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Abstract

Multi-frequency echosounder data can provide a broad understanding of the underwater environment

in a non-invasive manner. The analysis of echosounder data is, hence, a topic of great importance for

the marine ecosystem. Semantic segmentation, a deep learning based analysis method predicting the

class attribute of each acoustic intensity, has recently been in the spotlight of the fisheries and aquatic

industry since its result can be used to estimate the abundance of the marine organisms. However, a

fundamental problem with current methods is the massive reliance on the availability of large amounts of

annotated training data, which can only be acquired through expensive handcrafted annotation processes,

making such approaches unrealistic in practice. As a solution to this challenge, we propose a novel

approach, where we leverage a small amount of annotated data (supervised deep learning) and a large

amount of readily available unannotated data (unsupervised learning), yielding a new data-efficient

and accurate semi-supervised semantic segmentation method, all embodied into a single end-to-end

trainable convolutional neural networks architecture. Our method is evaluated on representative data

from a sandeel survey in the North Sea conducted by the Norwegian Institute of Marine Research. The
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rigorous experiments validate that our method achieves comparable results utilizing only 40 percent of

the annotated data on which the supervised method is trained, by leveraging unannotated data. The code

is available at https://github.com/SFI-Visual-Intelligence/PredKlus-semisup-segmentation.

Index Terms

Multi-frequency echosounder data, marine acoustics, acoustic target classification, deep learning,

semi-supervised semantic segmentation, convolutional neural networks, deep clustering.

I. INTRODUCTION

Semantic segmentation is one of the fundamental computer vision tasks, where the aim is to

assign each image pixel to a semantic class [1]–[3]. When analyzing echosounder data, the aim

is to assign an observed acoustic backscattering intensity to one of several given acoustic classes,

often referred to as acoustic target classification [4]–[7]. In practice, semantic segmentation of

the echosounder data is still a manual and heuristic process, which is rather vulnerable to human

error and bias. It is also expensive in terms of cost and time [8].

There are a few studies that intend to automate the semantic segmentation based on statistical

modeling and machine learning techniques [9]–[13]. However, they are exposed to limitations

such as relying heavily on handcrafted feature selection and not being able to scale well to large

amounts of data. As recent echosounder technology leverages increasing numbers of frequency

channels and wider bandwidth [14], automated analysis methods should therefore be scalable in

order to cope with increased resolution and multi-frequency data.

Convolutional Neural Networks (CNN) is a framework renowned for excelling at image

segmentation tasks [15]. Recent echosounder segmentation studies introduce CNN-based segmen-

tation methods as alternative strategies [5], [16]–[19], where the main advantage is the capacity

to learn discriminating features from the training data without requiring a handcrafted process,

allowing the analysis to scale to large-sized data. Note that these methods are trained in a fully

supervised manner, indicating that the network learns from fully annotated training data. The

fully supervised approaches achieve good performance provided that high quality training data

and an appropriate choice for the prediction model are assured. However, it is highly challenging

for the echosounder data to obtain the class annotation for each backscattering intensity pixel

because this relies on the manual annotation process, which is expensive and error-prone.
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Hence, a new learning scheme is required to considerably reduce the dependency on the

manual annotation process while still facilitating powerful deep learning approaches for the

segmentation of the echosounder data. As a key step in this direction, we propose a novel deep

semi-supervised semantic segmentation method that efficiently uses a small amount of manually

annotated data by combining it with a large amount of readily available unannotated data in the

learning process [20]–[22].

The key concept invoked in order to train the semi-supervised segmentation network is to

alternate between two objective functions, namely an unsupervised clustering objective and a

supervised segmentation objective, encapsulated by a single CNN. The unsupervised clustering

objective is to search the underlying structure within the training data without using the class

annotation. In contrast, the supervised segmentation objective is to map the input echosounder

data to the given classes presented in the available annotated data. These two objective functions

alternatively optimize the single CNN and gradually integrate the underlying clustering structure

to the class decision boundaries presented in the small amount of annotated training data. Our

proposed method can create pixel-level prediction maps using the same CNN architecture as [5],

[23]. Still, it is data-efficient because it can significantly reduce the use of the annotated data. To

the best of our knowledge, our work is the first semi-supervised semantic segmentation method

for multi-frequency echosounder data that provides prediction maps on a pixel scale, advancing

the existing semi-supervised method of providing patch-scale prediction maps (see Section III-C)

[22]. In addition, our proposed method is end-to-end trainable, which refers to a holistic gradient-

based learning system where a formulated objective function reflects the principle of a given

task without requiring extensive human intervention and prior knowledge [24].

Extensive and rigorous experiments are conducted on the multi-frequency echosounder data

collected at the North Sea by the Norwegian Institute of Marine Research. A severe class

imbalance in the echosounder data is an ever-present source of bias that prevents training of the

neural networks, where 99 percent of the entire acoustic backscattering intensities is occupied by

the background class [5], [25]. We introduce a class-rebalancing weight to each learning objective

to mitigate the bias, where the weight is calculated with respect to the model prediction without

relying on the annotation.

The contributions of the paper are the following:

• To propose a novel deep semi-supervised semantic segmentation method for the multi-

frequency echosounder data, which considerably advances the existing methods.
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• To achieve comparable results with the fully supervised segmentation method by leveraging

a small amount of the annotated data in addition to unannotated data.

• To exploit the underlying structure of the training data using unsupervised deep clustering

in a semi-supervised learning manner.

• To demonstrate the innovation potential of the proposed method in a real-world test case.

• To regulate the class imbalance based on the model prediction without leveraging the

annotated part of data.

• To operate in an end-to-end and mini-batch training scheme.

II. BACKGROUND

Semantic segmentation is the process of partitioning an image into mutually exclusive subsets

by assigning a class annotation to each intensity of the data, in which each subset represents

a meaningful region of the original image [26]. It thereby provides a comprehensive scene

description that includes object class, location, and shape. A wide range of real-world problems

require semantic segmentation [27]–[32], such as self-driving vehicles [33], and polyp detection

[34], [35], to name a few, all depending on different types of image data.

Semantic segmentation has been considered as a challenging computer vision task due to the

large distribution variance as well as the huge class imbalance among objects in the input data

[25]. In recent years, however, deep learning has been rapidly advancing and has become a

game-changer in many image analysis tasks including semantic segmentation. The CNN [36]

is a deep learning framework that has had particular success for grid-structured data such

as images. Traditional CNNs consist of convolutional layers and pooling layers, where these

layers are stacked in a deep and hierarchical architecture in a particular order, providing unique

properties to the analysis. For example, the weight-sharing property of the convolutional filters

provides a symmetric transformation between the input space and the output space, referred to

as ‘equivariance to translation’. The pooling layers help the learned representation becoming

approximately invariant to small translations of the input [15], [37]. Another advantage of the

CNN is a relatively more straightforward learning process than the conventional methods, where

the CNN-based models learn by minimizing a formulated objective function that reflects the

strategies of a given task without requiring extensive human intervention and prior knowledge,

referred to as an end-to-end learning.
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CNN-based segmentation models are distinguishable through their model architecture. Their

architecture consists of a downstream module that extracts the abstracted feature representations

of the input data and an upstream module that reconstructs the prediction map exhibiting the

class attributes of each intensity in the input data based on these extracted feature representations.

Thanks to the dual architecture, those models can make class predictions on arbitrary-sized inputs

[38]. Fully Convolutional Networks [1] and U-Net [23] are representative architectures, where

the models are composed of (transposed) convolutional layers and pooling layers, and end-to-end

trainable depending on their formulation of the objective functions.

A. Echosounder Data

For the sustainable management of commercially harvested marine organisms, reliable infor-

mation on their abundance is essential. For example, lesser sandeel, a species of fish of interest in

this study, is the primary food source in the North Sea food web thanks to its ample population

[39], which are the preferred prey of a variety of predators, including marine mammals, seabirds,

and piscivorous fishes [40]. Therefore, monitoring sandeel stock is critical for the sustainability

of the marine ecosystem and fishery management in the North Sea. The echosounder data

can contribute to estimating the abundance, leveraging the characteristics of the backscattered

responses and knowledge of the target species [8]. The multi-frequency echosounder data that

we use in this study has been collected by multi-frequency Simrad EK60 echosounder systems

operating at four different frequency channels on the vessel (18, 38, 120, 200 kHz), where

the vessel speed is approximately ten knots. The Norwegian Institute of Marine Research has

collected the data through the annual trawl surveys in the sandeel areas in the North Sea [41].

We leverage the data preprocessing protocol from the earlier works [5], [22], for which we

share the echosounder data. For each frequency channel, a volume backscattering coefficient

sv, an average amount of backscattering intensity per cubic metre [42], is stored in the two-

dimensional echosounder data. In the physical context, the horizontal and vertical lengths of a

single backscattering coefficient are, respectively, one second and 19.2 centimeters based on the

pulse duration of 1.024 milliseconds with respect to a common time-range grid based on the

resolution of the 200 kHz echosounder data. All the volume backscattering coefficients sv are

first converted to a decibel unit (dB re 1m−1). We set the minimum value as -75 dB re 1m−1.

The coefficients less than -75 dB re 1m−1 or missing coefficients are imputed to the minimum

values.
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For segmentation of the echousounder data, one common approach is a manual annotation

method, which relies on the operators’ domain expertise of the acoustic properties, such as

relative frequency response [43], [44], echo traces [45], and trawl sampling [46]. For that reason,

the manual process is vulnerable to bias from the operators. In extreme cases, the systematic error

associated with the manual method can be as high as ± 80 percent [8]. Hence, more structured

and automated approaches are required to apply consistent criteria to the analysis while reducing

dependency on human intervention. To this end, post-processing systems, including the Large

Scale Survey System (LSSS) [9], are developed to facilitate the manual process. The systems

support thresholding, error-checking, noise removal, and manipulation of the echosounder data.

By adjusting the threshold of backscattered intensities, the post-processing systems visualize the

corresponding morphology of the fish schools to enable the operators to detect and delineate the

most plausible morphology. In addition, these post-processing systems enable relatively consistent

criteria for the analysis by leveraging their acoustic feature libraries. The library consists of a

selected part of the backscattered responses and their manually annotated class attributes. By

comparing the statistical properties of the collected data to the feature library, the post-processing

system predicts the class attribute of the fish school, where the prediction is verified by the

scattering model for the corresponding marine organism if available [47], [48].

The sandeel data in this study is manually annotated with the aid of LSSS, where expert

operators determine the class of each backscattering coefficient as sandeel (SE), other fish

species (OT), or background (BG) class. The primary frequency for LSSS is chosen to 200

kHz considering the highest sandeel signal-to-noise ratio [49]. The operators alter the detection

threshold centered at -63 dB at the primary frequency to discover the fish school boundaries

visually. The delineated boundary is refined using binary morphological closing to have smoother

and pragmatic edges [5]. However, the final decision for both morphology and species is still a

manual process, which is time-consuming and requires tacit knowledge that can be potentially

biased as with any expert system.

Therefore, recent studies have focused on the automated identification of the fish species

using machine-learning methods while leveraging the conventional detection algorithm to detect

and delineate the morphology of the schools. SHAPES (Shoal Analysis and Patch Estimation

System) [50], [51] is often chosen for the fish school detection algorithm, which extracts a feature

vector from each fish school leveraging a single frequency channel of 38 kHz. A random forest

based classifier [12] is introduced to classify feature vectors of silver cyprinid from the other
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species in Lake Victoria. [52] proposes a classifier leveraging a shallow feedforward network and

classify the pelagic Mediterranean fish schools such as anchovy, sardine, and horse mackerel.

Those studies show that the automated identification can save time and cost while also achieving

robust performance. However, they have limitations in generalizability and scalability because

the SHAPES algorithm only exploits a single channel of the echosounder data, and a handcrafted

feature selection is required to improve the performance.

Deep learning based models generalize and scale well on various types of data using their

flexibility [15], [37]. Among them, the fully supervised deep learning approaches, approaches

that learn from the fully annotated training data, achieve a good level of performance provided a

high quality of the training data and an appropriate choice of the prediction model are assured.

In order to take advantage of supervised deep learning in the analysis of echosounder data,

CNN-based semantic segmentation model [5] is introduced to segment the schools of lesser

sandeel from the other species leveraging the U-Net architecture [23]. Without relying on the

deterministic school detection algorithms and the feature vectors as input, the model constructs

the prediction map directly from the input echosounder data.

B. Deep Clustering

We here discuss deep clustering since our novel CNN-based semi-supervised semantic seg-

mentation for echosounder data, presented in Section III, relies heavily on this concept. Deep

clustering refers to unsupervised deep learning based approaches, that aim to cluster data into

underlying groups without requiring the class attributes of the data [53]. Deep clustering leverages

the representation power of the neural network in conjunction with clustering algorithms, and

partitions the input data into clusters with respect to the learned representation. As clustering

performance heavily depends on the underlying structure of the data, deep clustering leverages the

neural network to encode the training images in the feature representations where the clustering

task becomes much easier [54].

Our proposed method is inspired by a well-known deep clustering framework, referred to

as DeepCluster [53], which explicitly models the density of datapoints leveraging the k-means

clustering algorithm. For a given image dataset, the k-means algorithm partitions the feature

representation into K different densities, where each density refers to an image descriptor or

a visual feature. This has the advantage that it is easy to increase the capacity of more visual

features by simply increasing the number of clusters K, leading to all-purpose visual features. The
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Fig. 1. Overview of the proposed method. Each backscattering intensity in the input is mapped into an arbitrary space shown in

(a). The point in gray is unannotated while the point in color (red, green, or blue) indicates the annotated one with respect to the

class. (b) shows the clustering structure incorporated by the unsupervised clustering objective without leveraging the annotation.

The clustering structure becomes the pseudo-label to train the model in an unsupervised manner. (c) indicates that the annotated

data (ground-truth where available) and the supervised segmentation objective optimize the CNN in a supervised manner. (d)

indicates that the iteration of (b) and (c) constructs the decision boundary with respect to given classes, where the unannotated

points take their place inside the boundary according to their own clusters.

neural network produces cluster indices that can be thought of as clustering-induced annotations

for the training data. The network is then updated in a supervised manner to learn the clustering

structure. This annotation technique is referred to as pseudo-labeling, allowing the supervised

deep learning approach to be applied to unannotated training data [55].

III. PROPOSED METHOD

In this paper, we propose a novel semi-supervised semantic segmentation method, PredKlus,

that enables a CNN to simultaneously learn from large amounts of unannotated data and a few

annotated data, all in the same network.

The major novelty of our work is the methodology of how the network learns in a semi-

supervised manner, illustrated in Figure 1. Our proposed segmentation network operates for two

different goals: a) searching for the internal structure of the training data without relying on
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Fig. 2. Proposed model architecture. The application of the two objective functions takes place at the yellow box at the end of

the decoder. The unsupervised clustering objective involves in the first two steps: (a) creating pseudo-label using k-means, and

(b) updating model to learn the clustering structure with the pseudo-label using conv1. The supervised segmentation objective

involves in (c) training with the partially available annotation using conv2. The rectangular bars in blue or gray represent feature

maps, where the size of each feature map is specified around it, e.g. 2562 or 162. We omit to specify the depth for a few feature

maps, as the depth is the same as the feature map on its right, e.g. 64 or 512.

external information, e.g., ground truth; b) mapping input echosounder data to given classes.

The former goal can be achieved by an unsupervised clustering objective, which clusters every

pixels in the input based on their features to reveal a clustering structure of the input data in an

unsupervised manner. Figure 1(b) illustrates the clustering structure. A supervised segmentation

objective, on the other hand, aims to map the input to given classes by leveraging the annotated

part of training data, albeit in a small amount. Figure 1(c) illustrates this. As these two objective

functions alternately optimize the network using gradient descent, the segmentation network

gradually learns the class decision boundaries (supervised) with respect to the clustering structure

(unsupervised), as illustrated in Figure 1(d). We implement the entire learning process in an end-

to-end manner and a mini-batch setting, which are additional novelties of our method.

A. Model Architecture

Figure 2 describes the model architecture of our proposed method. The encoder-decoder

architecture with the skip connections is inspired by U-Net [23] and the recent segmentation

study of the echosounder data [5]. The encoder part extracts the abstracted feature map of the

echosounder input with a shape of 256 × 256 × 4 over five stages, where the area of the feature
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map is reduced to one-fourth at each stage due to a 2 × 2 max-pooling layer. By processing

two sets of a 3 × 3 convolutional layer, a batch-normalization layer [56], and a Rectified Linear

Unit (ReLU) [57] at each stage, we abstract the feature map by doubling the depth. The encoder

eventually creates five feature maps of different area sizes and depths, where the shape of the

last feature map is 16 × 16 × 1024.

The decoder part reconstructs the prediction map leveraging five feature maps from the

encoder. At each stage, a 2 × 2 transposed convolutional layer and the concatenation of the

feature maps along the depth axis play an important role. The 2 × 2 transposed convolutional

layer increases the area of the feature map fourfold while halving the depth. The halved feature

map is concatenated with the feature map in the same shape from the encoder. The concatenated

feature map is processed by two sets of a 3 × 3 convolutional layer, a batch-normalization layer,

and a ReLU, where the depth becomes halved.

The novelty in our architecture is to introduce a convolutional layer for each objective function

at the end of the CNN to employ two objective functions in one network. The alternation of the

two objective functions takes place at the end of the decoder, where the decoder reconstructs the

feature map with a shape of 256 × 256 × 64. To alternately leverage two objective functions,

we append a 1 ×1 convolutional layer at the end of the network for each objective function,

namely conv1 for the unsupervised clustering objective and conv2 for the supervised segmentation

objective. Note that the number of filters in conv1 matches the number of clusters or pseudo-

classes K. Similarly, the number of filters in conv2 is equal to the number of classes C.

B. Two Objective Functions

Our proposed method leverages two objective functions, where those objectives alternately

optimize the model. Through the alternating optimization, the CNN indirectly incorporates

the class annotations (supervised) to a structured representation (unsupervised) and eventually

discovers a structured representation consistent with the available annotations. The yellow box

in the middle of Figure 2 shows the overview of our semi-supervised segmentation method.

The first two steps, (a) creating pseudo-labels using k-means and (b) updating the model to

learn the clustering structure with the pseudo-labels using conv1, contribute to learning the

structured representation in an unsupervised manner. The next step, (c) training with the partially

available annotation using conv2, represents how the CNN learns in a supervised manner using
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the supervised segmentation objective and the available class annotations. Note that a cross-

entropy loss (CE) is leveraged to update the model, as depicted in Figure 2(b) and (c).

a) Unsupervised clustering objective: The unsupervised clustering objective exploits the

underlying structure of the data using the unsupervised clustering algorithm, such as k-means,

to create pseudo-labels with respect to the clustering structure [53]. Defining the number of

clusters K beforehand, the proposed model partitions the feature map Z =
{
z(i)

}N

i=1
located at

the end of the decoder into K clusters in a way to find the best assignment by minimizing the

k-means loss:

Lkmns =
1

N

N∑
i=1

min
ck

d(z
(i)
PC , ck). (1)

In this expression, N is the number of feature vectors in a mini-batch of the feature map. If

the batch size Bs is equal to one, N becomes 65,536 as each feature map consists of 65,536

vectors (256 × 256). The function d(·, ·) measures the L2 distance between two vectors, where

ck ∈ R32 is the centroid of cluster k, and z
(i)
PC ∈ R32 is the dimensionality-reduced training

set consisting of the feature vectors z(i) ∈ R64. For dimensionality reduction, we use Principal

Component Analysis (PCA) [58], which computes the principal components and use only the first

few principal components corresponding to the largest eigenvalues for manageable computational

complexity.

The clustering result creates the pseudo-labels, having K different pseudo-class attributes

according to the K cluster indices. The CNN learns the structured representation from the

pseudo-labels using the cross-entropy loss. The unsupervised clustering objective is depicted as:

Lcls =
1

N

N∑
i=1

w
(i)
cls,kCE{gθ(z(i)), ŷ(i)}, (2)

where CE(p, q) = −
∑

k qk log(pk) is the cross-entropy loss of the probability distribution p for

the one-hot encoded label q, ŷ(i) ∈ {0, 1}K is the one-hot encoded pseudo-label, and gθ(z
(i)) is

a probability distribution of the output from the CNN, where conv1 is appended at the end of the

decoder. The scalar w(i)
cls,k indicates the class-rebalancing weight to penalize the class imbalance

of the pseudo-labels. How to obtain this scalar will be explained in III-C. Once updating the

CNN with the unsupervised clustering objective, we assign the current centroids of K clusters

to the initial centroids for the next clustering to provide consistency of the pseudo-labels over

the mini-batches.
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b) Supervised segmentation objective: To enforce consistency of predictions with regard to

the given classes, we train the CNN using the partially available annotated data. The supervised

segmentation objective is involved here, where conv2 layer, another 1 × 1 convolutional layer,

replaces the conv1 layer to allow end-to-end training. The supervised segmentation objective is

depicted as:

Lseg =
1

N

N∑
i=1

w(i)
seg,cCE{fθ(x(i)),y(i)}, (3)

where C represents the number of given classes, y(i) ∈ {0, 1}C represents the one-hot encoded

vector of the available annotation. fθ(x(i)) a probability distribution of the output from the CNN,

where conv2 replaces conv1.

c) Training procedure: In addition to end-to-end learning, the proposed method operates

in a mini-batch training manner, indicating that the network is updated once after each objective

processes information in each mini-batch [59]. We form two training subsets for each objective

function to facilitate the alternating mini-batch training. The training subset for the unsupervised

clustering objective consists of the entire training input data, whether annotated or not, and does

not include any class annotation of the data. On the other hand, the training subset for the

supervised segmentation objective includes the annotated part of the training data, which takes

a small amount of the entire training data in the semi-supervised learning scheme. Algorithm 1

illustrates the semi-supervised training procedure with two training subsets.

C. Advance on the Semi-Supervised Image Classification for Echosounder Data [22]

The problem of being able to obtain manual annotations is much more severe for semantic

segmentation compared to image classification, since in the former case annotations refer to

the pixel level and not the entire image. The semi-supervised method we propose in this paper

therefore solves a much more challenging problem compared to our previous preliminary work

on semi-supervised echosounder data patch classification [22], which is only able to classify

whole image patches and not do proper segmentation. Some elements of the new segmentation

method resembles the previous classification method, however with significant differences due

to the completely different aims of the two approaches. For the benefit of the reader, and since

we use [22] as one of the comparison models in experiments (referred to as SemiClf, Section

IV-D), we will elaborate on these differences in this section.
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Algorithm 1 Training by alternating two objectives
Input:

X : training input data

XA ⊂ X : the annotated part of the training input data

YA: class annotation of XA

X: an unannotated mini-batch of X

(XA,YA): an annotated mini-batch of XA and YA

Output:

Z: feature map of the mini-batch X at the end of the decoder

Ŷ: created pseudo-label of the mini-batch X

PA: class prediction of the mini-batch XA

Procedure:

for (X,XA,YA) ∈ (X , XA, YA) do

– Compute Z by processing X through the model

– Create pseudo-label Ŷ by clustering the principal components of Z

– Compute wcls with respect to Ŷ

– Append conv1 at the end of the decoder

– Update the model end-to-end using (X, Ŷ) and the unsupervised clustering objective in

Eq.(2) with gradient descent

– Replace conv1 by conv2

– Compute PA by processing XA through the model

– Compute wseg with respect to PA

– Update the model end-to-end using (XA, YA) and the supervised segmentation objective

in Eq.(3) with gradient descent

end for

SemiClf [22] is an image classification method, which is also semi-supervised by design, built

around two alternating objective functions. However, this semi-supervised algorithm has some

critical drawbacks. The minimum patch size that the method can classify is 32 × 32 intensity

pixels. This is far too coarse-grained to provide information at a pixel level. Second, the training

procedure is inefficient. During training, the method samples the patches to tackle the imbalance
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in the cluster size. The sampling hinders mini-batch training, degenerating training efficiency.

We highlight benefits of our new semantic segmentation method below.

a) Obtaining fine-grained segmentation maps: SemiClf [22] classifies echosounder patches

with a shape of 32 × 32 × 4 into three classes using the modified architecture of VGG-16

[60], where 4 in the patch shape indicates the number of frequency channels. The architecture

corresponds to an encoder of the neural networks. The result can be interpreted as a coarse-

grained segmentation, where the minimum resolution of prediction is equal to the patch shape.

On the contrary, our method leverages the modified U-Net architecture [23], providing a fine-

grained segmentation where the minimum resolution is 1 × 1 × 4.

Training the CNN for semantic segmentation is much more challenging than the one for

classification because the large and sophisticated architecture may hinder the backpropagation

of the gradient to the other end of the network. We leverage the coupled architecture of encoder

and decoder using dilations and concatenation functions to facilitate the backpropagation of the

gradient, as suggested in U-Net. In addition, we simplify the data preprocessing by avoiding

applying the criteria for determining which class each patch belongs to, which is required for

the classification task.

b) Annotation-free class-rebalancing weight: Our method utilizes the cross-entropy loss

for both the unsupervised and supervised learning schemes. However, the cross-entropy loss

does not account well for imbalanced classes as it sums over all the intensities [61]. A common

approach to tackle the class imbalance problem is to allocate class importance to mitigate the

imbalance based on the class distribution. This includes rebalancing the class weights [62]–

[64] and regulating the learning frequency by sampling [22], [53], [65]. Table I shows that the

echosounder data is severely class-imbalanced to the given classes, where more than 99 percent

of the backscattering intensities belong to the background (BG) class consisting of the water

and seabed features. The supervised segmentation objective, therefore, should deal with the class

imbalance problem in the echosounder data.

The unsupervised clustering objective should also tackle the class imbalance problem. The

clustering approaches based on DeepCluster [53] can result in a trivial solution, such as empty

clusters or immensely larger clusters than their average size. This causes the imbalance among

the pseudo-classes, hindering the CNN to address the structured representation. To tackle the

imbalance, approaches based on DeepCluster [22], [53] purposely equalize the cluster size

by sampling to uniformly distribute the pseudo-classes. For the segmentation task, however,
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sampling pixels to create the class-balanced pseudo-labels is not a strategic choice in terms of

the learning efficiency as the discarded pixels may create a mask in the pseudo-label, hindering

end-to-end mini-batch training.

Hence, we apply the class-rebalancing weight technique to the objective functions to bypass

the sampling procedure. The weight leverages the number of predictions to each pseudo-class

or class attribute instead of leveraging the available class annotation, differentiating our method

from the previous studies [5], [22]. The class-rebalancing weight wcls,k for the unsupervised

clustering objective Lcls in Equation (2) is depicted as:

wcls,k =
ŵcls,k∑
k∈K ŵcls,k

, where ŵcls,k =
N

KNk

. (4)

In this expression, N represents the total number of pseudo-labels in a mini-batch. K represents

the number of pseudo-classes or clusters that we predefined. Nk represents the number of pseudo-

labels of the pseudo-class k, where the sum over the K pseudo-classes is equal to N (N =∑
k∈K Nk). Equation (4) indicates that the pseudo-classes larger than the average size N/K are

penalized by the smaller weight than the other classes.

In this study, rather than forcing the balance in a few available annotations, we introduce the

class-rebalancing weight wseg,c for the supervised segmentation objective Lseg in Equation (3)

depicted as:

wseg,c =
ŵseg,c∑
c∈C ŵseg,c

, where ŵseg,c =
N

CNc

. (5)

In this expression, C represents the number of classes in the annotated data. Nc represents

the number of prediction of the class c, where the sum over the C classes is equal to N

(N =
∑

c∈C Nc). Note that we count Nc from the prediction of the model rather than the

available annotation to avoid the deterministic weight values, resulting in the annotation-free

class rebalancing weight.

IV. EXPERIMENT

The purpose of the experiments is to explore the robustness of the proposed method in the

semi-supervised learning environment that exploits limited annotations and, at the same time,

the contribution of the unannotated data. We evaluate our method by comparing it with other

segmentation models applied for the analysis of the echosounder data, where the evaluation

metrics include prediction accuracy, F1-score, confusion matrix, Cohen’s kappa [66], and AUC-

ROC (Area Under the Curve - Receiver Operating Characteristics) [67].
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TABLE I

OVERVIEW OF THE ECHOSOUNDER DATA USED FOR TRAINING AND TEST/VALIDATION

Year Training set (2016-2017) Test set (2019)

No.patches 200 60

The number of backscattering intensities per class (proportion)

BG 12,995,258 (0.9914) 3,904,023 (0.9928)

SE 61,018 (0.0047) 11,776 (0.0030)

OT 50,924 (0.0039) 16,361 (0.0042)

Total 13,107,200 (1.0000) 3,932,160 (1.0000)

Fig. 3. Five pairs of the training patches. The annotation map (leftmost) and the echosounder data for each frequency channel

are shown. The colors in the annotation map indicate the classes: background (BG) in white, other fish species (OT) in red, and

sandeel (SE) in blue. The horizontal yellow line at the lower part of the echosounder data is the boundary between water and

the seabed. Note that some patches do not include any fish pixel as a result of random patch extraction.

A. Data setup

We leverage the echosounder data from 2016-2017 to train the CNN-based segmentation model

and the trained model is evaluated using the echosounder data from 2019. The size of the input

echosounder patches is 256 × 256 × 4, where 4 indicates the number of echosounder channels
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(18, 38, 120, 200 kHz). We randomly extract the echosounder patches from the echosounder

data. 200 patches from the echosounder data between 2016-2017 is used for the training set,

and 60 patches from the echosounder data in 2019 is used for the test set. In addition to those

sets, we extract 30 patches for the validation set from the echosounder data between 2016-2017

to tune the hyperparameters. There is no overlap among the patches. The model output is the

segmentation map of the corresponding input, segmented by the three given classes. Table I and

Figure 3 show respectively a subset of the training patches and the general information of the

training and test sets.

B. Annotation ratio

To explore the impact of our semi-supervised method, we compute the annotation ratio, which

measures the ratio of the number of annotated patches to the number of the entire set of training

patches. Six ratios are studied, namely, 1.00, 0.40, 0.35, 0.30, 0.25, and 0.20. The annotation

ratio of 1.00 represents a fully supervised setting, where 200 training patches are fully annotated.

The annotation ratio of .20 takes the extreme semi-supervised case in this study, where 40 out

of 200 training patches are annotated while the remaining 160 patches are unannotated.

C. Training configuration

The following training configuration is shared for all experiment setups. The model learns by

mini-batch training, where the batch size Bs is set to 2 considering the computational resource.

Thus the number of feature representations in a mini-batch N is 131,072 (2 × 256 × 256). The

Adam optimizer [68] with learning rate 3 × 10−5, beta (0.9, 0.999), and weight decay 10−5 is

applied. The training is iterated to 500 epochs for all experiments, applying early stopping [69]

on the condition that the accuracy is not improved for 100 epochs. For PCA, we choose the

first 32 principal components shown in Equation (1) as they capture most of the variance of the

data. Three prediction classes are given (C = 3); background (BG), sandeel (SE), and other fish

species (OT).

Regarding the choice of the number of clusters K, we choose K = 512 after testing a set

of different Ks. Table II exemplifies one of the tests when the annotation ratio is 0.20, where

the AUC-ROC value of SE class (0.8306), prediction accuracy of BG and SE classes (BG

accuracy 0.9861; SE accuracy 0.5312), Cohen’s kappa (0.3449), and F1 score (0.9856) achieve

the highest when K = 512. As addressed in the DeepCluster work [53], the number of cluster K
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TABLE II

PERFORMANCE COMPARISON REGARDING DIFFERENT KS AT THE ANNOTATION RATIO OF .20

0.20 No.clusters (K) 256 512 1024 2048

BG 0.7582 0.8672 0.9407 0.9258

AUC-ROC SE 0.7033 0.8306 0.7075 0.7585

OT 0.7873 0.7851 0.8559 0.6523

BG 0.9850 0.9861 0.9809 0.9847

Accuracy SE 0.4628 0.5312 0.4731 0.5166

OT 0.4657 0.5224 0.5817 0.4881

Kappa 0.2991 0.3449 0.3045 0.3374

F1 0.9844 0.9856 0.9828 0.9849

does not have a significant impact on the performance if we cluster the feature representations

with a sufficiently large number of clusters compared to the number of classes. We tune those

hyperparameters using the validation set. All the code is implemented in PyTorch [70].

D. Validation Methods

Our proposed method, PredKlus, is designed specifically to exploit the intrinsic nature of

unannotated data, as well as to enforce class structure by supervision, all while handling the

inherent class-imbalance of echosounder data by class-rebalancing weights. One could envision

other approaches for exploiting unannotated data in semantic segmentation for acoustic target

detection.

As the first comparison model to highlight this, we re-implement a recently published work

for generic semi-supervised semantic segmentation [71] for our specific task of acoustic target

classification. This method, which we refer to as SemiCPS, also aims to integrate pseudo-class

predictions (unsupervised) to the class predictions (supervised) by introducing an additional aux-

iliary segmentation network mirroring the main segmentation network architecture with different

initializations.

SemiCPS intends to encourage high similarity between the predictions of the two networks

with different initialization for the same input image. For the annotated input, each network

is individually trained in a supervised manner. For the unannotated input, the main network

first creates the class prediction map by processing the input. This prediction map becomes the
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pseudo-label that will supervise the auxiliary network. Once the auxiliary network is updated by

the pseudo-label, the main network is also supervised by the prediction map from the auxiliary

network.

With SemiCPS, we implicitly explore how the unsupervised clustering objective affects the

predictive performance when data are noisy. Due to the unpredictable underwater nature, the

features between the target class and the non-target are visually indistinguishable in some

echosounder data. This may lead the mirrored network of SemiCPS to generate incorrect pseudo-

labels, which are tied to the supervision of the main network. If it eventually repeats, none of

the two networks can make correct predictions. On the other hand, the pseudo-labels in our

proposed method are leveraging the internal structure of the dataset and are not tied to the

class supervision. This makes our proposed approach more robust against noisy data, such as

the echosounder data. As we will show in Section V, SemiCPS does not compare favorably

to our approach. We believe this to be due to an inability to exploit the intrinsic nature of the

unannotated data leading to a propagation of errors induced by the pseudo-labeling due to the

noisy nature of the data. This will be further discussed in Section V-A.

The second comparison model is the semi-supervised patch classification method [22], referred

to as SemiClf, where both the annotated and the unannotated parts are involved in the analysis.

This model learns from a small input patch of size 32 × 32 × 4, and classifies each patch

to given classes leveraging the architecture of the modified VGG-16 [60]. We train SemiClf

using the same training set, after splitting one provided echosounder input (256 × 256 × 4)

into 64 small patches. In the inference phase, on the other hand, we extract the small patches

with stride of one pixel only, resulting in a fine-grained prediction map. A voting mechanism

determines the class for each pixel, which is based on the class prediction frequency among the

overlapping small patches. This significantly increases the computational complexity of SemiClf,

but provides a pixel-level comparison between all methods.

The third comparison model is the fully supervised segmentation method [5], referred to as

SupSeg in this study. This utilizes the same CNN architecture and the supervised segmentation

objective as our proposed method, and provides the class prediction of each backscattering

intensity. But it does not exploit either the unannotated part of the data or the unsupervised

clustering objective. For semi-supervised settings where the annotation ratios are smaller than

one, this fully supervised method ignores the unannotated part and learns from the annotated

part of the training set, which is partially available.
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TABLE III

MODEL PERFORMANCE COMPARISON WITH RESPECT TO AUC-ROC VALUE AND CLASS ACCURACY

Anno. Class AUC-ROC Accuracy

ratio Ours SupSeg SemiClf SemiCPS Ours SupSeg SemiClf SemiCPS

BG 0.8672 0.8331 0.7870 0.6369 0.9861 0.9833 0.7105 0.8472

0.20 SE 0.8306 0.6576 0.8496 0.6229 0.5312 0.4813 0.6867 0.3253

OT 0.7851 0.6816 0.4668 0.1991 0.5224 0.4906 0.0146 0.0000

BG 0.8499 0.8457 0.8390 0.6510 0.9880 0.9877 0.7748 0.9851

0.25 SE 0.7952 0.7251 0.7606 0.5792 0.5290 0.5120 0.1208 0.1416

OT 0.7879 0.7762 0.8387 0.3886 0.5340 0.5271 0.6726 0.0000

BG 0.9148 0.8763 0.9019 0.7468 0.9856 0.9851 0.8530 0.9155

0.30 SE 0.8387 0.8052 0.8240 0.6005 0.6282 0.6080 0.6639 0.3295

OT 0.8423 0.7744 0.7792 0.6834 0.5326 0.5231 0.0501 0.2115

BG 0.9385 0.8474 0.8666 0.7945 0.9842 0.9857 0.7444 0.8859

0.35 SE 0.8687 0.7977 0.7770 0.8159 0.6609 0.6128 0.5938 0.5670

OT 0.8930 0.8856 0.8103 0.5836 0.6419 0.6399 0.1329 0.1792

BG 0.9097 0.9015 0.8446 0.8455 0.9811 0.9857 0.9534 0.8846

0.40 SE 0.8840 0.8103 0.8256 0.8539 0.6304 0.6238 0.3769 0.5671

OT 0.8621 0.8128 0.7968 0.7572 0.7307 0.6029 0.1748 0.3226

BG 0.9262 0.8696 0.8651 0.9088 0.9888 0.9886 0.8602 0.8687

1.00 SE 0.8705 0.8619 0.8221 0.8634 0.6779 0.6076 0.3420 0.5247

OT 0.9025 0.8285 0.8135 0.9045 0.7461 0.7180 0.4489 0.6548

TABLE IV

MODEL PERFORMANCE COMPARISON WITH RESPECT TO COHEN-KAPPA AND F1 SCORE

Anno. Cohen-kappa F1 score

ratio Ours SupSeg SemiClf SemiCPS Ours SupSeg SemiClf SemiCPS

0.20 0.3449 0.3267 0.0191 0.0183 0.9856 0.9843 0.8208 0.9047

0.25 0.3756 0.3747 0.0383 0.0454 0.9869 0.9868 0.8634 0.9778

0.30 0.3579 0.3558 0.0571 0.0560 0.9857 0.9854 0.9107 0.9436

0.35 0.3774 0.3887 0.0306 0.0515 0.9855 0.9862 0.8448 0.9276

0.40 0.3565 0.3878 0.0951 0.0664 0.9841 0.9863 0.9638 0.9277

1.00 0.4796 0.4540 0.0596 0.0770 0.9889 0.9885 0.9143 0.9194
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V. RESULT AND DISCUSSION

Our method and three comparison models, e.g. SupSeg [5], SemiClf [22] and SemiCPS [71],

are evaluated by the various performance measures using the test echosounder data specified

in Table I. The measures include AUC-ROC value and the class prediction accuracy for each

class and annotation ratio (Table III), Cohen’s kappa (kappa), and F1 score regarding each

annotation ratio (Table IV). The area under the ROC curve is AUC, where a higher AUC indicates

better segmentation performance. Regarding the class prediction accuracy, note that the SE class

achieves the lowest prediction accuracy than any other class for the many setups. This indicates

that the SE class is a conservative estimate [22].

In addition to these measures, the confusion matrix and the corresponding ROC curve for each

setup are computed for the comparison, as shown in Figures 4-9. For the confusion matrices,

each row of these confusion matrices sums to one, indicating the ground truth of the prediction.

Each column illustrates the class prediction of the method. The first column and row indicate

the BG class, the second and the third columns and rows denoting the SE class and the OT

class respectively. For the ROC curves, the vertical axis indicates a true-positive rate while the

horizontal axis shows a false-positive rate. For the visual comparison, we provide the prediction

map of the test data in Figures 10-12, where four parts of the echosounder data in 2019 and

their prediction maps are visualized. Overall, the results show that our semi-supervised method

outperforms the comparison models throughout annotation ratios.

A. Comparison to semi-supervised segmentation method using pseudo-labels (SemiCPS)

Tables III-IV show that our proposed method outperforms SemiCPS through the entire eval-

uation metrics in the semi-supervised setups containing the annotation ratios of 0.20-0.40. The

greatest performance difference is observed at the annotation ratio of 0.20, which is the most

extreme semi-supervised setup. Our method achieves the kappa score of 0.3449, which is 18.8

times greater the kappa score of SemiCPS (0.0183).

The prediction maps in Figure 10 also visually validate the outperforming results of our

proposed method. SemiCPS does not make predictions close to the fish patterns for the annotation

ratios of 0.20-0.25, but tends to capture the fish class patterns from the annotation ratios of 0.30

and higher. However, quite a few fish patterns are still misclassified to the BG class, yielding

a smaller prediction area and underperforming results than our proposed method. Our proposed

method, in contrast, tends to capture most of the major fish patterns on the prediction map from
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the annotation ratio of 0.20. Although the prediction map appears noisy due to misclassification

of small clutter patterns at low annotation ratios, the noise is filtered out as the annotation ratio

increases and shows a good prediction map close to the ground truth and the input. We discover

the same visual trends in Figures 11-12.

B. Comparison to semi-supervised patch-based segmentation (SemiClf)

Compared to SemiClf [22], our proposed method outperforms throughout the measures and

setups. We argue that the novelties of our method, such as the learning mechanism for the fine-

grained segmentation and the annotation-free class-rebalancing technique, contribute to achieving

the surpassing result by addressing the shortcomings of patch-based SemiClf. The kappa scores

contrast the difference nicely, where ours achieves 18.3 times greater scores than SemiClf with

the annotation ratio of 0.20 (ours 0.3449; SemiClf 0.0191).

In addition to the poor prediction maps shown in Figures 10-12, another critical drawback

of SemiClf is misclassification of the seabed feature, which is known for a considerably higher

intensity than the other fish classes [5]. The seabed feature is marked with a distinct yellow

horizontal line in the input echosounder data. As shown in the prediction maps, SemiClf and

SemiCPS predict the seabed as one of the fish classes (blue or red) throughout the annotation

ratios. In contrast, our method learns the seabed feature and correctly predicts it to BG class in

white as intended.

C. Comparison to fully supervised method (SupSeg)

We compare the result of our method to SupSeg [5], to investigate how the unsupervised

clustering objective and the unannotated data improve the predictive performance. Overall,

our proposed method outperforms SupSeg through the entire annotation ratios for the entire

AUC-ROC values and the SE and OT class accuracies in Table III. The results indicate that

the unsupervised clustering objective improves the performance of the segmentation task by

effectively exploiting the structured representation from both the unannotated data and the

available annotated data.

Note that our proposed method outperforms SupSeg for the annotation ratio of 1.00 (fully-

supervised case). With this result, we argue that our proposed method is generic and outperforms

the conventional fully-supervised learning methods, such as SupSeg. Alternating two objective

functions are applicable to the fully-supervised case, which facilitates the interconnection of the
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two objectives to make good use of the annotated data based on the clustering structure. By

the iteration, the datapoints in each cluster gradually share the dominant class annotation, and

eventually have the same class prediction, approximating the decision boundaries that SupSeg

achieves to some extent.

In Table IV, we find two inconsistent cases for the annotation ratios of 0.35 and 0.40, where

SupSeg achieves greater Kappa and F1 scores. However, we argue that this result does not

undermine the robustness of our proposed method. Instead, we believe that SupSeg is biased to

make more predictions for the BG class, where the bias is related to a severe class imbalance in

the training data, especially in the increased part of the annotated data. The prediction accuracy

of the BG class for these annotation ratios validates our reasoning, where SupSeg achieves better

accuracy than our proposed method for these annotation ratios (SupSeg 0.9857, ours 0.9842 with

the annotation ratio of 0.35; SupSeg 0.9811, ours 0.9857 with the annotation ratio of 0.40).

On the other hand, the prediction accuracies of two fish classes do not seem to increase as

much as it increases in our method (ours 0.6609, SupSeg 0.6128 with the annotation ratio of

0.35 and the SE class accuracy; ours 0.6304, SupSeg 0.6238 with the annotation ratio of 0.40

and the SE class accuracy; ours 0.6419, SupSeg 0.6399 with the annotation ratio of 0.35 and

the OT class accuracy; ours 0.7307, SupSeg 0.6029 with the annotation ratio of 0.40 and the

OT class accuracy). Through visual inspection of the annotated part of the training data, we are

able to obtain other grounds for our argument.

When performing the visual inspection of the increased part of the training set between the

annotation ratio of 0.30 and 0.35, where ten input-annotation data pairs are increased, we discover

that five out of ten data pairs consist of only BG class pixels without any fish class pixel.

Analogously, we discover that six out of ten data pairs consist of only BG class pixels without

any fish class pixel between the annotation ratio of 0.35 and 0.40. For the entire training data,

the case that no fish intensity pixels are obtained in the input takes about 20 percent of the

training data on average. Hence, we argue that the class imbalance found with these annotation

ratios is more severe than the other cases and causes the prediction bias towards the BG class

for the SupSeg case.

D. Confusion matrix and ROC curve

Figures 4-9 compare our proposed method to other comparison models using confusion

matrices and ROC curves. When comparing the diagonal components of the confusion matrices
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Fig. 4. The confusion matrices and the corresponding AUC-ROC plots of the annotation ratio of 0.20.
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Fig. 5. The confusion matrices and the corresponding AUC-ROC plots of the annotation ratio of 0.25.
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Fig. 6. The confusion matrices and the corresponding AUC-ROC plots of the annotation ratio of 0.30.

BG

SE

OT

BG SE OT BG SE OT BG SE OT BG SE OT

A
ct

u
a

l

Predicted Predicted Predicted Predicted
Ours SupSeg SemiClf SemiCPS

False Postive Rate

0.0 0.2 0.4 0.6 0.8 1.0

Tr
u

e
 P

o
st

iv
e

 R
a

te

False Postive Rate

0.0 0.2 0.4 0.6 0.8 1.0

False Postive Rate

0.0 0.2 0.4 0.6 0.8 1.0

False Postive Rate

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0

ROC curve (macro)

ROC curve (BG)

ROC curve (SE)

ROC curve (OT)

ROC curve (macro)

ROC curve (BG)

ROC curve (SE)

ROC curve (OT)

ROC curve (macro)

ROC curve (BG)

ROC curve (SE)

ROC curve (OT)

ROC curve (macro)

ROC curve (BG)

ROC curve (SE)

ROC curve (OT)

Fig. 7. The confusion matrices and the corresponding AUC-ROC plots of the annotation ratio of 0.35.
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Fig. 9. The confusion matrices and the corresponding AUC-ROC plots of the annotation ratios of 1.00.
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visually, our proposed method shows more distinct diagonal components than the other models.

This implies that (1) our proposed method can be seen to outperform the comparison model in

terms of the class accuracy as illustrated in Table III; (2) our proposed method also achieves

lower false-positive rates within fish classes compared to other models when having a deeper

look at the diagonal components of the SE and OT classes (second and third row and column).

For example, comparing the false-positive rate of SE prediction of the OT class ground truth,

shown in the second column and the third row of the confusion matrices, ours achieves lower

false-positive rates throughout the semi-supervised setups. This result is consistent with the false-

positive rate of OT prediction of the SE class ground truth, shown in the third column and the

second row of the matrices.

The ROC curve shows the trade-off between true-positive and false-positive rates. The curves

indicate that segmentation models with curves closer to the top-left corner perform better,

resulting in greater area under the curve (AUC) as depicted in Table III. The results in the

curves and the AUC values validate the outperforming result of our method.
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Fig. 10. Prediction maps of the test echosounder data with respect to the annotation ratios. The colors in the annotation map

indicate the classes: background (BG) in white, other fish species (OT) in red, and sandeel (SE) in blue.
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Fig. 11. Prediction maps of the test echosounder data with the annotation ratio of 0.20, 0.25, and 0.30. The colors in the

annotation map indicate the classes: background (BG) in white, other fish species (OT) in red, and sandeel (SE) in blue. (a)

depicts the case where the SE class is dominant, whereas (b) and (c) shows the case where the OT class is dominant.
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Fig. 12. Prediction maps of the test echosounder data with the annotation ratio of 0.35, 0.40, and 1.00. The colors in the

annotation map indicate the classes: background (BG) in white, other fish species (OT) in red, and sandeel (SE) in blue. (a)

depicts the case where the SE class is dominant, whereas (b) and (c) shows the case where the OT class is dominant.
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VI. CONCLUSION

In this paper, we propose a novel semi-supervised deep learning method for semantic seg-

mentation of echosounder data. Our method (1) considerably reduces the dependency on the

annotated data, achieving comparable results with the fully supervised segmentation method [5],

by leveraging 40 percent of the annotated data in addition to unannotated data. Our method

also (2) outperforms the other semi-supervised methods for echosounder data [22], [71]. Our

methodological novelty is to (3) take advantage of deep clustering to exploit the underlying

structure of the training data regardless of the annotation in a semi-supervised learning scheme.

In addition, our method (4) is end-to-end and mini-batch trainable, and (5) regulates the class

imbalance based on the model prediction without leveraging the annotated part of data. The

rigorous and extensive experiments validate the robustness of the proposed method, where various

performance measures are introduced.

Our proposed method is generic and applicable to other fish species with a small amount

of annotated echosounder data. To the best of our knowledge, this is the first semi-supervised

semantic segmentation paper for the echosounder data analysis based on deep learning. The

promising results imply that our proposed method can reduce the expensive costs required for

the annotation. The performance can be improved by utilizing semantic information, e.g., a

simple classifier that can exclude the background class pixels when collecting the echosounder

data.

In future work, we intend to explore the uncertainty of the segmentation results to improve

the interpretability of the model prediction. As a further example of future work, we intend to

extend our method to take the uncertainty into account in order to create more crisp and clear

decision boundaries among the clusters when the pseudo-labels are created.
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