseg in (3) depicted
as

wseg,c =
ŵseg,c∑
c∈C ŵseg,c

, where ŵseg,c =
N

CNc
. (5)

In this expression, C represents the number of classes in the
annotated data. Nc represents the number of prediction of
the class c, where the sum over the C classes is equal to
N (N =

∑
c∈C Nc). Note that we count Nc from the prediction

of the model rather than the available annotation to avoid the
deterministic weight values, resulting in the annotation-free
class rebalancing weight.

IV. EXPERIMENT

The purpose of the experiments is to explore the robust-
ness of the proposed method in the semisupervised learning
environment that exploits limited annotations and, at the same
time, the contribution of the unannotated data. We evaluate our
method by comparing it with other segmentation models applied
for the analysis of the echosounder data, where the evaluation
metrics include prediction accuracy, F1-score, confusion matrix,
Cohen’s kappa [66], and area under the curve–receiver operating
characteristics (AUC-ROC) [67].

A. Data Setup

We leverage the echosounder data from 2016 to 2017 to train
the CNN-based segmentation model and the trained model is

Fig. 3. Five pairs of the training patches. The annotation map (leftmost) and
the echosounder data for each frequency channel are shown. The colors in the
annotation map indicate the classes: background (BG) in white, other fish species
(OT) in red, and sandeel (SE) in blue. The horizontal yellow line at the lower
part of the echosounder data is the boundary between water and the seabed.
Note that some patches do not include any fish pixel as a result of random patch
extraction.

evaluated using the echosounder data from 2019. The size of
the input echosounder patches is 256 × 256 × 4, where 4
indicates the number of echosounder channels (18, 38, 120,
200 kHz). We randomly extract the echosounder patches from
the echosounder data. 200 patches from the echosounder data
between 2016 and −2017 are used for the training set, and 60
patches from the echosounder data in 2019 are used for the
test set. In addition to those sets, we extract 30 patches for the
validation set from the echosounder data between 2016 and 2017
to tune the hyperparameters. There is no overlap among the
patches. The model output is the segmentation map of the corre-
sponding input, segmented by the three given classes. Table I and
Fig. 3 show, respectively, a subset of the training patches and the
general information of the training and test sets.

B. Annotation Ratio

To explore the impact of our semisupervised method, we
compute the annotation ratio, which measures the ratio of the
number of annotated patches to the number of the entire set of
training patches. Six ratios are studied, namely, 1.00, 0.40, 0.35,
0.30, 0.25, and 0.20. The annotation ratio of 1.00 represents
a fully supervised setting, where 200 training patches are fully
annotated. The annotation ratio of 0.20 takes the extreme semisu-
pervised case in this study, where 40 out of 200 training patches
are annotated while the remaining 160 patches are unannotated.
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TABLE II
PERFORMANCE COMPARISON REGARDING DIFFERENT KS AT THE ANNOTATION

RATIO OF 0.20

C. Training Configuration

The following training configuration is shared for all experi-
ment setups. The model learns by mini-batch training, where the
batch size Bs is set to 2 considering the computational resource.
Thus the number of feature representations in a mini-batch N
is 131 072 (2 × 256 × 256). The Adam optimizer [68] with
learning rate 3 × 10-5, beta (0.9, 0.999), and weight decay
10-5 is applied. The training is iterated to 500 epochs for all
experiments, applying early stopping [69] on the condition that
the accuracy is not improved for 100 epochs. For PCA, we
choose the first 32 principal components shown in (1) as they
capture most of the variance of the data. Three prediction classes
are given (C = 3); background (BG), sandeel (SE), and other
fish species (OT).

Regarding the choice of the number of clusters K, we choose
K = 512 after testing a set of different Ks. Table II exemplifies
one of the tests when the annotation ratio is 0.20, where the
AUC-ROC value of SE class (0.8306), prediction accuracy of
BG and SE classes (BG accuracy 0.9861; SE accuracy 0.5312),
Cohen’s kappa (0.3449), and F1 score (0.9856) achieve the high-
est when K = 512. As addressed in the DeepCluster work [53],
the number of cluster K does not have a significant impact on
the performance if we cluster the feature representations with a
sufficiently large number of clusters compared to the number of
classes. We tune those hyperparameters using the validation set.
All the code is implemented in PyTorch [70].

D. Validation Methods

Our proposed method, PredKlus, is designed specifically to
exploit the intrinsic nature of unannotated data, as well as to en-
force class structure by supervision, all while handling the inher-
ent class-imbalance of echosounder data by class-rebalancing
weights. One could envision other approaches for exploiting
unannotated data in semantic segmentation for acoustic target
detection.

As the first comparison model to highlight this, we reimple-
ment a recently published work for generic semisupervised se-
mantic segmentation [71] for our specific task of acoustic target
classification. This method, which we refer to as SemiCPS, also

aims to integrate pseudoclass predictions (unsupervised) to the
class predictions (supervised) by introducing an additional aux-
iliary segmentation network mirroring the main segmentation
network architecture with different initializations.

SemiCPS intends to encourage high similarity between the
predictions of the two networks with different initialization for
the same input image. For the annotated input, each network
is individually trained in a supervised manner. For the unanno-
tated input, the main network first creates the class prediction
map by processing the input. This prediction map becomes the
pseudolabel that will supervise the auxiliary network. Once the
auxiliary network is updated by the pseudolabel, the main net-
work is also supervised by the prediction map from the auxiliary
network.

With SemiCPS, we implicitly explore how the unsupervised
clustering objective affects the predictive performance when
data are noisy. Due to the unpredictable underwater nature, the
features between the target class and the nontarget are visually
indistinguishable in some echosounder data. This may lead the
mirrored network of SemiCPS to generate incorrect pseudola-
bels, which are tied to the supervision of the main network.
If it eventually repeats, none of the two networks can make
correct predictions. On the other hand, the pseudolabels in our
proposed method are leveraging the internal structure of the
data set and are not tied to the class supervision. This makes
our proposed approach more robust against noisy data, such as
the echosounder data. As we will show in Section V, SemiCPS
does not compare favorably to our approach. We believe this
to be due to an inability to exploit the intrinsic nature of the
unannotated data leading to a propagation of errors induced by
the pseudolabeling due to the noisy nature of the data. This will
be further discussed in Section V-A.

The second comparison model is the semisupervised patch
classification method [22], referred to as SemiClf, where both
the annotated and the unannotated parts are involved in the anal-
ysis. This model learns from a small input patch of size 32 × 32
× 4, and classifies each patch to given classes leveraging the ar-
chitecture of the modified VGG-16 [60]. We train SemiClf using
the same training set, after splitting one provided echosounder
input (256 × 256 × 4) into 64 small patches. In the inference
phase, on the other hand, we extract the small patches with stride
of one pixel only, resulting in a fine-grained prediction map. A
voting mechanism determines the class for each pixel, which is
based on the class prediction frequency among the overlapping
small patches. This significantly increases the computational
complexity of SemiClf, but provides a pixel-level comparison
between all methods.

The third comparison model is the fully supervised segmenta-
tion method [5], referred to as SupSeg in this study. This utilizes
the same CNN architecture and the supervised segmentation ob-
jective as our proposed method, and provides the class prediction
of each backscattering intensity. But it does not exploit either
the unannotated part of the data or the unsupervised clustering
objective. For semisupervised settings where the annotation
ratios are smaller than one, this fully supervised method ignores
the unannotated part and learns from the annotated part of the
training set, which is partially available.
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TABLE III
MODEL PERFORMANCE COMPARISON WITH RESPECT TO AUC-ROC VALUE

AND CLASS ACCURACY

TABLE IV
MODEL PERFORMANCE COMPARISON WITH RESPECT TO COHEN-KAPPA

AND F1 SCORE

V. RESULT AND DISCUSSION

Our method and three comparison models, e.g., SupSeg [5],
SemiClf [22], and SemiCPS [71], are evaluated by the various
performance measures using the test echosounder data specified
in Table I. The measures include AUC-ROC value and the
class prediction accuracy for each class and annotation ratio
(Table III), Cohen’s kappa (kappa), and F1 score regarding each
annotation ratio (see Table IV). The area under the ROC curve
is AUC, where a higher AUC indicates better segmentation
performance. Regarding the class prediction accuracy, note that
the SE class achieves the lowest prediction accuracy than any
other class for the many setups. This indicates that the SE class
is a conservative estimate [22].

In addition to these measures, the confusion matrix and the
corresponding ROC curve for each setup are computed for the
comparison, as shown in Figs. 4–9. For the confusion matrices,
each row of these confusion matrices sums to one, indicating the
ground truth of the prediction. Each column illustrates the class
prediction of the method. The first column and row indicate the
BG class, the second and the third columns and rows denoting
the SE class and the OT class, respectively. For the ROC curves,

the vertical axis indicates a true-positive rate while the horizontal
axis shows a false-positive rate. For the visual comparison, we
provide the prediction map of the test data in Figs. 10–12,
where four parts of the echosounder data in 2019 and their
prediction maps are visualized. Overall, the results show that
our semisupervised method outperforms the comparison models
throughout annotation ratios.

A. Comparison to Semisupervised Segmentation Method
Using Pseudolabels (SemiCPS)

Tables III and IV show that our proposed method out-
performs SemiCPS through the entire evaluation metrics in
the semisupervised setups containing the annotation ratios of
0.20–0.40. The greatest performance difference is observed
at the annotation ratio of 0.20, which is the most extreme
semisupervised setup. Our method achieves the kappa score of
0.3449, which is 18.8 times greater the kappa score of SemiCPS
(0.0183).

The prediction maps in Fig. 10 also visually validate the
outperforming results of our proposed method. SemiCPS does
not make predictions close to the fish patterns for the annotation
ratios of 0.20–0.25, but tends to capture the fish class patterns
from the annotation ratios of 0.30 and higher. However, quite a
few fish patterns are still misclassified to the BG class, yielding
a smaller prediction area and underperforming results than our
proposed method. Our proposed method, in contrast, tends to
capture most of the major fish patterns on the prediction map
from the annotation ratio of 0.20. Although the prediction map
appears noisy due to misclassification of small clutter patterns at
low annotation ratios, the noise is filtered out as the annotation
ratio increases and shows a good prediction map close to the
ground truth and the input. We discover the same visual trends
in Figs. 11 and 12.

B. Comparison to Semisupervised Patch-Based Segmentation
(SemiClf)

Compared to SemiClf [22], our proposed method outperforms
throughout the measures and setups. We argue that the novelties
of our method, such as the learning mechanism for the fine-
grained segmentation and the annotation-free class-rebalancing
technique, contribute to achieving the surpassing result by ad-
dressing the shortcomings of patch-based SemiClf. The kappa
scores contrast the difference nicely, where ours achieves
18.3 times greater scores than SemiClf with the annotation ratio
of 0.20 (ours 0.3449; SemiClf 0.0191).

In addition to the poor prediction maps shown in Figs. 10–12,
another critical drawback of SemiClf is misclassification of
the seabed feature, which is known for a considerably higher
intensity than the other fish classes [5]. The seabed feature
is marked with a distinct yellow horizontal line in the input
echosounder data. As shown in the prediction maps, SemiClf
and SemiCPS predict the seabed as one of the fish classes (blue
or red) throughout the annotation ratios. In contrast, our method
learns the seabed feature and correctly predicts it to BG class in
white as intended.
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Fig. 4. Confusion matrices and the corresponding AUC-ROC plots of the annotation ratio of 0.20.

Fig. 5. Confusion matrices and the corresponding AUC-ROC plots of the annotation ratio of 0.25.
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Fig. 6. Confusion matrices and the corresponding AUC-ROC plots of the annotation ratio of 0.30.

Fig. 7. Confusion matrices and the corresponding AUC-ROC plots of the annotation ratio of 0.35.
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Fig. 8. Confusion matrices and the corresponding AUC-ROC plots of the annotation ratio of 0.40.

Fig. 9. Confusion matrices and the corresponding AUC-ROC plots of the annotation ratios of 1.00.
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Fig. 10. Prediction maps of the test echosounder data with respect to the annotation ratios. The colors in the annotation map indicate the classes: background
(BG) in white, other fish species (OT) in red, and sandeel (SE) in blue.

C. Comparison to Fully Supervised Method (SupSeg)

We compare the result of our method to SupSeg [5], to
investigate how the unsupervised clustering objective and the
unannotated data improve the predictive performance. Overall,
our proposed method outperforms SupSeg through the entire
annotation ratios for the entire AUC-ROC values and the SE
and OT class accuracies in Table III. The results indicate that
the unsupervised clustering objective improves the performance
of the segmentation task by effectively exploiting the structured
representation from both the unannotated data and the available
annotated data.

Note that our proposed method outperforms SupSeg for the
annotation ratio of 1.00 (fully supervised case). With this result,
we argue that our proposed method is generic and outperforms
the conventional fully supervised learning methods, such as
SupSeg. Alternating two objective functions are applicable to
the fully supervised case, which facilitates the interconnection

of the two objectives to make good use of the annotated data
based on the clustering structure. By the iteration, the datapoints
in each cluster gradually share the dominant class annotation,
and eventually have the same class prediction, approximating
the decision boundaries that SupSeg achieves to some extent.

In Table IV, we find two inconsistent cases for the annotation
ratios of 0.35 and 0.40, where SupSeg achieves greater Kappa
and F1 scores. However, we argue that this result does not
undermine the robustness of our proposed method. Instead, we
believe that SupSeg is biased to make more predictions for the
BG class, where the bias is related to a severe class imbalance in
the training data, especially in the increased part of the annotated
data. The prediction accuracy of the BG class for these annota-
tion ratios validates our reasoning, where SupSeg achieves better
accuracy than our proposed method for these annotation ratios
(SupSeg 0.9857, ours 0.9842 with the annotation ratio of 0.35;
SupSeg 0.9811, ours 0.9857 with the annotation ratio of 0.40).
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Fig. 11. Prediction maps of the test echosounder data with the annotation ratio of 0.20, 0.25, and 0.30. The colors in the annotation map indicate the classes:
background (BG) in white, other fish species (OT) in red, and sandeel (SE) in blue. (a) Case where the SE class is dominant, whereas (b) and (c) show the case
where the OT class is dominant.

On the other hand, the prediction accuracies of two fish classes
do not seem to increase as much as it increases in our method
(ours 0.6609, SupSeg 0.6128 with the annotation ratio of 0.35
and the SE class accuracy; ours 0.6304, SupSeg 0.6238 with the
annotation ratio of 0.40 and the SE class accuracy; ours 0.6419,
SupSeg 0.6399 with the annotation ratio of 0.35 and the OT class
accuracy; ours 0.7307, SupSeg 0.6029 with the annotation ratio
of 0.40 and the OT class accuracy). Through visual inspection
of the annotated part of the training data, we are able to obtain
other grounds for our argument.

When performing the visual inspection of the increased part
of the training set between the annotation ratio of 0.30 and 0.35,
where ten input-annotation data pairs are increased, we discover
that five out of ten data pairs consist of only BG class pixels
without any fish class pixel. Analogously, we discover that six
out of ten data pairs consist of only BG class pixels without any
fish class pixel between the annotation ratio of 0.35 and 0.40.
For the entire training data, the case that no fish intensity pixels
are obtained in the input takes about 20% of the training data on
average. Hence, we argue that the class imbalance found with
these annotation ratios is more severe than the other cases and
causes the prediction bias towards the BG class for the SupSeg
case.

D. Confusion Matrix and ROC Curve

Figs. 4–9 compare our proposed method to other compari-
son models using confusion matrices and ROC curves. When
comparing the diagonal components of the confusion matrices
visually, our proposed method shows more distinct diagonal
components than the other models. This implies that: 1) our
proposed method can be seen to outperform the comparison
model in terms of the class accuracy as illustrated in Table III;
2) our proposed method also achieves lower false-positive rates
within fish classes compared to other models when having a
deeper look at the diagonal components of the SE and OT classes
(second and third row and column). For example, comparing the
false-positive rate of SE prediction of the OT class ground truth,
shown in the second column and the third row of the confusion
matrices, ours achieves lower false-positive rates throughout
the semisupervised setups. This result is consistent with the
false-positive rate of OT prediction of the SE class ground
truth, shown in the third column and the second row of the
matrices.

The ROC curve shows the tradeoff between true-positive
and false-positive rates. The curves indicate that segmentation
models with curves closer to the top-left corner perform better,
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Fig. 12. Prediction maps of the test echosounder data with the annotation ratio of 0.35, 0.40, and 1.00. The colors in the annotation map indicate the classes:
background (BG) in white, other fish species (OT) in red, and sandeel (SE) in blue. (a) Case where the SE class is dominant, whereas (b) and (c) show the case
where the OT class is dominant.

resulting in greater area under the curve (AUC) as depicted in
Table III. The results in the curves and the AUC values validate
the outperforming result of our method.

VI. CONCLUSION

In this article, we propose a novel semisupervised deep learn-
ing method for semantic segmentation of echosounder data. Our
method considerably reduces the dependence on the annotated
data, achieving comparable results with the fully supervised seg-
mentation method [5], by leveraging 40% of the annotated data
in addition to unannotated data. Our method also outperforms
the other semisupervised methods for echosounder data [22],
[71]. Our methodological novelty is to take advantage of deep
clustering to exploit the underlying structure of the training
data regardless of the annotation in a semisupervised learning
scheme. In addition, our method is end-to-end and mini-batch
trainable, and regulates the class imbalance based on the model
prediction without leveraging the annotated part of data. The
rigorous and extensive experiments validate the robustness of
the proposed method, where various performance measures are
introduced.

Our proposed method is generic and applicable to other fish
species with a small amount of annotated echosounder data.
To the best of our knowledge, this is the first semisupervised

semantic segmentation article for the echosounder data analysis
based on deep learning. The promising results imply that our
proposed method can reduce the expensive costs required for the
annotation. The performance can be improved by utilizing se-
mantic information, e.g., a simple classifier that can exclude the
background class pixels when collecting the echosounder data.

In future work, we intend to explore the uncertainty of the
segmentation results to improve the interpretability of the model
prediction. As a further example of future work, we intend to
extend our method to take the uncertainty into account to create
more crisp and clear decision boundaries among the clusters
when the pseudolabels are created.
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