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1 Introduction

Consider a predictive modelling/machine learning setting with a given model f(·) that
takes an M dimensional feature vector x = {x1, . . . , xM} as input and provides a predic-
tion f(x) of an unknown response y. Suppose that for a specific feature vector, x = x∗,
we want to understand how the different features (or types of features) contribute to the
specific prediction outcome f(x∗). This task is called prediction explanation and is a type
of local model explanation, as opposed to a global model explanation, which attempts to
explain the full model at once, through concepts such as global feature importance (Mol-
nar, 2020, Ch. 2).

Shapley values (Shapley, 1953) has established itself as one of the leading frameworks
for prediction explanation. The methodology has, in particular, received increased inter-
est following the seminal paper of Lundberg and Lee (2017). The feature-wise Shapley
values φ1, . . . , φM for a predictive model f(x) at x = x∗ are given by

φj =
∑

S⊆M\{j}

|S|!(M − |S| − 1)!

M !
(v(S ∪ {j})− v(S)), (1)

for j = 1, . . . ,M , where M is the total number of features, M is the set of all features,
and v(·) is the characteristic function, also referred to as the contribution function in the
prediction explanation setting. Roughly speaking, the information obtained by observing
feature j modifies the prediction by the amount of its Shapley value, φj . Although there
are different choices available for specifying the contribution function, the conditional
expectation

v(S) = E[f(x)|xS = x∗S ], (2)

where xS denotes the subvector of x corresponding to feature subset S , has the nice
property of providing explanations which properly account for the dependence between
the features (Chen et al., 2020). This specific contribution function was originally the idea
of Lundberg and Lee (2017) and has since been used by several others (Aas et al., 2019,
2021; Frye et al., 2020; Redelmeier et al., 2020).

1.1 Challenges with the Shapley value framework
There are, in principle, two challenges when it comes to the practical use of Shapley
values for prediction explanation. Since the true (conditional) distribution of x is rarely
known, the first challenge is estimating (2) precisely and efficiently. Poor estimates may
lead to severely inaccurate Shapley values and, therefore, also explanations and conclu-
sions (Aas et al., 2019). We will not be dealing with this issue in the present paper and,
instead, refer to Aas et al. (2019); Frye et al. (2020) for work along these lines.

Instead, this paper concerns itself with the second challenge of handling the funda-
mental computational complexity of the Shapley formula, which contains 2M−1 terms
and therefore grows exponentially in the number of featuresM . Hence, even with limited
time spent on appropriately estimating (2), the computational burden of the arithmetic
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operations in (1) becomes intractable when there are more than one or two dozen features
(depending on the computational resources and time available).

There exists some model-agnostic approaches for approximating the Shapley value
formula. One alternative is to, instead, sum over a smaller number of sampled feature
subsets S (Covert and Lee, 2020; Lundberg and Lee, 2017). However, as the number of
features grows, the number of sampled subsets also needs to grow (exponentially) in
order to retain an acceptable accuracy for the approximated Shapley values. Thus, this
approach only minimally lifts the roof on the number of features that can be handled.
In any case, when there are tens, hundreds or even thousands of features, which is not
uncommon in the modern machine learning world, these approaches simply do not do.
Chen et al. (2019) and Li et al. (2019) also propose approaches for reducing the complexity
of the Shapley value computation. These approaches are very different from the direct
sampling approach above in that they assume that the contribution of features to the
prediction respects the structure of an underlying graph, and are therefore not generally
applicable. There are, however, some conceptual similarities with the method proposed
in the present paper. We will return to this in Section 2.3.

When the number of features increases, it also becomes harder to visualize and extract
information from Shapley values. This is especially the case when some of the features
are (highly) dependent, which in most applied fields is the rule rather than the exception.
When features are highly dependent, the joint contribution of these features is distributed
among the features, resulting in many small Shapley values. Thus, interpreting the Shap-
ley values and transferring this to practical knowledge requires understanding of the
feature dependence structure and appropriate modifications of the interpretation. This
clearly becomes an overwhelming task when there are more than a few features.

Note that some Shapley based prediction explanation approaches (Janzing et al., 2020;
Sundararajan and Najmi, 2020) replace the contribution function v(S) in (2) by a so-called
interventional conditional expectation (Chen et al., 2020) which is easier to compute and,
therefore, reduces the computational burden. However, the computational complexity
still grows exponentially in the number of features; it just kicks in a bit later. Furthermore,
these methods have the drawback of ignoring the feature dependence, which may lead
to inconsistent explanations in the presence of feature dependence. There also exists al-
gorithms for specific model classes, like TreeSHAP (Lundberg et al., 2020) for tree-based
models, which uses the feature dependence learned by the tree(s) to estimate the con-
ditional expectations and efficiently compute Shapley values. However, as seen in Aas
et al. (2019), the resulting Shapley values may be highly inaccurate. Since the method is
model-specific, it is also difficult to use in a development/testing stage where models of
different types are compared.

1.2 The present paper
In this paper we propose a novel approach, groupShapley, to bypass the aforementioned
computational issue of explaining predictions using the Shapley value framework. The
idea is to move away from computing Shapley values for single features and rather com-
pute and present Shapley values for groups of features. Our definition of grouped Shapley
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values simply replaces the individual features in (1) by feature groups, creating perfectly
well-defined Shapley values with all of the usual Shapley properties. The computational
complexity is kept small as long as the number of groups is small. In addition, both the
presentation/visualization and the interpretation and knowledge extraction in the pres-
ence of high feature dependence, are simplified. Consider e.g. the case when a few base
features/data sources are used to construct a myriad of engineered features. Then, group-
Shapley can help improve the interpretability of this model by only presenting Shapley
values for the original base features/data sources.

The rest of the paper is organized as follows: Section 2 provides the mathematical
definition of groupShapley and discusses how groups can be constructed in different prac-
tical settings. We discuss and compare groupShapley with other ways of establishing a
Shapley based measure for the contribution of a group of features. Moreover, we present
a theorem saying that under certain conditions, groupShapley is equivalent to summing
the feature-wise Shapley values within each feature group. Under the same conditions
we also derive a simplified formula for the feature-wise Shapley values. In Section 3, we
provide a simulation study investigating how groupShapley differs from the alternative
method under different violations of the conditions where they are equal. In Section 4,
we give a real world example using a car insurance data set. Finally, we provide some
general discussion and concluding remarks in Section 5. The supplementary material ac-
companying the present paper contains proofs of the theoretical results from Section 2.

2 groupShapley

Recall the predictive modelling/machine learning setting from Section 1 with the predic-
tive model f(·) producing predictions based on an M -dimensional feature vector x that
one wishes to explain. Let us now define a partition1 G = {G1, . . . ,GG} of the feature set
M, consisting of G groups. Then, the Shapley value for the i-th group Gi explaining the
prediction f(x∗) is given by

φGi =
∑
T ⊆G\Gi

|T |g!(G− |T |g − 1)!

G!
(v(T ∪ Gi)− v(T )), (3)

where the summation index T runs over the groups (not the individual features) in the
set of groups G \Gi and |T |g refers to the number of groups (not the individual elements)
in T . groupShapley also adopts the contribution function (2), meaning that

v(T ) = E[f(x)|xT = x∗T ], (4)

where xT denotes the subvector of x corresponding to all features contained in all groups
in T . Thus, any procedure applicable for estimating (2), can also be directly applied to
estimate (4). As groupShapley is simply the game theoretic Shapley value framework ap-
plied directly to groups of features instead of individual features, the groupShapley values

1. A partition is a grouping of non-empty subsets of the elements of a set where each element is represented
in exactly one group.
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possess all the regular Shapley value properties. In particular, the efficiency property states
that

∑G
i=1 φGi = f(x∗)− E[f(x)], the symmetry property roughly states that groups which

contribute equally (regardless of the influence of other feature groups) have identical
Shapley values, and the null player property states that feature groups with no contribu-
tion to the prediction (either directly or through other features which it correlates with)
have a Shapley value of zero.

By directly comparing the formula for the feature-wise Shapley values in (1) with the
groupShapley formula in (3), we see that the computational complexity of the sum reduces
from 2M−1 to 2G−1, which gives a relative computational cost reduction of 2M−G. With,
for example, M = 50 features and G = 5 feature groups, the relative cost reduction is
> 1013. Naturally, in some settings, reducing feature-based explanation to group-based
explanation, may not provide a sufficient detail or disguise single feature contributions of
interest. However, for large number of features, the benefits of groupShapley far outweigh
the risk of over-simplification.

2.1 Defining feature groups
With the general groupShapley procedure established in (3), the next question is how to
define these groups. We propose two alternative strategies: Grouping based on 1) feature
type, and 2) feature dependence. These two grouping strategies can be viewed as group-
ing based on the practical properties or the theoretical properties of the features, respec-
tively. Note that there is no gold standard for grouping features and it may be informative
to compute several explanations of the same predictions using different groupings.

The first strategy groups together features with similar practical meaning, origin or
definition. Consider, for instance, a housing price prediction model with a wide selec-
tion of features. Then, groups made according to feature type could be house attributes
(housing type, square footage, number of rooms, building year), luxury amenities (has
hot tub/swimming pool/wine cellar/home theatre), locality (distance to nearest grocery
store/public transport/gym), environmental/surrounding factors (area crime rate/air pol-
lution/traffic noise, balcony sunshine hours), and historical turnover (previous sold price,
details of any refurbishing). As a second example, consider a model that predicts whether
a customer purchases a specific item, e.g. as part of a recommendation system. Then,
groups could be specified as follows: customer details (gender, age, occupation), customer
purchasing history (previous purchases, last time item bought), date/time (time of day pur-
chases made, day of the week, any upcoming holiday), and pricing (item price compared
to other brands/stores, current sale, and quantity discount). In these cases, using group-
Shapley may inform that the locality of a very central apartment has increased its predicted
price, or that it was the day/time that reduced the probability of making a specific purchase
on a Friday night. In Section 4, we provide a real data example within car insurance where
feature type grouping is used.

The second strategy groups together features based on mutual dependence. The point
of this approach is to simplify the interpretability of the computed Shapley values. As
mentioned in Section 1, the joint contribution of highly dependent features is spread out
on the feature-wise Shapley values making it more difficult to detect the significance of
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these features. If such highly dependent features are grouped together, it is easier to spot
these contributions and, therefore, infer a more ‘correct’ explanation. Such a grouping
can be created through a clustering method that uses a dependence/correlation based
similarity measure, see e.g. Kaufman and Rousseeuw (2009). See also the treatment in
Aas et al. (2019, Sec. 5).

2.2 Other types of grouped Shapley values
In the general game theoretic setting, using Shapley values to determine the influence
of groups of players is not entirely new. Marichal et al. (2007) defines the concept of a
generalized Shapley value for a set of players and studies its theoretical properties. Al-
gaba et al. (2019, Ch. 13) refers to this as the Shapley group value, studies the behavior of
the players when acting as a group rather than individually, and applies it to social net-
work ‘games’. An important distinction between this methodology and groupShapley is
that they study how a single group of players acts relative to the other individual players,
while we compare groups with other groups. This makes their method suitable for study-
ing concepts such as which players gain from joining a cooperative group and which are
stronger on their own, rather than comparing the relative performance of disjoint groups.
Furthermore, their formulation still has a computational complexity that grows exponen-
tially in the number of players/features. We will, therefore, not devote more space to this
method.

An alternative way to define the contribution of a group of features based on the
Shapley value framework is to utilize the additive structure of Shapley values and simply
take the sum of the feature-wise Shapley values in (1) for the features within each group.
That is, for each group Gi, i = 1, . . . , G, we define

φpost−Gi =
∑
j∈Gi

φj , (5)

where the summation index j runs over the features in group Gi and φj is the Shapley
value for feature j computed using (1). We call this post-grouped Shapley since we explic-
itly calculate the Shapley values for individual features first and then group these Shapley
values afterwards. In Section 2.3, we show that under certain conditions, groupShapley
and post-grouped Shapley are identical. However, this is generally not the case, as exempli-
fied through a series of simulation experiments in Section 3. Since groupShapley provides
proper Shapley values when using (4) and Shapley values are unique, post-grouped Shap-
ley does not in general correspond to proper Shapley values using (4). Moreover, (5) is
inherently impractical to compute when there are many features, as it requires the com-
putation of all feature-wise Shapley values – exactly the bottleneck we are trying to avoid.
That being said, (5) is a natural approach to calculating group contributions that has been
used before (Aas et al., 2019; Redelmeier et al., 2020). Therefore, we will use post-grouped
Shapley as a reference method when studying the properties of groupShapley. Note, how-
ever, that there is no reason to prefer post-grouped Shapley since it does not provide proper
Shapley values and takes longer to compute.
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2.3 Comparing groupShapley with post-grouped Shapley
In this section we provide two conditions and then show two different theoretical re-
sults that hold under the conditions: 1) The feature-wise Shapley values take a simplified
form and 2) groupShapley and post-grouped Shapley are equivalent, i.e. φGi = φpost−Gi , for
i = 1, . . . , G. We first state the two conditions and then present the results through two
theorems. The proofs of the theorems are given in the supplementary material.

Condition 2.1 (Partially additively separable). The predictive function f(x) is partially ad-
ditively separable with respect to the partition G = {G1, . . . ,GG}, i.e. we may write

f(x) =

G∑
i=1

fGi(xGi),

where for all Gi ∈ G, xGi is the subset of x corresponding to the features in subset Gi and fGi is a
real function involving only xGi .

Condition 2.2 (Group independence). All feature groups in partition G are independent
(xGi⊥⊥xGj for all i 6= j), meaning that all features in Gi are mutually independent of all the
features in Gj , for all i 6= j.

Before turning to the theorems, let us introduce the contribution function correspond-
ing to the sub-functions from Condition 2.1: vGi(S) = E[fGi(xGi)|xS = x∗S ] for any S ⊆ Gi.

Theorem 2.1 (Simplified feature-wise Shapley formula). Assume Conditions 2.1 and 2.2
hold. Then for any j ∈ Gi, i = 1 . . . G, the Shapley formula in (1) simplifies to

φj =
∑

S⊆Gi\{j}

|S|!(|Gi| − |S| − 1)!

|Gi|!
(vGi(S ∪ {j})− vGi(S)), (6)

i.e. the φj , j ∈ Gi are identical to the Shapley values for explaining the predictive model fGi(xGi).

Theorem 2.1 does not only provide a simplified formula for the feature-wise Shapley
values which reduces the computation complexity from 2M−1 to 2|Gi|−1 under the stated
conditions. It also says that under the stated conditions, the Shapley values for f(x∗)

can actually be obtained by computing the Shapley values for fGi(xGi) based only on
the |Gi| features relevant for that function, for i = 1, . . . , G. An important special case of
Theorem 2.1 is when a single feature j is independent of all the other features and joins
the predictive model formula f(x) in a purely additive way. Then, φj = fj(x

∗
j )−E[fj(xj)],

which generalizes a well known simplification of the Shapley value formula for linear
models with independent features, see e.g. Aas et al. (2019, Section 2.2). The formula in
(6) of Theorem 2.1 is conceptually similar to a simplified Shapley value formula in Li
et al. (2019). They do, however, work with a different contribution function and rely on
an assumed underlying graph structure.

Returning to feature groups, the theorem below states the special case equivalence
between groupShapley and post-grouped Shapley.

Theorem 2.2 (groupShapley equivalence). Assume Conditions 2.1 and 2.2 hold. Then,

φpost−Gi = φGi = vGi(Gi)− vGi(∅), i = 1, . . . , G,

i.e. post-grouping in terms of (5) is equivalent to groupShapley.
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Theorem 2.2 does not only say that groupShapley and post-grouped Shapley are equiva-
lent under the stated conditions, but also that the Shapley values are very easy to com-
pute. Conditions 2.1 and 2.2 are, of course, rarely met in practical situations. It is impor-
tant to note that this does not, in any way, invalidate groupShapley or post-grouped Shapley;
it just means that the two approaches do not necessarily always yield identical explana-
tions.

3 Simulations

We perform a simulation study with the goal of uncovering differences between group
values calculated under groupShapley and post-grouped Shapley. The idea is to start with
a model satisfying Conditions 2.1 and 2.2 and then show the differences between group-
Shapley and post-grouped Shapley as we violate these conditions. We defy the partially ad-
ditively separable condition by including pair-wise linear and non-linear interactions in
our models. We defy the group independence condition by adding dependence between
features that belong to different groups. Note that Conditions 2.1 and 2.2 are sufficient.
Thus, if the conditions do not hold, this does not necessarily mean that groupShapley and
post-grouped Shapley will yield different results. We explore this in more detail below.

There are three versions of the simulation study: Experiment 1 uses a linear regression
model; Experiment 2 uses a generalized additive model; and Experiment 3 uses both of
these models and a slightly different feature covariance matrix. The full parameters of
the simulation study are:

• Underlying feature distribution model: We simulate 10 features with a multivariate
Gaussian distribution p(x) = N10(0,Σ). This makes it easy to insert dependence
between features.

– Σ: The covariance matrix of the joint Gaussian distribution when simulating the
features x. For Experiments 1 and 2, we set the variance to 1 and the correlation
ρ which takes values in {0, 0.1, 0.3, 0.7, 0.9}. For Experiment 3, we use a slightly
different Σ discussed in that section.

• n_test: The number of testing observations. Set to n_test = 100.

• Groups: We put the 10 features into two distinct groupings/partitions. GA has G = 3

groups: G1 = {1, 2, 3, 4}, G2 = {5, 6, 7, 8}, and G3 = {9, 10}. GB has G = 5 groups:
G1 = {1, 2}, G2 = {3, 4}, G3 = {5, 6}, G4 = {7, 8}, and G5 = {9, 10}.

• Predictive model: We use two different types of predictive models: a linear regression
model (lm) and a generalized additive model (GAM). Both lm and GAM are used to
fit three different models: one model without interactions, one model with interac-
tions between features of the same group, and one model with interactions between
features of different groups. We discuss each response function in more detail in Sec-
tions 3.1 and 3.2.
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Once the features are simulated, we compute the Shapley values of each group using
both (3) and (5). We compare the results between (3) and (5) using the Mean Absolute
Deviation (MAD). Assuming G groups, the MAD for individual i is defined as:

MADi =
1

G

G∑
j=1

|φpre−Gj (xi)− φpost−Gj (xi)|, (7)

where φpre−Gj (xi) and φpost−Gj (xi) denote, respectively, the value estimated with group-
Shapley and the value estimated with post-grouped Shapley. When calculating the group-
Shapley and post-grouped Shapley values, we use the true Gaussian distribution to com-
pute (4) and (2), since we are not concerned with the estimation of those. We use Monte
Carlo integration with 1000 samples from the true Gaussian distribution to compute the
conditional expectations. This introduces some randomness in our empirical results, and
is the reason that the MAD is not exactly zero under Conditions 2.1 and 2.2, see Figures
1-3.

To be able to compare the MAD between different experiments and parameters, the
predictive functions specified in the next subsections are standardized such that all Shap-
ley value computations are performed on predictive functions with standard deviation 1
(the mean values cancel each other in the MAD formula).

3.1 Experiment 1: linear regression model
In this experiment, we explore how groupShapley and post-grouped Shapley vary when us-
ing a linear regression model. We fit three linear models:

• lm1 uses a simple linear combination of features without interactions: flm,1(x) =

β0 +
∑10

i=1 βixi, where β = {−0.6, 0.2,−0.8, 1.6, 0.3,−0.8, 0.5, 0.7, 0.6,−0.3, 1.5}.

• lm2 introduces interactions between some features of the same group: flm,2(x) =

flm,1(x) + γ1 · x1 · x2 + γ2 · x3 · x4 + γ3 · x5 · x6 + γ4 · x7 · x8 + γ5 · x9 · x10, where
γ = {0.4,−0.6,−2.2, 1.1, 0.0}.

• lm3 introduces interactions between features in different groups: flm,3(x) = flm,1(x)+

γ1 · x1 · x5 + γ2 · x1 · x7 + γ3 · x1 · x9 + γ4 · x3 · x5 + γ5 · x3 · x7 + δ1 · x3 · x9 + δ2 · x5 · x9,
where δ = {0.1, 0.9} and γ are as above.

Since models lm1 and lm2 don’t have interactions between features of different groups,
we can observe strictly what happens when we violate the group independence condi-
tion. Note that when we add dependence, for example setting ρ = 0.3, this experiment
does not distinguish between features of the same group and of different groups. This is
extended in Section 3.3.

The results of Experiment 1 are in Figure 1. Notice that for a simple linear model,
interactions between features of different groups are not enough to increase the MAD.
However, adding stronger dependence between all features (but specifically features of
different groups – see Section 3.3), increases the MAD. Although this trend is seen for
both groupings GA and GB , the mean, median, and spread is larger for grouping GA (with
only three groups). The reason may be that more features per group adds more variance
to the post-grouped Shapley values.
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3.2 Experiment 2: generalized additive model
In this experiment, we explore how the difference between groupShapley and post-grouped
Shapley varies when using a GAM. This experiment is analogous to Experiment 1 but
with a non-linear base model and (pairwise) non-linear interactions. The non-linear in-
teractions takes the form h(a, b) = a · b+ a · b2 + b · a2. The three models are as follows:

• GAM1 uses a simple linear combination of cosines without interactions: fGAM,1(x) =

β0 +
∑10

i=1 cos(xi) and β0 = −0.6.

• GAM2 introduces interactions between some features of the same group. The entire
model is fGAM,2(x) = fGAM,1(x) + h(x1, x2) + h(x3, x4) + h(x5, x6) + h(x7, x8) +

h(x9, x10).

• GAM3 introduces interactions between features in different groups. The entire
model is fGAM,3(x) = fGAM,1(x) + h(x1, x5) + h(x1, x7) + h(x1, x9) + h(x3, x5) +

h(x3, x7) + h(x3, x9) + h(x5, x9).

Notice that these models are similar to those in Experiment 1, except that we use
cosines when adding single features to the model and a bivariate function h(a, b) when
adding interactions to the model. The results are given in Figure 2. For the models with-
out interactions (GAM1) and with within-group interactions (GAM2), the MAD increases
with increasing correlation and otherwise behave fairly similar to their linear counter-
parts in Experiment 1. On the other hand, the model with between-group interactions
(GAM3) behaves completely different compared to its linear counterpart. It has a large
MAD already for independent features, which does not seem to increase further with
increasing correlation.

3.3 Experiment 3: different dependence within and between feature groups
In this experiment, we fix the dependence between features of the same group and vary
the dependence between features of different groups. The covariance matrix Σ continues
to have 1 on the diagonal. However, the correlation for features belonging to the same
group is now fixed to 0.87, while the correlations between features in different groups
takes values in {0, 0.1, 0.3, 0.7, 0.9}. We focus on models lm2 and GAM2 defined above
since we are only interested in violating the group independence condition. The point of
this experiment is to investigate the effect of increased between-group correlation, when
holding the within-group correlation fixed.

The results for both lm2 and GAM2 are given in Figure 3. We notice that even if there
is strong dependence between features within the same group, small between-group cor-
relation gives a small MAD. For grouping GA, any increase in the between-group correla-
tion increases the MAD. For grouping GB , this is not the case and only a strong between-
group correlation results in an increase in MAD. Like Experiment 1, the MAD of group-
ing GA seems to have a larger mean, median, and spread than grouping GB across all
correlations.

The simulation study showed that dependence between features of different groups
and non-additive models often yield different groupShapley and post-grouped Shapley val-
ues. When using a simple linear model, the MAD increased with the dependence between
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Figure 1. Boxplots of the mean absolute difference on log scale for all three lm models fit in
Experiment 1. Black dot indicates the mean.

Figure 2. Boxplots of the mean absolute difference on log scale for all three GAMs fit in Experiment
2. Black dot indicates the mean.

Figure 3. Boxplots of the mean absolute difference on log scale for all lm2 and GAM2 fit in Ex-
periment 3. Black dot indicates the mean. The correlation between features of the same group is
fixed at 0.87.
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the features and did not seem to be affected by the linear interactions. For the GAMs, the
MAD was large for the model with non-linear interactions between features of different
groups, but did not increase further with increased dependence. Finally, we saw that
using a fixed and non-zero between-group correlation did not significantly change the
trends seen in Experiments 1 and 2.

4 Real data example

In this section, we demonstrate how groupShapley can be applied to a real data set. We
use a car insurance data set found on the Kaggle website (https://www.kaggle.com/
xiaomengsun/car-insurance-claim-data). The data contains two different response vari-
ables, 23 features, and 10,302 observations. The response we use is the binary variable
customer had a claim. The features can be naturally partitioned into the following groups:

• Personal Information: age of driver, highest education level, number of children living
at home, value of home, income, job category, number of driving children, martial
status, single parent, gender, distance to work, whether driver lives in an urban city,
how many years driver has had job.

• Track Record: number of claims in the past five years, motor vehicle record points,
licence revoked in past seven years, amount of time as customer.

• Car Information: value of car, age of car, type of car, whether car is red.

Five of the variables have missing data so we use predictive mean matching to impute
these. To model the probability of a claim, we train a random forest model with 500 trees
using the ranger R-package (Wright and Ziegler, 2017) on the binary response and all 23
features. We use 10 fold cross-validation and get an average out-of-fold AUC of 0.815. The
average predicted probability of a claim is 0.273. We then use groupShapley to calculate the
group Shapley values of the Personal Information, Car Information, and Track Record groups
for four different individuals. Since there is a mix of continuous, discrete and categorical
features, the conditional inference tree approach of Redelmeier et al. (2020) is used to
estimate (4). We plot the three grouped Shapley values for four different individuals in
Figure 4.

The first individual is a single mother of four (where two children drive). She drives
an SUV and drives 27 miles to work. She has had one claim in the last five years and has
three motor vehicle record points. Personal Information gives the largest increase in the
predicted probability, which is not surprising given her travel distance and two young
drivers. The second individual is a 37-year-old father of two (where one child drives). He
has had one claim in the last five years, his licence revoked in the last seven years, and
ten motor vehicle points. His Track Record significantly increases his predicted probability,
which is natural given his misdemeanors.

The third individual is a 60-year-old married male with no kids at home. He drives a
red sports car and has had three claims in the last five years. He has a PhD and currently
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Figure 4. Estimated groupShapley values for four individuals with the groups defined in Section 4.

works as a doctor. His Personal Information naturally reduces his predicted probability,
while his poor Track Record, and to some extent his luxurious Car Information increases
his predicted probability. The fourth individual is a 50-year-old female with no kids at
home. She drives a minivan and has no previous claims or revoked licences. She also has
a PhD and drives 42 miles to work. She appears to be on the safer side of things, which is
reflected in all negative groupShapley values and a smaller predicted probability.

This real world example and Figure 4 exemplifies that groupShapley is a simple and
efficient way to produce intuitive prediction explanations.

5 Concluding remarks

In addition to explaining predictions based on feature groups, groupShapley can be uti-
lized to compute the relevant feature-wise scores in the case where there are categorical
features which are one-hot-encoded when passed to the model f(·). In this case, one is
not really interested in the Shapley values for the individual one-hot-encoded features,
but for the original features. One can then group the one-hot-encoded features into one
group and apply groupShapley. This might be viewed as an alternative to the approach
in Redelmeier et al. (2020) for computing feature-wise Shapley values in the presence of
categorical features.

Another possible application of groupShapley is to time series classification settings
(Kvamme et al., 2018; Ordóñez and Roggen, 2016). Suppose the model takes one or more
time series as input and predicts class probabilities. It may not be interesting or even
relevant to compute Shapley values per time point, but by splitting the time series into
different chunks, groupShapley can be used to explain how different parts of the time
series contribute.

It is worth noting that groupShapley is a highly general, and computationally efficient
solution that can be used in a range of other Shapley value settings. In addition to the
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prediction explanation setting, it can be reused to bypass the computational burden for
global explanation methods (Grömping, 2007; Owen and Prieur, 2017), or even outside
the fields of explainable artificial intelligence and interpretable machine learning (Moretti
and Patrone, 2008).

Finally, the groupShapley methodology is implemented in the shapr R-package (Sell-
ereite and Jullum, 2020)2.
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A Proofs

This appendix contains proofs of Theorem 2.1 and 2.2. Before heading to those proofs, we
will present and prove two lemmas that will be useful in those proofs.

Lemma A.1 (Contribution function identity). Assume that Conditions 2.1 and 2.2 holds. Fur-
ther, let T0 and TAB be any two disjoint subsets of the partition G = {G1, . . . ,GG} and S0,SA,SB
be any three feature-subsets where S0 ⊆ T0, SA,⊆ TAB , SB,⊆ TAB . Then, we have that

v(S0 ∪ SA)− v(S0 ∪ SB) = v(SA)− v(SB). (A.1)

Proof. Let us write xGi for the subvector of x corresponding to the features in group Gi.
Let GS be the set of group indexes with at least one feature in the subset S, i.e. GS =

{i : Gi ∩ S 6= ∅}, and let GS be the group indexes not part of GS . To show the equality
in (A.1), we will first split v(S) into simpler terms by utilizing the additive structure
f(x) =

∑G
i=1 fGi(xGi) and the group independence xGi⊥⊥xGj for all i 6= j.

We may then utilize Conditions 2.1 and 2.2 to decompose v(S) into a sum of condi-
tional expectations involving the groups associated with S and unconditional expecta-
tions for the remaining groups:

v(S) = E[f(x)|xS ] = E

[
G∑
i=1

fGi(xGi)

∣∣∣∣xS
]

=

G∑
i=1

E [fGi(xGi)|xS ]

=
∑
i∈GS

E[fGi(xGi)|xS ] +
∑
i∈GS

E[fGi(xGi)|xS ]

=
∑
i∈GS

E[fGi(xGi)|xGi∩S ] +
∑
i∈GS

E[fGi(xGi)]. (A.2)

Now, proving the equality in (A.1) is just about utilizing the separability of the formula
in (A.2) and writing out the four terms:

v(S0 ∪ SA) =
∑
i∈GS0

E[fGi(xGi)|xGi∩S0 ] +
∑

i∈GSA

E[fGi(xGi)|xGi∩SA ] +
∑

i∈GS0∪SA

E[fGi(xGi)],

v(S0 ∪ SB) =
∑
i∈GS0

E[fGi(xGi)|xGi∩S0 ] +
∑

i∈GSB

E[fGi(xGi)|xGi∩SB ] +
∑

i∈GS0∪SB

E[fGi(xGi)],

v(SA) =
∑
i∈GS0

E[fGi(xGi)] +
∑

i∈GSA

E[fGi(xGi)|xGi∩SA ] +
∑

i∈GS0∪SA

E[fGi(xGi)],

v(SB) =
∑
i∈GS0

E[fGi(xGi)] +
∑

i∈GSB

E[fGi(xGi)|xGi∩SB ] +
∑

i∈GS0∪SB

E[fGi(xGi)].

From the above expressions we easily see that both sides of (A.1) equal∑
i∈GSA

E[fGi(xGi)|xGi∩SA ]−
∑

i∈GSB

E[fGi(xGi)|xGi∩SB ]

+
∑

i∈GS0∪SA

E[fGi(xGi)]−
∑

i∈GS0∪SB

E[fGi(xGi)],

and the proof is complete. �

groupShapley 20



Lemma A.2 (Simplified contribution function identity). Assume that Conditions 2.1 and
2.2 holds and that j ∈ Gi. Further, let S be a feature subset of Gi not containing j. Define also
vGi(S) = E[fGi(xGi)|xS ]. Then we have that

v(S + {j})− v(S) = vGi(S + {j})− vGi(S).

Proof. The result follows almost directly from writing out the expressions for v in terms
of the fGk -functions. Since both S and j only contain features in Gi, we may, similarly to
(A.2), write

v(S) =
G∑

k=1

E [fGk(xGk)|xS ]

= E[fGi(xGi)|xS ] +
∑
k 6=i

E[fGk(xGk)],

v(S + {j}) =
G∑

k=1

E
[
fGk(xGk)|xS+{j}

]
= E[fGi(xGi)|xS+{j}] +

∑
k 6=i

E[fGk(xGk)].

As the sums in the equations cancel each other out, we get

v(S + {j})− v(S) = E[fGi(xGi)|xS+{j}]− E[fGi(xGi)|xS ]

= vGi(S + {j})− vGi(S),

which completes the proof. �

A.1 Proof of Theorem 2.1
We are now going to prove that the two conditions imply that the feature-wise Shapley
formula takes the following simplifying form

φj =
∑

S⊆Gi\{j}

|S|!(|Gi| − |S| − 1)!

|Gi|!
(vGi(S + {j})− vGi(S)).

To do that, we will apply Lemma A.1, perform a series of combinatorial operations, before
finally applying Lemma A.2. Recall that j ∈ Gi. UsingR in place of the standard feature-
wise subset notation S , and decompose it through the partition R, i.e. S ∪ S0 = R. We
may then write the feature-wise Shapley value formula as

φj =
∑

R⊆M\{j}

|R|!(M − |R| − 1)!

M !
(v(R∪ {j})− v(R))

=
∑

S⊆Gi\{j}

∑
S0⊆M\Gi

(|S|+ |S0|)!(M − |S|+ |S0| − 1)!

M !
(v(S0 ∪ S ∪ {j})− v(S0 ∪ S)).

(A.3)

Now, letting S0 = S0, T0 = M\ Gi and TAB = Gi,SA = S ∪ {j},SB = S in Lemma A.1,
we see that

v(S0 ∪ S ∪ {j})− v(S0 ∪ S) = v(S ∪ {j})− v(S).
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As a consequence, we may write (A.3) as

φj =
∑

S⊆Gi\{j}

(v(S ∪ {j})− v(S))
∑

S0⊆M\Gi

(|S|+ |S0|)!(M − |S| − |S0| − 1)!

M !
. (A.4)

Now, let us focus on the inner sum of (A.4). We will first rewrite the summand using the
binomial coefficient and then rewrite this as a sum over the size of S0 using combina-
torics:

∑
S0⊆M\Gi

(|S|+ |S0|)!(M − |S| − |S0| − 1)!

M !
=

1

M

∑
S0⊆M\Gi

1(
M−1
|S|+|S0|

) =
1

M

M−|Gi|∑
k=0

(M−|Gi|
k

)(
M−1
|S|+k

) .
(A.5)

To further simplify the right hand side of (A.5), we repeatedly utilize the identity∫ 1

0
za(1− z)bdz =

a! b!

(a+ b+ 1)!
,

for positive numbers a and b. This is a well known property of the Beta function, and
the integration constant of the Beta distribution. Let us consider the denominator of the
summand in (A.5). Writing a = |S|+ k and b = M − 1− |S| − k, we have that

1(
M−1
|S|+k

) =
1(

b+a
a

) =
a! b!

(b+ a)!
= (a+ b+ 1)

∫ 1

0
za(1− z)bdz = M

∫ 1

0
z|S|+k(1− z)M−1−|S|−kdz.

Also utilizing that
∑q

k=0

(
q
k

)
rk = (1 + r)k, we then have that

1

M

M−|Gi|∑
k=0

(M−|Gi|
k

)(
M−1
|S|+k

) =

M−|Gi|∑
k=0

(
M − |Gi|

k

)∫ 1

0
z|S|+k(1− z)M−1−|S|−kdz

=

∫ 1

0
z|S|(1− z)M−1−|S|

M−|Gi|∑
k=0

(
M − |Gi|

k

)(
z

1− z

)k

dz

=

∫ 1

0
z|S|(1− z)M−1−|S|

(
1

1− z

)M−|Gi|
dz

=

∫ 1

0
z|S|(1− z)|Gi|−|S|−1dz

=
|S|!(|Gi| − |S| − 1)!

|Gi|
.

Inserting this simplified formula into (A.4) gives

φj =
∑

S⊆Gi\{j}

|S|!(|Gi| − |S| − 1)!

|Gi|!
(v(S + {j})− v(S)).

Since this a sum over subsets only contained in Gi, application of Lemma A.2 allows us
to replace v(S + {j})− v(S) by vGi(S + {j})− vGi(S), and thereby completes the proof.
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A.2 Proof of Theorem 2.2
We are now going to prove that under Conditions 2.1 and 2.2, groupShapley is equivalent
to post-grouped Shapley and they take a simplified form, i.e.∑

j∈Gi

φj = φGi = vGi(Gi)− vGi(∅), i = 1, . . . , G.

We will start by showing that
∑

j∈Gi φj = vGi(Gi) − vGi(∅). From Theorem 2.1, we have
that the collection {φj : j ∈ Gi} corresponds to the Shapley values of fGi(xGi). Thus, by
the efficiency axiom, we have that

∑
j∈Gi φj = vGi(Gi) − vGi(∅). This completes the first

part of the proof.
What remains is to show that under the state conditions, we also have φGi = vGi(Gi)−

vGi(∅), for which we will utilize Lemma A.1 once again. Letting S0 = T , T0 = G \ Gi and
SA = TAB = Gi,SB = ∅, we see that

v(T ∪ Gi)− v(T ) = v(Gi)− v(∅). (A.6)

Furthermore, by writing out the two terms on the right hand side of (A.6), as in the proof
of Lemma A.2, we have that v(Gi) = vGi(Gi) +

∑
k 6=i E[fGk(xGk)] and v(∅) = vGi(∅) +∑

k 6=i E[fGk(xGk)]. Thus, we get that v(Gi) − v(∅) = vGi(Gi) − vGi(∅). Finally, since the
Shapley value weights sum to 1, we have that

φGi =
∑
T ⊆G\Gi

|T |!(|Gi| − |T | − 1)!

|Gi|!
(v(T ∪ Gi)− v(T ))

= (vGi(Gi)− vGi(∅))
∑
T ⊆G\Gi

|T |!(|Gi| − |T | − 1)!

|Gi|!

= vGi(Gi)− vGi(∅),

which completes the proof.
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