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a b s t r a c t 

The lack of labeled data is a key challenge for learning useful representation from time series data. How- 

ever, an unsupervised representation framework that is capable of producing high quality representations 

could be of great value. It is key to enabling transfer learning, which is especially beneficial for medical 

applications, where there is an abundance of data but labeling is costly and time consuming. We propose 

an unsupervised contrastive learning framework that is motivated from the perspective of label smooth- 

ing. The proposed approach uses a novel contrastive loss that naturally exploits a data augmentation 

scheme in which new samples are generated by mixing two data samples with a mixing component. 

The task in the proposed framework is to predict the mixing component, which is utilized as soft tar- 

gets in the loss function. Experiments demonstrate the framework’s superior performance compared to 

other representation learning approaches on both univariate and multivariate time series and illustrate 

its benefits for transfer learning for clinical time series. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Learning a useful representation of time series without labels is 

 challenging task. Nevertheless, time series are a typical data type 

n numerous domains where the lack of labeled data is a common 

hallenge. Particularly in the medical domain there can often be an 

bundance of data but labeling can be costly and challenging [1] . 

earning useful representations from unlabeled data would be of 

reat benefit in such scenarios. In particular, it could enable trans- 

er learning for clinical time series. Transfer learning is the practice 

f transferring knowledge from a source domain to a target domain 

2] . Such a technique enables researchers to exploit large unlabeled 

atasets to train more robust and precise systems on small labeled 

atasets. 

Learning useful representations is an active area of research in 

achine learning [3,4] , with encouraging results in recent works 

n image representation learning [5–7] . Many of such recent works 

ave used contrastive learning for learning useful features, and 
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hese works exploits prior information about noise invariances in 

he image data. However, time series data constitute a highly het- 

rogeneous data source, and invariances can differ completely be- 

ween different datasets. 

Contrastive learning is a type of self-supervised representation 

earning where the task is to discriminate between different views 

f the sample, where the different views are created through data 

ugmentation that exploit prior information about the structure in 

he data. Data augmentation is typically performed by injecting 

oise into the data. Recent advances in contrastive learning have 

een particularly prominent for image data, as there exists a wide 

ange of applicable augmentation schemes [5,8] that are suitable 

or natural images. On the other hand, data augmentation for time 

eries based on the injection of noise can be more challenging be- 

ause of the heterogeneous nature of time series data and the lack 

f generally applicable augmentations. 

This paper introduces a novel self-supervised learning frame- 

ork that naturally exploits a recent data augmentation scheme 

alled mixup [9] . The mixup data augmentation scheme creates 

n augmented sample through a convex combination of two data 

oints and a mixing component. Such an approach allows for a 

atural generation of new data points, as augmented samples are 
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Fig. 1. The beta distribution for different values of α. As α approaches 1 the dis- 

tribution tends towards a uniform distribution. Larger α results in more mixing of 

samples. 
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enerated through a combination of samples from the data dis- 

ribution. In the proposed framework, the task is to predict the 

trength of the mixing component based on the two data points 

nd the augmented sample, which is motivated by recent research 

n label smoothing [10] . Label smoothing refers to the concept of 

dding noise to the labels, such that the targets are no longer hard 

 and 1 targets, but soft targets in the range between 0 and 1. 

his has been shown to increase performance and reduce over- 

onfidence in deep learning-based approaches [10] . The proposed 

ramework shows encouraging results when evaluated on the UCR 

11] and UEA [12] databases and compared to a number of base- 

ines. Furthermore, we show how the proposed method can be 

sed to enable transfer learning for clinical time series. Experi- 

ents illustrate that self-supervised pre-training can increase both 

erformance and convergence speed for deep learning-based clas- 

ification of clinical time series. 

Our contributions are: 

1. A novel contrastive learning framework that is motivated 

through the concept of label smoothing and is based on pre- 

dicting the amount of mixing between data points. 

2. An extensive evaluation of the proposed method with compari- 

son to a number of baselines. 

3. We show how the proposed method enables transfer learning 

clinical time series, which leads to an increase in performance 

when classifying echocardiograms. 

. Mixup contrastive learning 

We outline the proposed framework for contrastive represen- 

ation learning of time series. We propose a new contrastive loss 

hat naturally exploits the information from the data augmentation 

rocedure. Before we present our new contrastive learning frame- 

ork, we introduce some notation. Our presentation will be based 

n univariate time series (UTS), but is also extended to multivari- 

te time series (MTS) in the experiments. Let a UTS, x , be defined

s a sequence of real numbers ordered in time, x = { x (t) ∈ R | t =
 , 2 , . . . , T } , where t denotes each time step and T denotes the

ength of the UTS. Vectorial data will be denoted in lowercase bold 

 . 

A common approach to contrastive learning is to use a neu- 

al network-based encoder to transform the data into a new rep- 

esentation [5] . The encoder is trained by passing different aug- 

entations of the same sample through the encoder and a pro- 

ection head, before applying a contrastive loss. The goal of con- 

rastive learning is to embed similar samples in close proximity by 

xploiting the invariances in the data. After training, the task de- 

endent projection head is discarded and the encoder is kept for 

own-stream tasks. 

The data augmentation scheme used to create different views 

f the same sample is crucial for learning a useful representation. 

owever, care must be taken when determining the set of transfor- 

ations to apply. The potential invariances of time series are rarely 

nown in advance, and incautious application can result in a repre- 

entation where unalike samples are embedded in close proximity 

13] . For instance, a transformation like rotation that is common 

o apply for natural images can completely change the nature of a 

ime series by changing the trend of the data. 

In this work, we opt for a data augmentation scheme based on 

reating new samples through convex combinations of training ex- 

mples referred to as mixup [9] . Given two time series x i and x j 
rawn randomly from our training data, an augmented training ex- 

mple can be constructed as follows: 

˜ 
 = λx i + (1 − λ) x j . (1) 

Here, λ ∈ [0 , 1] is a mixing parameter that determines the 

ontribution of each time series in the new sample, where λ ∼
55 
eta (α, α) and α ∈ (0 , ∞ ) . The distribution of λ for different val- 

es of α is illustrated in Fig. 1 . The choice of this augmentation 

cheme is motivated by avoiding the need to tune a noise parame- 

er based on specific datasets but instead automatically generating 

ata samples based on the specific dataset. Moreover, the informa- 

ion in the mixing parameter λ can be exploited to produce a novel 

ontrastive loss that is described in the following section. In a nut- 

hell, the proposed framework is based on transforming the task 

rom predicting hard 0 and 1 targets to soft targets λ and 1 − λ. 

his is motivated by recent research on label smoothing that has 

hown how such regularization can lead to increased performance 

nd less overconfidence in deep learning [10] . 

.1. A novel contrastive loss for unsupervised representation learning 

f time series 

We propose a new contrastive loss function that naturally ex- 

loits the information from the mixing parameter λ. At each train- 

ng iteration, a new λ is drawn randomly from a beta distribution, 

nd two minibatches of size N, { x (1) 
1 

, . . . , x (1) 
N 

} and { x (2) 
1 

, . . . , x (2) 
N 

} ,
re drawn randomly from the training data. Applying Eq. (1) , the 

wo minibatches are used to create a new minibatch of augmented 

amples, { ̃ x 1 , . . . , ̃  x N } . All three minibatches are passed through 

he encoder, f (·) , that transforms the data into a new repre- 

entation, { h 

(1) 
1 

, . . . , h 

(1) 
N 

} , { h 

(2) 
1 

, . . . , h 

(2) 
N 

} , and { ̃  h 1 , . . . , ̃
 h N } , which

an be used for down-stream tasks. Next, the new representa- 

ions are again transformed into a task-dependent representation, 

 z (1) 
1 

, . . . , z (1) 
N 

} , { z (2) 
1 

, . . . , z (2) 
N 

} , and { ̃ z 1 , . . . , ̃  z N } , by the projection

ead, g(·) , where the contrastive loss is applied. The framework is 

llustrated in Fig. 2 . Using this notation, our proposed contrastive 

oss for a single instance is applied on the representation produced 

y the projection head and is defined as: 

 i = −λlog 
exp ( 

D C ( ̃ z i , z 
(1) 
i 

) 

τ ) 

N ∑ 

k =1 

(
exp ( 

D C ( ̃ z i , z 
(1) 
k 

) 

τ ) + exp ( 
D C ( ̃ z i , z 

(2) 
k 

) 

τ ) 
)

− (1 − λ) log 
exp ( 

D C ( ̃ z i , z 
(2) 
i 

) 

τ ) 

N ∑ 

k =1 

(
exp ( 

D C ( ̃ z i , z 
(1) 
k 

) 

τ ) + exp ( 
D C ( ̃ z i , z 

(2) 
k 

) 

τ ) 
) , 
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Fig. 2. The proposed framework. Two minibatches are sampled randomly from the 

data and combined using Eq. (1) . All samples are passed though an encoder f (·) re- 

sulting in a representation that can be used for down-stream tasks. Next, this rep- 

resentation is transformed using a projection head g(·) into a representation where 

the proposed contrastive loss is applied. 
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here D C (·) denotes the cosine similarity and τ denotes a tem- 

erature parameter, as in recent works on contrastive learning [5] . 

he loss will be referred to as the MNT-Xent loss (the mixup 

ormalized temperature-scaled cross entropy loss). The proposed 

oss changes the task from identifying the positive pair of sam- 

les, as in standard contrastive learning, to predicting the amount 

f mixing. Moreover, neural networks are known to be overly 

onfident in predictions far from the training data [14] , but the 

roposed loss will discourage overconfidence since the model is 

asked with predicting the mixing factor instead of a hard 0 or 

 decision. 

. Experiments and results 

We evaluate the proposed framework on an extensive number 

f both UTS and MTS datasets, and compare against well known 

aselines. Also, we demonstrate how the proposed methodology 

nables transfer learning in clinical time series. 

.1. Evaluating quality of representation 

A common approach for evaluating the usefulness of an unsu- 

ervised contrastive learning framework is training a simple clas- 

ifier on the learned representation [15,16] . We use a 1-nearest- 

eighbor (1NN) classifier to evaluate quality of different represen- 

ations, as suggested by Dau et al. [11] . This is motivated by the

implicity of the 1NN classifier, which requires no training and 

inimal hyperparameter tuning. Furthermore, the 1NN classifier 

s highly dependent on the representation to achieve good per- 

ormance and is therefore a good indicator of the quality of the 

earned representation. The proposed methodology, referred to as 

ixup contrastive learning (MCL), is evaluated on the UCR archive 

11] , which consists of 128 UTS datasets, and the UEA archive [12] ,

hich consists of 30 MTS datasets. We compare with several base- 

ines that span different types of time series representations: 
56 
• Handcrafted features (HC): Extract the maximum, minimum, 

variance and mean value of each time series. This is an elemen- 

tary and well-known approach that will act as a simple base- 

line. 
• Raw input features (ED): Using the raw time series as input 

without any alterations. This will demonstrate if it is beneficial 

to transform the time series. 
• Autoencoder features (AE): A deep learning-based baseline us- 

ing an autoencoder framework. We use the same network as 

with the proposed method, and a mirrored encoder for the de- 

coder. The model is trained using a mean squared error recon- 

struction loss for 250 epochs. Autoencoder-based learning of 

features from time series with a reconstruction loss is a typi- 

cal approach in the literature [17,18] 
• Contrastive learning features (CL): A deep learning-based base- 

line based on the widely used SimCLR framework [5] . We use 

the same network as with the proposed method, but with dif- 

ferent data augmentation and the standard contrastive loss of 

[5] instead of the mixup contrastive loss. We consider two 

data augmentation techniques, gaussian noise with a variance 

of 0.25 (CL (σ = 0 . 25) ) and dropout noise with a dropout rate

of 0.25 (CL (ρ = 0 . 25) ). These noise parameters represent an 

average amount of noise suitable for most datasets. 

We use the fully convolutional network (FCN) proposed by 

ang et al. [19] as an encoder f for all contrastive learning ap- 

roaches reported in this work. The FCN consists of three convolu- 

ional layers, each followed by batch normalization [20] and a rec- 

ified linear unit activation function, and an adaptive average pool- 

ng layer. The convolutional layers consist of 128, 256, and 128 fil- 

ers from first to third layer. This choice is motivated by the FCN’s 

trong performance on a number of time series benchmark tasks 

ang et al. [19] and its simplicity. Specifically, the encoder rep- 

esentation will be the output of the average pooling layer. For 

he projection head g, we use a two-layer neural network with 

28 neurons in each layer and separated by a rectified linear unit 

on-linearity, inspired by Chen et al. [5] . All models are optimized 

sing the ADAM optimizer [21] for 10 0 0 epochs, with the tem- 

erature parameter τ is set to 0.5 as suggested by Chen et al. 

5] , and the α parameter set to 0.2 as suggested by Zhang et al. 

9] . Statistical significance is determined using a pairwise t -test, 

here bold numbers indicate significance at a significance level of 

.05. The accuracy and ranking of the learned features (AE, CL and 

CL) are based on the average across 5 training runs at the last 

poch. 

Table 1 displays the results of the evaluation of the quality of 

he representation obtained through different representation learn- 

ng approaches. Results on individual datasets are displayed in the 

ppendix. Table 1 shows that the simple HC baseline results in 

oor performance, even compared to no transformation of input 

ED). Furthermore, the learned CL feature baseline gives compara- 

le results to the ED features, while the AE features give a slight 

mprovement over the ED features. However, the learned features 

ased on the proposed framework gives the best performance on 

oth the univariate and the multivariate datasets. Fig. 3 shows 

 per dataset accuracy comparison of the proposed method with 

ll baselines. Each point in Fig. 3 represents the accuracy on one 

ataset from the UCR and UEA databases, with the baseline along 

he vertical axis and the MCL along the horizontal axis. The di- 

gonal line indicates where two methods perform equally. Points 

bove this line indicates that the baselines gives better perfor- 

ance and points below this line indicates that the MCL gives 

etter performance. Fig. 3 clearly shows that the majority of the 

oints lie below the diagonal line, which illustrates the superior 

erformance of the proposed method. Lastly, Fig. 4 shows a boxplot 

f the accuracy across all datasets in the UCR and UEA databases. 



K. Wickstrøm, M. Kampffmeyer, K.Ø. Mikalsen et al. Pattern Recognition Letters 155 (2022) 54–61 

Table 1 

Accuracy and ranking of a 1NN classifier on different representations averaged over all datasets. 

Results show that the representation obtained from the proposed method results in better perfor- 

mance across all metrics. 

UCR UEA 

Features Avg accuracy Avg ranking Avg accuracy Avg ranking 

HC 0.520 1.63 0.560 2.80 

ED 0.686 3.86 0.585 3.56 

AE 0.702 4.00 0.587 3.56 

CL (σ = 0 . 25) 0.666 3.41 0.573 3.16 

CL (ρ = 0 . 25) 0.660 2.99 0.570 3.06 

MCL 0.759 4.81 0.627 4.26 

Fig. 3. Accuracy on each dataset from the UCR and UEA databases. Each point represents the accuracy on one dataset, with the baseline along the vertical axis and the 

MCL along the horizontal axis. The diagonal line indicates where two methods have similar performance. Points above this line indicates that the baselines gives better 

performance and points below this line indicates that the MCL gives better performance. The figure shows that the proposed method provides superior performance to the 

baselines, as the majority of the points lie below the diagonal line. 

Fig. 4. Boxplot of accuracy across all datasets of the UCR and UEA databases. Fig- 

ure shows that the proposed framework produces representations that yield better 

performance at a more consistent rate. The whiskers indicated the lower and upper 

quartiles, with outliers indicated through black dots. 
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he figure corroborates Table 1 , and illustrates that the proposed 

ethod outperforms all other baselines. 

.2. Transfer learning for clinical time series 

We perform transfer learning for classification of echocardio- 

rams (ECGs) datasets with limited amount of training data, which 

s a typical scenario for many clinical time series datasets. First, we 

rain an encoder using the proposed contrastive learning frame- 

ork on a pretext task where a larger amount of data is avail- 

ble. We consider different domains for the pretext task, but with 

 similar amount of data. The pretext task datasets are the Synte- 
57 
etic Control (Synthetic), Swedish Leaf (Dissimilar), and ECG50 0 0 

Similar), all obtained from the UCR archive. Next, we use the 

eights of the encoder to initialize the weights of a supervised 

odel, in this case the FCN, and train the model using the stan- 

ard procedure. Additionally, a baseline is included where the 

eights are randomly initialized using He normal initialization 

22] . 

The results of the transfer learning experiments are presented 

n Table 2 . Using the pretrained weights obtained through the pro- 

osed contrastive learning framework leads to improved perfor- 

ance on most datasets. For the ECG200, the random initializa- 

ion gives the highest performance. This might be a results of the 

CG200 having the most training samples of the four datasets. Fur- 

hermore, Fig. 5 shows how the accuracy evolves during training, 

nd demonstrates how using pretrained weights can lead to faster 

onvergence and increased performance compared to random ini- 

ialization. Also note that the models with weights pretrained on 

he similar and dissimilar domain displays a degree of overfitting 

fter 50 epochs. At this point in the training, the loss has begun 

o saturate. Therefore, we believe that this overfitting might be a 

esult of the model being to fitted to the pretext task, which hurts 

he performance for the down-stream task. Such challenges could 

e addressed through techniques such as early stopping [23] or 

eavier regularization, which we consider a direction for future re- 

earch. 

Next, the results in Table 2 indicate that the domain of the pre- 

ext task is important for the quality of the pretrained weights. 

urprisingly, a pretext task from a dissimilar domain results in 

omparable results as a similar domain. It is natural to assume 

hat a pretext task within a similar domain would be beneficial, 

ut it is important to also consider the complexity of the data in 

he pretext task. In this case, the Swedish Leaf dataset is more 

omplex as it has more classes and a more erratic nature com- 

ared to the periodic ECG50 0 0 dataset. This might result in the 
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Table 2 

Accuracy on test data of ECG datasets with different initialization of the encoder weights. The number of train- 

ing samples in each dataset is denoted by N. Results show how using the weights trained through the proposed 

contrastive framework can increase performance, particularly when the number of training samples is small. 

Pretraining ECGFiveDays TwoLeadECG ECG200 CinCECGTorso 

N = 23 N = 23 N = 100 N = 40 

Random 0.989 ± 0.002 0.967 ± 0.004 0.874 ± 0.008 0.616 ± 0.033 

Synthetic 0.997 ± 0.001 0.985 ± 0.002 0.866 ± 0.014 0.644 ± 0.019 

Dissimilar 0.999 ± 0.001 0.987 ± 0.004 0.868 ± 0.010 0.715 ± 0.024 

Similar 0.998 ± 0.001 0.995 ± 0.001 0.842 ± 0.012 0.696 ± 0.022 

Fig. 5. Accuracy of a FCN with different encoder initialization on the CinCECGTorso 

test data. Scores are averaged over 5 independent training runs. The figure shows 

that the pretrained weights using the proposed framework leads to faster conver- 

gence and increased performance. 
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ncoder learning filters that can process more complicated data 

nd generalize better to different tasks. Moreover, using the en- 

oder trained on synthetic data also increased performance on 

ome datasets, which indicates that useful information can be ex- 

racted even from generated data. This can be helpful for tasks 

ith little data and no pretext task, as you can generate data and 

earn filters to initialize the model which might lead to a better 

epresentation. 

. Discussion and conclusion 

In this work, we have focused on contrastive learning of time 

eries representations through the injection of noise, motivated by 

he recent success of contrastive learning on image data. How- 

ver, a different line of research for contrastive learning of time se- 

ies representations is using temporal information to discriminate 

etween samples. Most recently, Franceschi et al. [24] achieved 

romising results by combining a convolutional neural network en- 

oder with a novel triplet loss, where temporal information was 

sed to perform negative-sampling. Banville et al. [25] proposed 

 self-supervised learning approach where an informative repre- 

entation was obtained by predicting whether time windows are 

ampled from the same temporal context or not. Hyvarinen and 

orioka [26] proposed a time-contrastive learning principle that 

ses the non-stationary structure of the data to learn a represen- 

ation where optimal discrimination of time segments is encour- 

ged, and demonstrated how the time-contrastive learning could 
58 
e related to nonlinear independent component analysis. Hyväri- 

en et al. [27] also proposed a generalized contrastive learning 

ramework with connections to nonlinear independent compo- 

ent analysis. Exploiting temporal information can be beneficial 

hen such information is discriminative but can also encounter 

hallenges when faced with periodic data, where noise-based ap- 

roaches might succeed. We envision that our noise-based ap- 

roached can be combined with temporal-based contrastive learn- 

ng to reap the benefits of both approaches, and consider such a 

ombination a promising line of future research. Lastly, a possible 

irection to improve the transfer learning part of our work is to 

nclude memory-based merging of features, as proposed by Ding 

t al. [28] . Such an approach could allow for samples from the 

ource and target domain to be merged and potentially increase 

erformance. 

This paper introduced a novel self-supervised framework for 

ime series representation learning. The framework exploits a re- 

ent augmentation technique called miuxp, in which new samples 

re generated through combinations of data points. The proposed 

ramework was evaluated on numerous datasets with encouraging 

esults. Furthermore, we demonstrated how the proposed frame- 

ork enables transfer learning for clinical time series with good 

esults. We believe that our proposed framework can be a useful 

pproach for time series representation learning. 
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ppendix A. Results on individual datasets 

Tables A .3 –A .5 displays the accuracy of all methods evaluated 

n the article on all datasets of the UCR and UEA databases, re- 

pectively. For the learning-based methods (AE, CL, and MCL), 

he scores represent the average accuracy across five indepen- 

ent training runs. Results for all 5 training runs and ranks on 

ndividual datasets are available at https://github.com/Wickstrom/ 

ixupContrastiveLearning along with code. 

https://github.com/Wickstrom/MixupContrastiveLearning
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Table A.3 

Accuracy of a 1NN classifier on UCR datasets starting with the letters A-R. For AE, CLG, CLD, and MCL, the results are 

the average across 5 different training runs. Datasets from A-R. 

Dataset HC ED AE CL (ρ = 0 . 25) CL (σ = 0 . 25) MCL 

ACSF1 0.58 0.54 0.50 0.76 0.75 0.90 

Adiac 0.41 0.61 0.58 0.54 0.55 0.68 

AllGestureWiimoteX 0.37 0.52 0.58 0.53 0.51 0.66 

AllGestureWiimoteY 0.38 0.57 0.55 0.58 0.55 0.73 

AllGestureWiimoteZ 0.30 0.45 0.46 0.41 0.41 0.62 

ArrowHead 0.65 0.80 0.81 0.61 0.63 0.82 

BME 0.56 0.83 0.83 0.67 0.63 0.98 

Beef 0.50 0.67 0.67 0.42 0.43 0.67 

BeetleFly 0.95 0.75 0.75 0.76 0.72 0.75 

BirdChicken 0.70 0.55 0.73 0.94 0.94 0.82 

CBF 0.66 0.85 0.95 0.99 1.00 0.94 

Car 0.42 0.73 0.73 0.48 0.48 0.78 

Chinatown 0.51 0.95 0.88 0.71 0.87 0.93 

ChlorineConcentration 0.45 0.65 0.53 0.46 0.45 0.66 

CinCECGTorso 0.50 0.90 0.90 0.52 0.52 0.72 

Coffee 0.57 1.00 1.00 0.96 0.96 0.94 

Computers 0.58 0.58 0.58 0.60 0.61 0.67 

CricketX 0.26 0.58 0.56 0.55 0.53 0.71 

CricketY 0.18 0.57 0.55 0.54 0.47 0.68 

CricketZ 0.26 0.59 0.56 0.60 0.52 0.72 

Crop 0.48 0.71 0.70 0.54 0.56 0.73 

DiatomSizeReduction 0.99 0.93 0.94 0.86 0.84 0.87 

DistalPhalanxOutlineAgeGroup 0.61 0.63 0.64 0.69 0.68 0.62 

DistalPhalanxOutlineCorrect 0.67 0.72 0.73 0.71 0.71 0.66 

DistalPhalanxTW 0.49 0.63 0.60 0.60 0.58 0.55 

DodgerLoopDay 0.31 0.55 0.57 0.41 0.44 0.49 

DodgerLoopGame 0.59 0.88 0.85 0.72 0.69 0.79 

DodgerLoopWeekend 0.81 0.99 0.99 0.91 0.87 0.95 

ECG200 0.72 0.88 0.90 0.80 0.77 0.87 

ECG5000 0.85 0.92 0.93 0.92 0.92 0.92 

ECGFiveDays 0.73 0.80 0.82 0.86 0.91 0.94 

EOGHorizontalSignal 0.29 0.42 0.45 0.36 0.36 0.44 

EOGVerticalSignal 0.17 0.44 0.38 0.26 0.25 0.38 

Earthquakes 0.64 0.71 0.70 0.63 0.64 0.69 

ElectricDevices 0.41 0.55 0.56 0.54 0.55 0.61 

EthanolLevel 0.27 0.27 0.29 0.32 0.32 0.51 

FaceAll 0.21 0.71 0.69 0.66 0.67 0.79 

FaceFour 0.41 0.78 0.79 0.63 0.81 0.85 

FacesUCR 0.34 0.77 0.77 0.76 0.79 0.91 

FiftyWords 0.13 0.63 0.59 0.38 0.37 0.60 

Fish 0.27 0.78 0.80 0.65 0.64 0.85 

FordA 0.53 0.67 0.67 0.81 0.79 0.88 

FordB 0.51 0.61 0.61 0.68 0.68 0.73 

FreezerRegularTrain 0.94 0.80 0.88 0.90 0.90 0.96 

FreezerSmallTrain 0.88 0.68 0.70 0.69 0.69 0.79 

Fungi 0.39 0.82 0.82 0.70 0.69 0.93 

GestureMidAirD1 0.13 0.58 0.58 0.29 0.28 0.56 

GestureMidAirD2 0.10 0.49 0.45 0.30 0.28 0.51 

GestureMidAirD3 0.11 0.35 0.34 0.18 0.16 0.30 

GesturePebbleZ1 0.34 0.73 0.71 0.69 0.68 0.68 

GesturePebbleZ2 0.35 0.67 0.63 0.58 0.58 0.65 

GunPoint 0.74 0.91 0.93 0.85 0.85 1.00 

GunPointAgeSpan 0.71 0.90 0.98 0.95 0.96 0.99 

GunPointMaleVersusFemale 0.82 0.97 1.00 0.98 0.96 1.00 

GunPointOldVersusYoung 1.00 0.95 1.00 1.00 1.00 1.00 

Ham 0.45 0.60 0.52 0.52 0.56 0.57 

HandOutlines 0.63 0.86 0.86 0.70 0.69 0.80 

Haptics 0.26 0.37 0.36 0.31 0.30 0.43 

Herring 0.55 0.52 0.56 0.51 0.50 0.57 

HouseTwenty 0.47 0.66 0.64 0.87 0.77 0.89 

InlineSkate 0.27 0.34 0.32 0.29 0.30 0.41 

InsectEPGRegularTrain 1.00 0.68 1.00 1.00 1.00 1.00 

InsectEPGSmallTrain 1.00 0.66 1.00 1.00 1.00 1.00 

InsectWingbeatSound 0.13 0.56 0.54 0.35 0.32 0.42 

ItalyPowerDemand 0.61 0.96 0.94 0.91 0.93 0.94 

LargeKitchenAppliances 0.56 0.49 0.47 0.73 0.74 0.74 

Lightning2 0.56 0.75 0.77 0.76 0.75 0.78 

Lightning7 0.42 0.58 0.62 0.55 0.58 0.72 

Mallat 0.38 0.91 0.92 0.85 0.84 0.83 

Meat 0.48 0.93 0.93 0.87 0.86 0.84 

MedicalImages 0.43 0.68 0.64 0.62 0.61 0.68 

MelbournePedestrian 0.42 0.85 0.94 0.85 0.85 0.93 

MiddlePhalanxOutlineAgeGroup 0.47 0.52 0.54 0.49 0.49 0.48 

MiddlePhalanxOutlineCorrect 0.64 0.77 0.75 0.73 0.73 0.67 

( continued on next page ) 
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Table A.3 ( continued ) 

Dataset HC ED AE CL (ρ = 0 . 25) CL (σ = 0 . 25) MCL 

MiddlePhalanxTW 0.42 0.51 0.49 0.45 0.47 0.49 

MixedShapesRegularTrain 0.43 0.90 0.90 0.60 0.60 0.92 

MixedShapesSmallTrain 0.44 0.84 0.83 0.54 0.53 0.84 

MoteStrain 0.74 0.88 0.84 0.85 0.84 0.88 

NonInvasiveFetalECGThorax1 0.34 0.83 0.82 0.57 0.61 0.84 

NonInvasiveFetalECGThorax2 0.40 0.88 0.87 0.68 0.69 0.88 

OSULeaf 0.37 0.52 0.51 0.66 0.61 0.87 

OliveOil 0.33 0.87 0.87 0.71 0.70 0.74 

PLAID 0.70 0.52 0.72 0.56 0.54 0.76 

PhalangesOutlinesCorrect 0.64 0.76 0.74 0.71 0.73 0.71 

Phoneme 0.09 0.11 0.12 0.19 0.19 0.22 

PickupGestureWiimoteZ 0.48 0.56 0.74 0.55 0.56 0.67 

PigAirwayPressure 0.51 0.06 0.09 0.33 0.30 0.31 

PigArtPressure 0.69 0.12 0.27 0.72 0.62 0.96 

PigCVP 0.63 0.08 0.14 0.44 0.42 0.85 

Plane 0.80 0.96 0.97 0.97 0.96 0.99 

PowerCons 0.92 0.93 0.98 0.94 0.93 0.90 

ProximalPhalanxOutlineAgeGroup 0.72 0.79 0.79 0.78 0.78 0.76 

ProximalPhalanxOutlineCorrect 0.68 0.81 0.78 0.75 0.77 0.80 

ProximalPhalanxTW 0.60 0.71 0.71 0.70 0.68 0.66 

RefrigerationDevices 0.45 0.39 0.39 0.49 0.46 0.48 

Rock 0.42 0.84 0.72 0.42 0.41 0.60 

Table A.4 

Accuracy of a 1NN classifier on UCR datasets starting with the letters S-Y. For AE, CLG, CLD, and MCL, the results are 

the average across 5 different training runs. 

Dataset HC ED AE CL (ρ = 0 . 25) CL (σ = 0 . 25) MCL 

ScreenType 0.39 0.36 0.37 0.41 0.42 0.48 

SemgHandGenderCh2 0.78 0.76 0.91 0.79 0.77 0.83 

SemgHandMovementCh2 0.47 0.37 0.69 0.58 0.56 0.60 

SemgHandSubjectCh2 0.56 0.40 0.84 0.68 0.66 0.68 

ShakeGestureWiimoteZ 0.62 0.60 0.81 0.84 0.83 0.91 

ShapeletSim 0.45 0.54 0.54 0.79 0.75 0.83 

ShapesAll 0.30 0.75 0.73 0.64 0.63 0.84 

SmallKitchenAppliances 0.52 0.34 0.39 0.67 0.67 0.71 

SmoothSubspace 0.81 0.91 0.81 0.87 0.87 0.92 

SonyAIBORobotSurface1 0.64 0.70 0.67 0.79 0.74 0.67 

SonyAIBORobotSurface2 0.65 0.86 0.85 0.83 0.85 0.83 

StarLightCurves 0.85 0.85 0.86 0.86 0.85 0.97 

Strawberry 0.70 0.95 0.94 0.86 0.86 0.96 

SwedishLeaf 0.34 0.79 0.79 0.86 0.84 0.90 

Symbols 0.39 0.90 0.89 0.83 0.77 0.94 

SyntheticControl 0.42 0.88 0.93 0.98 0.99 0.95 

ToeSegmentation1 0.63 0.68 0.69 0.80 0.78 0.90 

ToeSegmentation2 0.71 0.81 0.79 0.85 0.79 0.90 

Trace 1.00 0.76 0.80 0.89 0.86 1.00 

TwoLeadECG 0.67 0.75 0.70 0.75 0.72 0.90 

TwoPatterns 0.28 0.91 0.92 0.97 0.96 0.88 

UMD 0.94 0.76 0.76 0.86 0.85 0.97 

UWaveGestureLibraryAll 0.19 0.95 0.94 0.46 0.44 0.76 

UWaveGestureLibraryX 0.22 0.74 0.73 0.54 0.49 0.74 

UWaveGestureLibraryY 0.21 0.66 0.63 0.48 0.44 0.67 

UWaveGestureLibraryZ 0.22 0.65 0.64 0.53 0.50 0.70 

Wafer 0.95 1.00 0.99 0.98 0.98 0.99 

Wine 0.48 0.61 0.63 0.64 0.61 0.61 

WordSynonyms 0.17 0.62 0.58 0.39 0.39 0.61 

Worms 0.56 0.45 0.43 0.60 0.56 0.78 

WormsTwoClass 0.65 0.61 0.62 0.64 0.64 0.82 

Yoga 0.60 0.83 0.80 0.75 0.76 0.79 
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Table A.5 

Accuracy of a 1NN classifier on all UEA datasets. For AE, CLG, CLD, and MCL, the results are the average across 5 

different training runs. 

Dataset HC ED AE CL (ρ = 0 . 25) CL (σ = 0 . 25) MCL 

ArticularyWordRecognition 0.78 0.97 0.97 0.87 0.90 0.97 

AtrialFibrillation 0.13 0.27 0.24 0.23 0.31 0.17 

BasicMotions 1.00 0.68 0.97 1.00 0.98 1.00 

CharacterTrajectories 0.82 0.96 0.94 0.94 0.90 0.98 

Cricket 0.92 0.94 0.90 0.91 0.94 0.96 

DuckDuckGeese 0.50 0.28 0.41 0.36 0.34 0.47 

ERing 0.67 0.13 0.91 0.83 0.83 0.87 

EigenWorms 0.66 0.55 0.00 0.61 0.62 0.71 

Epilepsy 0.97 0.67 0.83 0.93 0.93 0.96 

EthanolConcentration 0.27 0.29 0.28 0.30 0.29 0.28 

FaceDetection 0.51 0.52 0.52 0.50 0.50 0.50 

FingerMovements 0.52 0.55 0.52 0.53 0.51 0.61 

HandMovementDirection 0.26 0.28 0.28 0.25 0.29 0.35 

Handwriting 0.11 0.20 0.34 0.43 0.42 0.52 

Heartbeat 0.65 0.62 0.70 0.69 0.70 0.68 

InsectWingbeat 0.00 0.00 0.00 0.00 0.00 0.00 

JapaneseVowels 0.96 0.92 0.92 0.87 0.88 0.87 

LSST 0.55 0.46 0.45 0.43 0.39 0.44 

Libras 0.61 0.83 0.78 0.61 0.57 0.89 

MotorImagery 0.46 0.51 0.53 0.56 0.55 0.56 

NATOPS 0.66 0.85 0.84 0.76 0.73 0.82 

PEMS-SF 0.66 0.70 0.79 0.80 0.80 0.71 

PenDigits 0.53 0.97 0.00 0.86 0.87 0.97 

Phoneme 0.07 0.10 0.12 0.07 0.06 0.16 

RacketSports 0.75 0.87 0.79 0.80 0.79 0.82 

SelfRegulationSCP1 0.77 0.77 0.78 0.72 0.72 0.68 

SelfRegulationSCP2 0.52 0.48 0.49 0.52 0.50 0.52 

SpokenArabicDigits 0.76 0.97 0.94 0.46 0.50 0.93 

StandWalkJump 0.33 0.20 0.56 0.31 0.36 0.27 

UWaveGestureLibrary 0.37 0.88 0.83 0.61 0.60 0.87 
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