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Abstract

Vipps is a peer-to-peer (P2P) mobile payment solution launched by Norway’s largest financial
services group DNB. The Vipps transaction data may be viewed as a graph with users corresponding
to the nodes, and the financial transactions between the users defining the edges. We have followed
the evolution of this graph from May, 2015 to September, 2016. This is a unique data set, as infor-
mation about transactions of individuals is usually not available for research. In this paper we use an
advanced statistical model where preferential attachment is combined with fitness. We show that the
intrinsic quality of the nodes in the Vipps network plays an important part in the evolution of the
network. This insight may e.g. be used to identify influential nodes for viral marketing.
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1 Introduction

Vipps is a peer-to-peer (P2P) mobile payment solution launched by Norway’s largest
financial services group DNB. It was released May 30th, 2015 and is now the most down-
loaded app in Norway. The app is available to everyone with a Norwegian bank card
and by reaching 1 million users in November 2015, Vipps became Norway’s largest
payment application. Now, in 2018, Vipps has more than 3 million users. The application
is designed for smartphones and gives the user the possibility to make payments to a
receivers telephone number instead of a bank account number. Among other things, it
makes it easier to split a restaurant bill, to do the settlement after a girl trip, or simply
transfer money between friends.

The Vipps transaction data may be viewed as a graph with users corresponding to the
nodes, and the financial transactions between the users defining the edges. In this paper
we have used the sub graph consisting of all nodes (users), but only having an edge
between nodes A and B if user B was recruited by user A. This graph is unique in the
sense that we may follow the evolution from the very first user. Hence, we may study how
and why its topology changes over time. This is useful in many situations. The design of
algorithms on complex networks, such as routing, scheduling, ranking or recommendation,
requires e.g. a detailed understanding of the growth characteristics of the networks of
interest. There is a growing literature analysing the characteristics and dynamics of large
complex networks, such as the web graph (Barabasi et al., 2000), social networks (Kunegis
et al., 2013), scientific citation networks (Redner, 1998), and recommendation networks
(Leskovec et al., 2006).

Information about financial transactions between individuals is however usually consid-
ered confidential. The only related work we are aware of is the empirical analysis of the
Bitcoin network (Kondor et al., 2014), where a non-linear preferential attachment model
(Krapivsky et al., 2000) is used to model the network evolution. Recently, several papers
have shown that interactions in real-world networks may be more complex than implied by
a preferential attachment model. In this paper we use a model proposed by (Pham et al.,
2016), in which the degree of a node is scaled by its intrinsic quality to determine its
attractiveness. We study different aspects connected to the dynamic and static properties of
the Vipps graph and indicate how this insight may be used to identify the influential users
in the network.

Note that the behaviour of people adopting an innovation like Vipps may also be inter-
preted as a spreading phenomenon throughout an underlying social network like in (Iñiguez
et al., 2017), where the underlying network is the largest connected component of the free
Skype service network, and the product is a “buy credit” paid service. However, in our
case, the underlying social network is unknown. It is actually the social network for which
the nodes are the 5.3 million inhabitants of Norway. In the future, when Vipps is even
more widespread than today, the final stage of the network may be used as a proxy for the
underlying network. Currently, however, it is more relevant to view the Vipps adoption as
the structural evolution of the network itself.

The rest of this paper is organised as follows. In Section 2 we describe the Vipps

data set. Section 3 reviews the most common network evolution models, while the model
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studied in this paper is described in Section 4. In Section 5 we give the results obtained in
our study, and finally, Section 6 contains some concluding remarks.

2 Data set

We have used transaction data from May 30th, 2015 to September 30th, 2016. This data
set consists of 28,876,279 transactions (time and amount) for 1,769,142 different users.
Figure 1 shows the aggregrated and new number of Vipps-users every day. During the
period June 15th-17th, 2016, Vipps did not work properly due to technical problems, and
therefore we see a dip in the plots for these days. In the analysis described in Section 5 we
have divided the data set into two periods. The first period, which is used for estimating
the network evolution model, lasts from May 30th 2015 to February 17th, 2016, and the
latter, used for validating the model, lasts from February 18th, 2016 to September 30th,
2016. In Figure 1 the two periods are separated by a vertical dotted line. The numbers of
users joining Vipps during the two periods were 1,038,997 and 730,145, respectively.
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Fig. 1. The aggregrated total number of Vipps users (upper panel) and the number of new users
(lower panel) every day in the observation period.
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In the original Vipps graph there might be several edges between each pair of nodes
corresponding to multiple transactions. In the analysis described in this paper our main
aim is to identify the users who are most efficient in recruiting new users. Hence, we will
mainly use a sub graph consisting of all nodes (users), but only having an edge between
nodes A and B if user B was recruited by user A. We denote this graph “the recruitment
graph”. Here, we say that user B has been recruited by user A if (i) A started to use Vipps
before B and (ii) the first transaction from/to B was to/from A. When presenting the results
in Section 5.3 we will also use the term “friend”. By node A and C being “friends” we then
mean that there has been at least one transaction between A and C during the whole time
period from May 30th, 2015 to September 30th, 2016.

Figure 2 shows the development of the degree distribution for the recruitment graph
over time, while various summary statistics for the same snapshots are given in Table 1. As
can be seen from the figure, the data points form an approximate straight line on log-log
scale, suggesting that the degree distribution of the recruitment graph is well approximated
with a power-law distribution. The estimated exponent γ is 3.8. The recruitment graph is
a connected graph which has no cycles, i.e. a tree. Every time a new user is added to the
network it is connected to only one of the existing users.

For the sake of comparison, we have also included the same properties for the sub graph
consisting of all nodes (users), but having edges between two nodes A and C if they are
friends, see Figure 3 and Table 2.

Table 1. The recruitment graph: Summary statistics for different snaphots

N.o.f. N.o.f. Max Connected component distribution
Day nodes edges degree Min 25% Mean 75% Max

50 90,006 90,006 44 1 2 3.5 3 1,722
100 301,234 301,234 105 1 2 4.5 4 3,865
292 1,038,997 1,038,997 208 1 2 8.9 8 10,380
518 1,769,142 1,769,142 208 1 3 12.7 12 16,770

Table 2. The friends graph: Summary statistics for different snaphots

N.o.f. N.o.f. Max Connected component distribution
Day nodes edges degree Min 25% Mean 75% Max

50 90,006 90,094 102 1 2 4.1 3 31,320
100 301,234 424,491 241 1 2 8.7 3 204,400
292 1,038,997 4,002,626 711 1 2 102.3 2 1,016,000
518 1,769,142 12,955,189 836 1 2 477.9 2 1,761,000
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Fig. 2. The recruitment graph: Degree distributions over time. All plots are on log-log scale.
Days 292 and 518 correspond to February 17th, 2016 and September 30th, 2016, respectively.
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Fig. 3. The friends graph: Degree distributions over time. All plots are on log-log scale. Days 292
and 518 correspond to February 17th, 2016 and September 30th, 2016, respectively.
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3 Network evolution models

In recent years, there has been a convergence of ideas coming from computer science, so-
cial sciences and economic sciences to model and analyse the characteristics and dynamics
of large complex networks, such as the web graph, social networks and recommendation
networks. Various mechanisms have been suggested, but models for network growth re-
sulting in a scale-free distribution have received special attention. Scale-free networks have
power-law degree distributions, i.e. the number of nodes with degree d is proportional to
d−γ , for a particular γ .

The perhaps most well-known scale-free network model is the preferential attachment
(PA) model (Yule, 1925). Preferential attachment means that the more connected a node is,
the more likely it is to receive new links. Nodes with higher degree have stronger ability to
grab new links added to the network (“rich-get-richer effect”). Intuitively, the preferential
attachment can be understood if we think in terms of social networks connecting people,
where a link between A and B means that person A ”knows” person B. Heavily linked
nodes represent well-known people with lots of relations. When a newcomer enters the
community, she or he is more likely to become acquainted with one of those more visible
people rather than with a relative unknown. Similarly, on the web, new pages link pref-
erentially to hubs, for example well known sites like Google or Wikipedia, rather than to
pages that hardly anyone knows.

The classical PA model for networks is the Barabasi-Albert model (Barabasi & Albert,
1999). It assumes a linear relationship between the number of neighbours of a node in the
network and the probability of attachment. That is,

P(Node i receives a new edge) ∝ di, (0)

where di is the degree of node i. This model, which implicitly assume a network for which
the number of edges grows linearly with the number of nodes, has later been generalised
to

P(Node i receives a new edge) ∝ dα
i , (1)

where we have a sublinear model if 0 < α < 1 and a superlinear model if α > 1. For
the sublinear model, the network’s degree distribution is stretched exponential (Dereich &
Mörters, 2009) and the hubs are much smaller than in a scale-free network. If the model is
superlinear, almost all nodes are connected to a few hubs instead (Krapivsky et al., 2000).

Recently, several papers have shown that interactions in real-world networks may be
more complex than previously thought, see e.g. (Borgs et al., 2007), (Kong et al., 2008),
(Kunegis et al., 2013), (Pham et al., 2015), and (Pham et al., 2016). The central assumption
of the PA model, stating that the popularity of the nodes depends only on their degree,
means that the oldest nodes in the network are likely to have most links. In many situations,
the growth rate of a node does not depend on its age alone. Instead webpages, companies
or persons have intrinsic qualities (“fitness”) that influence the rate at which they acquire
links. Hence, several papers have proposed to combine PA with fitness models. The first
scale-free network model introducing this heterogeneity of the nodes was the Bianconi-
Barabási model (Bianconi & Barabási, 2001) that has been used to model the Internet and
the World-Wide-Web. In this model, nodes acquire new links with a generalized preferen-
tial attachment rule which assigns higher probability of attracting new edges to high degree
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and high fitness nodes than to those with lower degree or lower fitness. In (Bianconi &
Barabási, 2001) the definition of preferential attachment is restricted to that of the original
Barabasi-Albert model, while in a recent work, (Pham et al., 2016) a model combining
preferential attachment and node fitness is estimated without imposing any functional
constraints. We have used the latter model, which is called the Generative Temporal (GT)
model, to investigate the interplay between PA and node fitness in the Vipps network.
The GT model includes several existing network models as special cases, e.g. (Barabasi
& Albert, 1999), (Callaway et al., 2001), (Bianconi & Barabási, 2001), (Krapivsky et al.,
2001) and (Caldarelli et al., 2002) and hence allows for very flexible modelling of the
network evolution. In Section 4 we provide a more thorough description of this model.

4 The Generative Temporal model

The GT model (Pham et al., 2016) is nonparametric in the sense that it does not assume
any particular form for either the PA function or the fitness distribution. According to this
model, one starts from a seed network G0 and then at each time step (in our case, day) t, nt

new nodes and mt new edges are added independently to Gt−1 to form Gt . The new edges
may emanate either from the new or from the existing nodes. When a new edge is added to
the network at time t, it will connect to node i with probability

pi,t =
f (di,t−1)×ηi

∑
Nt−1
j=1 f (d j,t−1)×η j

, (2)

where di,t−1 and ηi are the current (in-, out- or total-) degree and fitness of node i, respec-
tively, and Nt−1 is the total number of nodes at time t−1. Hence, if two nodes i and j both
have degree d at time t and ηi is 2η j, the probability of a new node connecting to node
i is twice as large as the probability of it connecting to node j. While f (di,t) represents
an ability of node i to attract links that usually is increasing in time, the node fitness ηi

represents something attractive about the node, that is constant in time. The degree of a
node grows faster if its fitness value is large, allowing nodes with high fitness to become
even more “popular” than nodes that have stayed in the network for a much longer period.
Note that both f (di,t) and ηi by definition are concerned with the ability of a node to
acquire new edges.

Let D and N be the maximum degree of the network and the final number of nodes after
T time steps, respectively (where T is the length of the estimation period), and let zi,t be the
number of new edges that connect to node i at time t. In (Pham et al., 2016), the problem
of estimating f (d);d = 1, . . .D and η = {η1, . . . ,ηN} , is formulated as the maximization
of the log-likelihood function of the GT-model with suitably added regularization terms to
avoid overfitting. That is, the following objective function is maximised:

l∗( f ,η) = l( f ,η)+ reg f + regη , (3)

where reg f and regη are the regularization terms for the preferential attachment function
and the node fitnesses, respectively, and

l( f ,η) =
T

∑
t=1

N

∑
i=1

zi,t log( f (di,t))+
T

∑
t=1

N

∑
i=1

zi,t log(ηi)−
T

∑
t=1

N

∑
i=1

zi,t log

(
N

∑
j=1

f (d j,t)η j

)
.
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See Appendix A for more details.
We have used the R package PAFit1 (Pham et al., 2017) to fit the GT model to the Vipps

data. Here, the maximisation problem is solved using the Minorize-Maximisation (MM)
algorithm (Hunter & Lange, 2000). See Appendix B for more details. For more stable
estimation of the f (d)-function, logarithmic binning is used. The degrees are divided into
K bins, and the f (d) function is estimated for each bin k = 1, . . .K instead of each degree
d = 1, . . .D. The logarithmic binning ensures small-width bins in low degree regions with
many data points, while large-width bins are created for higher degrees. Choosing the
number of bins K is a trade-off between stability and accuracy. A small K means high
stability at the risk of loosing fine details.

5 Experiments with Vipps data

As described in Section 2, we divide the data set into two periods; May 30th 2015 to
February 17th, 2016 and February 18th, 2016 to September 30th, 2016. The data from
the first period is used to fit the GT model. Section 5.1 describes this process, while
the characteristics of the estimated fitness values are discussed in Section 5.2. To check
whether the estimated model also fits the data from a later period, we performed a simula-
tion experiment in which we expanded the network at February 17th, 2016 with 730,145
nodes, corresponding to the new users joining Vipps during the period February 18th, 2016
to September 30th, 2016. The results from this experiment are treated in Section 5.3.

5.1 Estimation

The data set from the period May 30th 2015 to February 17th, 2016 consists of 1,038,997
nodes. We first fitted the GT model to this data set fixing all ηi’s to 1, i.e. ignoring fitness.
The resulting f (d)-function is shown to the left in Figure 4 (the plot is on a log-log scale).
As can be seen from the figure, the f (d)-function shows a strange behaviour for large
degrees. We believe that this is due to too few data points in this area (there are e.g. only
7 persons who have recruited more than 55 users). For log(degrees) smaller than 4, the
logarithm of the estimated f (d)-function is quite linear. Hence, we fitted a regression line
to this part. The slope of this line is 0.66, clearly indicating the existence of the rich-get-
richer phenomenon.

Next, the full GT model was fitted, with K = 50 bins and regularization parameters
λ = 0.5 ∑

K−1
k=1 wk and s = 10. The regularization parameters were determined by cross-

validation, splitting the training data into two sets; a learning set and a validation set, where
the learning set consisted of data from the first 189 days of the training period, while the
validation set consisted of the last 74 days. The cross validation was performed as described
in (Pham et al., 2016). For many different combinations of λ and s the f (d)-function and
fitness parameters were estimated using the learning data, and then the likelihood of these
parameters were computed for the validation data. The solid line to the right in Figure 4
shows the logarithm of the estimated f (d)-function obtained when using λ = 0.5 ∑

K−1
k=1 wk

1 https://cran.r-project.org/web/packages/PAFit/index.html
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Fig. 4. Left: The estimated f (d)-function assuming that all fitnesses are one. Right: The estimated
f (d)-function when the fitness effect is taken into account. Both plots are on a log-log scale.

og s = 10. Comparing it to the one to the left in the same figure, we see that the rich-get-
richer effect becomes smaller when the fit-get-richer effect is taken into account. The slope
of the dotted blue line is in this case 0.42.

Because the estimated fitnesses may have been influenced by the strange behaviour of
the f (d)-function for large degrees, we reestimated the fitnesses keeping the f (d)-function
fixed to the best linear fit, shown to the right in Figure 4, namely

f (d) = exp{0.42log(d)+0.06} . (4)

The resulting fitness distribution is shown in Figure 5 and its properties are given in Table
3. As can be seen from the figure, almost all fitnesses are concentrated around the mean,
which is 1. There are however some users with significantly higher fitnesses, indicating
that the fit-get-richer phenomenon is clearly present in this data set.

5.2 Fitness characteristics

Figures 6 and 7 show examples of degree growth curves for nodes with high and low
fitnesses. As can be seen from the figure, there is a tendency of nodes with high fitness
having very steep degree growth curves, while nodes with lower fitness having more mod-
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Table 3. Properties of the fitness distribution for the users recruited before February 18th,
2016.

Median Mean 99% Max

0.99 1.00 1.36 11.92
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Fig. 5. Fitness distribution. The x-axis is on log-scale.

erate growth curves. Based on this one would think that the fitness represents the ability of
the Vipps user to rapidly acquire contacts. However, this is not the whole picture. Figure 8
shows the degree growth curves for two nodes that both ended up at degree 35 at February
17th, 2016. The first node enters the network at May 30th 2015 and after 27 days, its degree
raises very rapidly to 32. The second node enters the network 103 days after the first and its
degree steadily increases until February 17th, 2016. Based on these evolutions, one would
assume that the fitness of the first is larger than that of the latter. However, on the contrary
the two fitnesses are 2.06 and 3.61, respectively.
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This may be explained by having a closer look at Equation 2. We see that the probability
of a node acquiring new edges is not only dependent on its fitness value and current
degree, but also on the corresponding quantities of all other nodes in the network. In
the early phase, when the network is small, there is a relatively small number of nodes
competing for the new egdes. When time goes by, however, and the size of the network
increases, it becomes much harder for a certain node to attract links added to the network.
Consequently, the nodes that arrive late and end up at a high degree will be the ones with
the highest estimated fitness values in the GT model. This may be verified studing the
equation for updating the fitness of node i:

ηi =
Final degree at time T

∑
T
t=1 f (di,t) · totalNumEdges(t) ·

(
1/∑

Nt
j=1 η j f (d j,t)

) .
From this equation it is evident that of two nodes that end up with the same degree, it is
the one that arrives last that get the highest fitness.

One may also view this in a different way. Assume that we have two nodes with fitnesses
ηi and η j and that their degrees at time t are di,t and d j,t , respectively. Assume further that
f (d) = bdα . Then, for the probabilities pi,t and p j,t to be equal, we must have that

di,t = d j,t

(
η j

ηi

)1/α

.

With α = 0.42 like in (4), η j being twice as large as ηi means e.g. that the degree of node
i must be 5 times larger than the degree of node j for the probabilities of attracting new
edges to be equal.

Returning to our example in Figure 8, at day 27 there are only 123,741 nodes competing
for 3,123 new edges. Hence, the grey node “does not need” a large fitness value to attract
many links. However, 103 days later when the black node enters the network, the total
number of nodes in the network is approximately 500,000, while the number of new edges
is still approximately 3,000. Nevertheless, this node manages to acquire 35 new contacts
during the consecutive 163 days, while the corresponding number for the first node is 3.
Hence, the fitness of the black node must be much higher that that of the grey.

5.3 Simulation study

During the period from February 18th, 2016 to September 30th, 2016, 730,145 new users
joined Vipps. To check whether the model estimated for the period May 30th 2015 to
February 17th, 2016 also fits the data from the later period, we decided to perform a sim-
ulation experiment in which we expanded the network from February 17th with 730,145
nodes. The daily growth of the Vipps network depends on several factors, e.g. on external
marketing. Our main aim is to study the mechanism that governs the growth, not the size
of it. Hence, we decided to use the same number of new users every day in the simulated
data set as what was observed in the actual data set.

In the simulation procedure we assumed the log-linear PA-function from (4). As far as
the fitnesses were concerned, we used the estimated values for the users already present in
the network. For the new users, we first tried to fit a lognormal and a gamma distribution,
respectively, to the empirical fitness distribution in Figure 5. However, none of these distri-
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Fig. 6. Degree growth curves for selected nodes with high estimated fitness.

butions provided an adequate fit to the estimated fitnesses. Hence, we decided to simulate
fitness values for the new users by bootstrapping from the observed distribution in Figure
5.

To check whether the simulated network evolution during the period from February 18th,
2016 to September 30th, 2016 has the same characteristics as the actual network evolution,
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Fig. 7. Degree growth curves for selected nodes with low estimated fitness.

we computed the Mean Absolute Error (MAE)2:

MAE =
1

Nold

Nold

∑
i=1
| f inal deg real(i)− f inal deg est(i)|,

where Nold is the number of users already in the system at February 18th, 2016, and
f inal deg real(i) and f inal deg est(i); i = 1, ..,Nold are their actual and simulated degrees
at September 30th, 2016. The simulated degrees are obtained as follows. At day t in the
simulation period Jt new nodes j = 1, ..,Jt are inserted into the network. For each of these

2 Note that we ignore all the users joining Vipps after February 18th, 2016 when computing the
MAE.
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Fig. 8. Degree growth curves for two nodes with fitnesses equal to 3.61 (black) and 2.06 (grey),
respectively.

new nodes, one and only one edge is produced to one of the nodes existing at day t− 1.
The probability of choosing a specific existing node i is given in Equation 2. From this
formula, we see that this probability is based on the fitness of node i as well as its degree
at day t−1 (numerator) and the fitness and current degree of all nodes that existed at day
t− 1 (denominator). Hence, the order in which the new nodes enter the network at day t
will not matter.

This MAE was computed both for our estimated GT-model and for the GT-model with
α = 0.66 and all ηs

i fixed to one. The resulting values were 0.718 and 0.732, respectively.
Hence, the difference between the two models is not very large and probably not signif-
icantly different from zero. By having a closer look at the real data, the following may
be observed. First, most of the users having a large degree and/or fitness at the end of the
training period recruit zero or very few new users during the testing period. This might be
due to the fact that they almost have reached their full potential during the training period,
i.e. that most of their friends already have been recruited by February 18th, 20163. Table
4, containing different figures for the six Vipps users from Figure 6 shows that this is
not very far from the truth. For each user the table shows the following quantities: (i) its
estimated fitness value, (ii) its total number of friends4, (iii) the day at which the user was
recruited, (iv) the total number of other users being recruited by this user (v) the number
of other users being recruited by this user during the test period, (vi) the number of friends
who potentially could have been recruited during the test period. The two users in Table

3 Nodes A and B being “friends” here mean as previously stated that there has been at least one
transaction between A and B during the whole time period from May 30th, 2015 to September
30th, 2016

4 We assume that the network has reached its saturation point at September 30th, 2016.
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4 with the highest estimated fitnesses do not recruit any new users during the test period.
This is not strange, since they already have reached their full potential. All their friends
have either been recruited by themselves or by others.

Table 4. Different characteristics for the six Vipps-users recruited before February 18th,
2016 having highest estimated fitness.

Total Day Total Test Pos
Estimated nof joining number number number

User fitness friends Vipps recruit recruit recruit

1 11.92 581 13 208 0 0
2 8.76 712 165 98 0 0
3 4.82 289 39 106 1 10
4 4.52 314 118 42 0 2
5 4.37 730 149 56 16 48
6 4.15 424 162 54 15 35

Estimating the fitness distribution for the users recruited after February 18th, 2016 using
the same framework as described in Section 5.1, we get the properties shown in Table 5.
By comparing the figures in this table to the ones in Table 3 we see that none of the new
users have very high fitnesses. Table 6 shows the properties for the six users recruited after
February 18th, 2016 with highest estimated fitnesses. The numbers in the third column of
this table show that these users actually have more friends than the users in Table 4 on
average. However, from the last column in the same table it is evident that the majority of
their friends already have been recruited by someone else. Hence, even if these users might
be as efficient in recruiting new users as the ones in Table 4, they will not be able to reach
the same level, simply because the number of possible “prospects” is smaller.

Table 5. Properties of the fitness distribution for the users recruited after February 18th,
2016.

Median Mean 99% Max

0.98 1.00 1.24 3.17

In addition to the above simulation experiment, we also tried to reduce the training set,
to check whether the model correctly predicts the evolution of the network in this case as
well. More specifically, we fitted the GT-model to data from May 30th, 2015 to August 8th,
2015, only. This data set consists of 301,235 nodes. The f (d) function was then estimated
to5

f (d) = exp{0.52log(d)+0.10} , (5)

5 We used the same regularization parameters as for the longer training period.
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Table 6. Different characteristics for the six Vipps-users recruited after February 18th,
2016 having highest estimated fitness.

Total Day Total Test Pos
Estimated nof joining number number number

User fitness friends Vipps recruit recruit recruit

1 3.17 694 399 24 24 77
2 3.14 376 304 25 25 96
3 2.93 594 292 23 23 119
4 2.86 718 333 22 22 34
5 2.65 637 315 19 19 124
6 2.65 148 366 19 19 41

and the properties of the fitness distribution were as shown in Table 7. Having estimated

Table 7. Properties of the fitness distribution for the users recruited before August 9th,
2015.

Median Mean 99% Max

0.98 1.00 1.39 7.27

the model, we performed a simulation experiment in which we expanded the network from
August 8th, 2015 with 1,467,907 nodes. Finally, we computed the MAE:

MAE =
1

Nold

Nold

∑
i=1
| f inal deg real(i)− f inal deg est(i)|,

where Nold now is the number of users already in the system at August 8th, 2015, and
f inal deg real(i) and f inal deg est(i); i = 1, ..,Nold are their actual and simulated degrees
at September 30th, 2016. The resulting MAE was 1.81, i.e. significantly larger than for the
original training set. By having a closer look at the smaller training data set, we observe
that only 21% of the nodes have a degree which is larger than 1 at the end of the training
period. Hence, this training period seems to be too short to get proper estimated fitness
values. The increase in MAE may also be partly due to the fact that during most of the test
period, there are far more nodes with simulated fitness values than with estimated ones. The
simulated fitness values are generated from the distribution given by Table 7. Based on the
information in Table 3, we believe that many of these values are likely to be smaller than
the true ones, meaning that the original nodes will have less competition in the simulation
study than in real life. This is verified by comparing the total number of simulated edges
connecting to the original nodes during the test period (507,572) to the corresponding true
number of edges (416,567).
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6 Summary and discussion

The peer-to-peer (P2P) mobile payment solution Vipps, which was launched in May 2015,
is now the number one downloaded app in Norway. The Vipps transaction data may be
viewed as a graph for which the users correspond to the nodes, and the transactions between
the users define the edges. In this paper we have used the sub graph consisting of all nodes
(users), but only having an edge between nodes A and B if user B was recruited by user A.
The Vipps graph is unique in the sense that we may follow the evolution from the very
first user up to now. By fitting a combined preferential attachment and fitness model to this
data set, we have shown that the intrinsic quality of the nodes in the Vipps network plays
an important part in the evolution of the network.

The results in this study may be used for viral marketing. Viral marketing refers to
marketing techniques that use social networks to try to produce increases in brand aware-
ness or to achieve other marketing objectives such as product sales through self-replicating
viral processes, analogous to the spread of viruses. One way of encouraging positive word-
of-mouth is by distributing reduced-price or free products to target customers (seed users),
who then hopefully will encourage their friends to buy the product (Stonedahl et al., 2010).
If the bank in the future wants to launch a new solution which is similar to Vipps, a smart
strategy might be to select the persons with the highest Vipps-fitnesses as seed users, since
these persons are the ones who seem to recruit most other users in shortest time.
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varying vertex intrinsic fitness. Phys. rev. lett., 89.



ZU064-05-FPR paper 6 December 2018 8:18

20 K. Aas, H. Rognebakke

Callaway, Duncan S., Hopcroft, John E., Kleinberg, Jon M., Newman, M. E. J., & Strogatz, Steven H.
(2001). Are randomly grown graphs really random? Phys. rev. e, 64.

Cole, S. R., Chu, H., & Greenland, S. (2014). Maximum likelihood, profile likelihood, and penalized
likelihood: A primer. American journal of epidemiology, 179, 252–260.

Dereich, S., & Mörters, P. (2009). Random networks with sublinear preferential attachment: degree
evolutions. Electronic Journal of Probability, 14.

Hunter, D., & Lange, K. (2000). Quantile regression via an MM algorithm. Journal of Computational
Statistics and Data Analysis, 9.
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A GT model: More details

According to the GT model, one starts from a seed network G0 and then at each time step t,
nt new nodes and mt new edges are added independently to Gt−1 to form Gt . The likelihood
of the data at time step t is given by

P(Gt |Gt−1,θ t , f ,η) = P(mt ,nt |Gt−1,θ t)P(Gt |Gt−1,mt ,nt , f ,η),

where mt and nt are the actual number of edges and nodes that appear between times
t− 1 and t, and θ t are the parameters in the simultaneous distribution of mt and nt . This
distribution is assumed not to depend on f (d) and η , meaning that we can ignore θ t .
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Hence, the log-likelihood function of the whole data set may be written as

l( f ,η) =
T

∑
t=1

logP(Gt |Gt−1,mt ,nt , f ,η).

Let zi,t be the number of new edges that connect to node i at time t. Given mt , the quantities
z1,t , . . .zN,t follow a multinomial distribution. Hence, the log-likelihood function may be
written as

l( f ,η) =
T

∑
t=1

N

∑
i=1

zi,t log( f (di,t))+
T

∑
t=1

N

∑
i=1

zi,t log(ηi)−
T

∑
t=1

N

∑
i=1

zi,t log

(
N

∑
j=1

f (d j,t)η j

)
.

Note that when computing zi,t , the edges corresponding to nodes which appear the same
day as the node itself are not taken into account. This is due to the fact that within each
day we do not know the order in which the users were recruited. Hence, we do not want to
introduce spurious effects by randomising ties 6.

As stated in Section 4 regularization is used to avoid overfitting, meaning that the fol-
lowing objective function is maximised:

l∗( f ,η) = l( f ,η)+ reg f + regη .

The regularization term for the preferential attachment function is given by

reg f =−
λ

∑
D−1
d=1 wd

D

∑
d=1

wd (log( f (d +1))+ log( f (d−1))−2 log( f (d)))2 , (A 1)

where λ determines the amount of regularization of the f (d)-function. This means that
reg f penalizes the second order differation of log( f (d)), encouraging the form f (d) = dα .
The latter may also be verified as follows. If f (d) = dα , then log( f (d))/ log(d) = α , and
we also have that log( f (d +1))/ log(d +1) = α and log( f (d−1))/ log(d−1) = α . This
again implies that log( f (d + 1))/ log(d + 1)− log( f (d))/ log(d) = log( f (d))/ log(d)−
log( f (d−1))/ log(d−1), which is equivalent to

log( f (d +1))/ log(d +1)+ log( f (d−1))/ log(d−1)−2 log( f (d))/ log(d) = 0.

For moderately large values of d we have that log(d +1)≈ log(d)≈ log(d−1), meaning
that the last equation may be written as

log( f (d +1))+ log( f (d−1))−2 log( f (d)) = 0.

The weights wd may be arbitrarily chosen. We follow (Pham et al., 2016) and set them
to

wd =
T

∑
t=1

md,t ,

where md,t is the number of edges that connect to a degree-d node at time t. With this
choice, one balances the strength of the regularization and the observed data.

6 For 74.8% of the nodes no edges are discarded. For 24.0% 1 edge is discarded, for 1.1% 2 edges
are discarded, while only for 0.1% of the nodes more than 2 edges are discarded.
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The regularization term for the node fitnesses is given by

regη =
N

∑
i=1
{(s−1) log(ηi)− sηi} . (A 2)

Multiplying the likelihood by a penalty function is equivalent to assigning a Bayesian prior
distribution to the unknown parameters, see e.g. (Cole et al., 2014). The regularization term
(A 2) is equivalent to a Gamma prior on ηi, with mean and variance equal to 1 and 1/s,
respectively. The larger the value of s, the smaller the variance of the fitness distribution.
When s→∞ all ηi’s will be equal to 1. Hence, the special case of the classical preferential
attachment model is obtained for the combination λ = ∞, s = ∞.

B GT model: Minorize-Maximization algorithm

As stated in Section 4, the maximization of the penalized log-likelihood function is per-
formed using the Minorize-Maximisation (MM) algorithm (Hunter & Lange, 2000). The
MM algorithm is an iterative optimization method which works by specifying a surro-
gate function that majorizes or minorizes the original objective function. Optimizing the
surrogate function will drive the objective function upward or downward until a local
optimum is reached. A minorize function Q( f ,η) for l( f ,η) should satisfy the following
two requirements

Q( f ,η) < l( f ,η) for all f and η ,

Q( f q,ηq) = l( f q,ηq) for all iterations q.

It can easily be shown that an appropriate minorize function for l( f ,η) then is

Q( f ,η) =
T

∑
t=1

N

∑
i=1

zi,t log( f (di,t))+
T

∑
t=1

N

∑
i=1

zi,t log(ηi)

−
T

∑
t=1

N

∑
i=1

zi,t log

(
N

∑
j=1

f q(d j,t)η
q
j

)
−

T

∑
t=1

N

∑
i=1

zi,t
∑

N
j=1 f q(d j,t)η

q
j

∑
N
j=1 f (d j,t)η j

+
T

∑
t=1

N

∑
i=1

zi,t .

Let Ak be the value of f (d) for bin k, and let B(i, t) be the bin of node i at time t. We
maximize Q with respect to A = {A1,A2, . . . ,AK} and η = {η1,η2, . . . ,ηN} by solving the
equations ∂Q/∂A = 0 and ∂Q/∂η = 0 obtaining

Ak =
∑

T
t=1 ∑B(i,t)=k zi,t

∑
T
t=1

∑
N
i=1 zi,t

∑
N
j=1 AB( j,t)η j

∑B(i,t)=k ηi

for k = 1, . . .K, (B 1)

ηi =
∑

T
t=1 zi,t

∑
T
t=1

∑
N
i=1 zi,t AB(i,t)

∑
N
j=1 AB( j,t)η j

for i = 1, . . .N. (B 2)

Since Ak and ηi appear on both sides of these equations, we must use an iterative procedure.
Starting from some initial values A0 = {1,A0

2, . . . ,A
0
K} and η0 = {1,η0

2 , . . . ,η
0
N} at iteration

q = 0, this algoritm iteratively calculates Aq and ηq until some convergence condition
is met. For each iteration, the Ak’s, k = 1, . . .K, are first updated. Then, the ηi’s, i =
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1, . . .N, are updated using the updated values for the Ak’s. It should be noted that parallell
processing may be used both when updating the Ak’s and the ηi’s.

Optimizing the penalized likelihood function l∗( f ,η) instead of l( f ,η), Equation B 2 is
slightly modified to

ηi =
∑

T
t=1 zi,t + s−1

∑
T
t=1

∑
N
i=1 zi,t AB(i,t)

∑
N
j=1 AB( j,t)η j

+ s
for i = 1, . . .N. (B 3)

The new formula for Ak is however no longer available in closed form. Instead it is the
solution of a univariate equation which is obtained by first combing the function Q above
with a minorize function for the regularization term reg f from Equation A 1. If the new
minorize function is denoted QA(·), the next step is then solving the equation ∂QA/∂A= 0.
The minorize term for reg f may be found in the supplement to (Pham et al., 2016). Is is
chosen in such a way that solving the equation ∂QA/∂A = 0 may be separated into K
univariate problems ∂QA/∂Ak = 0, which may be easily solved in parallel.
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