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a b s t r a c t

Banks collect data x1 in loan applications to decide whether to grant credit and accepted applications
generate new data x2 throughout the loan period. Hence, banks have two measurement-modalities,
which provide a complete picture about customers. If we can generate x2 conditioned on x1 keeping the
relationship between these two modalities, credit and behavior scoring may be enabled simultaneously
(at the time x1 is obtained) to support cross-selling, launching of new products or marketing
campaigns. Therefore, we develop a novel conditional bi-modal discriminative (CBMD) model for credit
scoring, which is able to generate x2 based on x1 and can classify the outcome of loans in an unified
framework. The idea behind CBMD is to learn joint (among modalities) latent representations that
are useful to generate x2 using the available data x1 during the application process. The classifier
model introduced in CBMD encourages the generative process to generate x2 accurately. Further, CBMD
optimizes a novel objective function introduced in this research, which maximizes mutual information
between the latent representation z and the modality x2 to improve the generative process in the
model. We benchmark the generative process of our proposed model and CBMD outperforms other
multi-learning models. Similarly, the classification performance of CBMD is tested under different
scenarios and it achieves higher or on a par model performance compared to the state-of-the-art
in multi-modal learning models.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Retail banks model the relationship between customer’s in-
ormation x and the outcome y of a loan to decide whether
to grant credit, where y = 0 if a customer repays the loan
otherwise y = 1. Traditionally, x has been limited to information
captured during the application process, even though banks have
access to more data that is generated by granted applications
throughout the loan period, e.g. repayment or purchase behavior.
Therefore, banks have two measurement-modalities that provide
complementary information about a given customer. The first
data modality, or view of data, is generated before the loan is
granted and we denote it as x1. The second modality is generated
throughout the loan period and we called this modality x2, see
Fig. 1. Commonly, banks use x1 to develop credit scoring models,
while x2 can be used to develop behavior models or to support
cross-selling activities, launching of new products or marketing
campaigns in banks.
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Multi-modal learning designs models that utilize different
measurements-modalities of the same object to learn joint data
representations between modalities. Examples of multi-
modalities, or views of data, are audio, video, and text, words and
context, or credit data before and after the application process. A
traditional application for multi-modal learning is downstream
classification in a two-steps approach [1,2]. That is, a joint data
representation is learned in the first stage and then, in the second
stage, it is used to train a classifier model. The two steps ap-
proach has two major shortcomings. First, it can become a burden
for practitioners if domain-specific classifiers need to be used,
e.g. hidden Markov classifier with Gaussian mixtures as in [2].
Second, it uses a disjoint optimization for data representations
and classification, which discards any possible synergy between
these two.

Some multi-modal learning models are able to generate the
input modalities using autoencoder-like architectures,1 which
clearly requires that all modalities are available at test time. This
is not the case in the context of credit scoring, where x2 is not
available at the same time as x1. If we can generate x2 conditioned

1 Such an architecture is designed to reconstruct the input data, i.e. f (x2) = z
nd f (z) = x̂ where f (·) is a neural network.
2
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Fig. 1. Bi-modal credit data. At the time of the applications process t0 , only x1 is available. This data modality, which commonly is composed of socio-demographic
eatures, is generated during t < t0 and is used in credit scoring models. After the loan is granted, a new data modality x2 is generated, providing complementary
nformation about the customer. Modality x2 is used to develop behavior models or to support cross-selling activities among others.
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n x1 keeping the relationship between these two modalities,
redit and behavior scoring may be enabled simultaneously (at
he time x1 is obtained) to support cross-selling, launching of new
roducts or marketing campaigns. Therefore, the main motivation
or this research is to develop a novel bi-modal methodology that
enerates the modality x2 based on x1, which is our best source
f information for future customer behavior. In other words, we
se conditional distributions to keep the relation between x1 and
2 since it makes sense to anchor the prediction of future bureau
cores to its current value for example.
To that end, we develop a conditional bi-modal discrimina-

ive (CBMD) model that (i) learns to generate x2 conditioned
n modality x1 together with data representations z , and (ii)
an classify class labels y using the learned data representations.
he reason to include a classifier model into CBMD is twofold.
irst, to improve the generative process through the optimiza-
ion of the classifier in an unified framework, which creates a
ynergy between representation learning and classifier training
s in [3]. Second, to enable downstream classification with data
epresentations using a classifier model that is relatively simple.
his makes our proposed CBMD model useful for downstream
enerative and classification tasks in scenarios where only x1 is
vailable at test time.
The contributions of this paper are as follows: (i) we develop

he first bi-modal learning methodology for credit scoring, which
enerates the modality x2 conditioned on modality x1 and can
lassify the outcome of loans using latent representations, (ii)
e show how can we utilize the generative properties of our
roposed CBMD model to generate future credit data, and (iii)
e introduce a novel objective function that maximizes mutual

nformation between the common latent representation z and
odality x2, which helps to improve the generative process of
ur proposed CBMD model.
The rest of the paper is organized as follows. Section 2 reviews

he related work on multi-modal learning and Section 3 presents
he proposed model. Further, Section 4 explains the data sets
sed in this research and presents the benchmark results. Finally,
ection 6 discusses the main findings of this research.

. Related work

This section reviews the research on multi-modal learning
ocusing on the development from the seminal canonical corre-
ation analysis (CCA) [4] to models that optimize a variational
ower bound and use neural networks to do amortized inference
or model parameters. To facilitate model comparison, we use a
 f

2

ommon notation for all models where different data modalities
re represented by x and are distinguished with a subscript,
ommon latent transformations are represented by z , private
atent representations are denoted by h and a subscript referring
o their data modality. Finally, labels are denoted by y. The plate
otation for variational-based models included in this section are
hown in Table 1.
Canonical correlation analysis finds linear projections by max-

mizing correlation between the transformations in multi-modal
ata. The objective is to learn the underlying semantic in the dif-
erent modalities [5]. Originally, CCA deals only with linear pro-
ections of the data, but a kernel version of CCA was introduced
n [5–9] to handle non-linearities.2

Both CCA and kernel-CCA maximize

f , g} = argmax
f ,g

cov(f (x1), g(x2))
√

var(f (x1)) · var(g(x2))
, (1)

here f (x1) and g(x2) are the projections of modalities x1 and x2,
ubject to the constraints that fj(x1) is uncorrelated with fi(x1),
j(x2) is uncorrelated with gi(x2), and fj(x1) is uncorrelated with
i(x2) for all i ̸= j. The difference between CCA and kernel-CCA is
hat the former assumes linear projections i.e. f (x1) = vTx1, while
he latter uses linear combinations of the kernel k1 evaluated at
he data set, i.e. f (x1) =

∑N
i=1 αik1(x1, x1,i), where αi determines

he direction of the projections. Similar functions are used for the
rojection g(x2).
A probabilistic interpretation of CCA is presented in [10]. The

odalities x1 ∈ Rd1 and x2 ∈ Rd2 are generated given a common
atent representation z , that is

z ∼N (0, Id),
1|z ∼N (W 1z + µ1,Ψ 1),

2|z ∼N (W 2z + µ2,Ψ 2),

here min(d1, d2) ≥ d ≥ 1 and W 1,W 2, µ1, µ2,Ψ 1, and Ψ 2 are
arameters defining a Gaussian distribution N (·). These parame-
ers are commonly estimated using the expectation–maximization
EM) algorithm [11] and their updating equations can be found
n [10]. Furthermore, [10] show that linear discriminant analysis
LDA) [12] is a special case of CCA where one of the views is the
abel y.

Deep canonical correlation analysis [17] (DCCA) couple to-
ether deep neural networks and CCA with the objective to train
eural networks able to maximize the correlation ρ(f (x1), g(x2))

2 The method presented in [9] is an approximation based on random Fourier
eatures.
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Table 1
Overview over some generative and inference models presented in Section 2. We have harmonize the notation in all previous models with the one used in this
paper. That is, given a bi-modal data, modality x1 is available during training and test time, while modality x2 is only available during training. Furthermore, common
atent variables are denoted by z , while private latent representations are represented by hx1 and hx2 .

(Year) Author Generative model Inference model Learning approach

(2015) Wang W. [1] • Unsupervised representation learning
• Loss function: AE + ACC
• Training: SGD

(2016) Wang W. [2] • Unsupervised representation learning
• Loss function: VI lower bound
• Training: SGD

(2016) Suzuki M. [13] • Unsupervised representation learning
• Loss function: VI lower bound
• Training: SGD

(2018) Wu M. [14] • Unsupervised representation learning
• Loss function: VI lower bound with product of experts (PoE)
• Training: SGD

(2018) Du C. [15] • Semi-supervised classification
• Loss function: VI lower bound
• Training: SGD

(2018) Vedantam R. [16] • Supervised representation learning
• Loss function: VI lower bound
• Training: SGD

(2019) Du F. [3] • Supervised classification
• Loss function: VI lower bound
• Training: SGD
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between modality x1 and x2. DCCA cannot only handle non-
inearities, but can also capture high-level abstractions of the data
n each of the multiple hidden layers. Note that the correlation
bjective function is a function of the entire data set, i.e. it is
fully batch objective function, and therefore it can be costly

or large data sets. In a similar approach, [1] develop a model
alled deep canonically correlated autoencoder (DCCAE), where
he objective function minimizes reconstruction error for both
odalities (as in regular autoencoders) and optimizes canonical
orrelation between the learned representations (as in CCA). The
ain difference between DCCA and DCCAE is that the latter
an reconstruct both modality x1 and x2, and DCCAE scales to
arge data sets using stochastic gradient descent to optimize its
bjective function.
A problem with DCCAE is that the CCA term in its objective

unction dominates the optimization procedure [1]. As a conse-
uence, the reconstruction of x1 and x2 is poor. To overcome
his problem, [2] use variational inference and deep generative
odels to generate latent representations of the input modalities
nd to reconstruct them. The authors in [2] present a model
alled variational CCA (VCCA) that uses a common latent variable
o generate both modalities. In a second version, VCCA uses
3

ommon and private latent variables to generate modality x1
and x2. Note that when only common latent variables are used,
it is not clear how to specify the inference model, i.e. q(z|x1)
r q(z|x2). Therefore, the authors propose the objective function
= µLq(z|x1) + (1 − µ)Lq(z|x2), where Lq(z|x1) (Lq(z|x2)) is the loss

unction when q(z|x1) (q(z|x2)) defines the inference model and
∈ [0, 1] is a weight parameter controlling the importance of

ach term in the objective function.
A supervised extension of VCCA is proposed by [3], which

ombines multi-modal learning and classification in one unified
ramework. The authors propose a discriminative multi-modal
eep generative model (DMDGM) that generates both modal-
ties based on private and common hidden variables. Unlike
ost approaches for downstream classification, DMDGM uses

he available modalities at test time for classification, e.g q(y|x1)
r q(y|x1, x2). This is not the only model where classification is
ddressed in a unified objective function, [15] develops a semi-
upervised deep generative model for missing modalities where
he latent variable is shared across modalities. To further improve
he flexibility of the latent space, the authors model the inference
rocess as a Gaussian mixture model (GMM). However, it is worth
entioning that modeling the inference process as GMM harms



R.A. Mancisidor, M. Kampffmeyer, K. Aas et al. Knowledge-Based Systems 245 (2022) 108568

t
i

t
p
i
i
f

q

t
b
i
q
p
i
m
O

h
a
i
a
m
O
f
r
t
t
a
M
a

t
u
a
g
u
v
r
i
e
f
M

3

f
x
t
i
i
m

p
o
a

3

x
x
c

p
s
c
a
p
t

p

w
i
w
l

p

o
c
(

q

L

W
a
s
p

he tightness of the lower bound since the entropy of a GMM is
ntractable.

The joint multimodal variational autoencoder (JMVAE) is in-
roduced in [13]. The first model presented by the authors re-
laces missing modalities with zeros, e.g. q(z|x1, x2) ≈ q(z|x1, 0)
f x2 is missing. The second model presented in [13] includes two
ndividual inference models q(z|x1) and q(z|x2), and one global in-
erence model q(z|x1, x2). Further, the objective function includes
two Kullback–Leibler (KL) divergence terms, KL[q(z|x1, x2)||
(z|x1)] and KL[q(z|x1, x2)||q(z|x2)], which force q(z|x1) and

q(z|x2) to be close to q(z|x1, x2). The authors argue that including
these two KL terms is equivalent to minimizing the lower bound
of variation of information (VaI). This is not the only model opti-
mizing the information theoretic measure VaI, [18] use restricted
Boltzmann machines to develop a multi-modality model, which
objective function is fully derived from a VaI perspective.

All previous models in this section assume data with only two
modalities. A model that generalizes to more than two modalities
is presented in [14]. Their deep generative model assumes that
the posterior distribution p(z|x1, x2, · · · , xn) is proportional to
he product of individual posteriors p(z|x1) · · · p(z|xn) normalized
y the prior distribution p(z). Additionally, they assume that
ndividual posteriors are approximated by variational densities
(z|xi) for i = 1, · · · , n. Hence, the joint posterior distribution is a
roduct of experts (PoEs). Another model using PoEs is presented
n [16]. However, in this case, the authors use a PoEs to deal with
issing modalities, i.e. q(hx2 |x2) ∝ p(hx2 )

∏
k∈O q(hx2 |x

k
2), where

are the observed attributes in modality x2.
Objective functions optimizing a mutual information (MI) term

ave been introduced in infoGAN [19] and infoVAE [20], which
re uni-modal unsupervised learning methods. infoGAN approx-
mates MI by using the variational information maximization
pproach, which is a variational lower bound, and optimizes a
inimax game based on generative adversarial networks [21].
n the other hand, infoVAE adds a MI term to the objective
unction to learn amortized inference distribution and to learn
epresentations that embed information about z . [20] show, in a
wo-steps classification experiment with latent representations,
hat infoVAE achieves the same classification as an unregularized
utoencoder using a latent space with more than 10 dimensions.
eaning that the learned representations embed information
bout x.
Our proposed CBMD model uses a prior distribution p(z|x1)

hat is conditioned on modality x1 to generate the modality x2
sing the generative process p(x2|x1, z). Such a generative mech-
nism keeps the relationship between x1 and x2 and allows us to
enerate x2 at the same time a loan application is received. CBMD,
nlike infoGAN, optimizes a novel objective function based on
ariational inference, which maximizes MI between latent rep-
esentations z and modality x2 to effectively learn amortized
nference distributions and to generate accurate x2 samples. How-
ver, unlike infoVAE, our motivation to include a MI term stems
rom the restriction imposed by the variational lower bound on
I.

. Conditional bi-modal discriminative model

Before we introduce our proposed CBMD model,3 we de-
ine some variables that are used throughout this section. Let
1 be the data modality available at the time a loan applica-
ion is received. Common features in this modality are: age,
ncome, gender, geographical location, etc. Once an application
s approved, customers generate new information constituting
odality x2. The sort of information in this modality can be

3 https://github.com/rogelioamancisidor/cbmd.
4

updated values for features in x1, e.g. latest income, current age,
latest marital status etc. Other kind of features in x2 can be
repayment or purchase behavior. In the context of this research,
we have access to class labels y, where y = 0 denotes if a
customer repaid a loan, otherwise y = 1. Finally, we assume that
there is a common latent representation q(z|x1, x2) with prior
p(z|x1) and a private posterior representation q(hx2 |x2) with prior
(z2). Both latent representations contain high-level information
f both data modalities providing complementary information
bout the outcome of the loan.

.1. Deriving the CBMD lower bound

We observe labeled bi-modal data {(x(1)1 , x(1)2 , y(1)), · · · , (x(N)
1 ,

(N)
2 , y(N))} that is generated at different point in times, where only
1 is available at application time. Further, the modality x2 and
lass label y are generated after a loan application is granted.
We focus on learning a joint latent representation z and a

rivate representation hx2 that can be used for downstream clas-
ification and to generate x2. For that purpose, we assume a
onditional prior distribution p(z|x1) for the modality that is
vailable at test time and an uninformative private distribution
(hx2 ) for the modality x2, which is missing at test time. Under
his scenario, the joint generative process is given by

(x2, z, hx2 |x1) = p(x2|x1, z)p(z|x1)p(hx2 ), (2)

here p(x2|x1, z) is the generative process for future credit scor-
ng data. Note that the posterior distribution of the latent variable,
hich is exactly the joint latent representation that we want to

earn,

(z|x1, x2) =
p(x2, z, hx2 |x1)∫∫

p(x2, z, hx2 |x1)dzdhx2
(3)

requires a marginal distribution that is not available in closed
form. Therefore, we approximate the true posterior distribution
p(z|x1, x2) in Eq. (3) with the variational distribution q(z|x1, x2).

Taking the log of the marginal distribution in Eq. (3) we obtain
the lower bound

log p(x2|x1) = log
∫∫

p(x2, z, hx2 |x1)dzdhx2

= log
∫∫

q(z, hx2 |x1, x2)
p(x2, z, hx2 |x1)
q(z, hx2 |x1, x2)

dzdhx2

= logEq(z,hx2 |x1,x2)

[p(x2, z, hx2 |x1)
q(z, hx2 |x1, x2)

]
≥Eq(z,hx2 |x1,x2)

[
log

p(x2, z, hx2 |x1)
q(z, hx2 |x1, x2)

]
, (4)

where the inequality is a result of the concavity of log and
Jensen’s inequality. Eq. (4) is the variational lower bound L(x2, x1)
n the conditional log-likelihood log p(x2|x1), which in principle
an be optimized using the stochastic variational gradient Bayes
SVGB) approach introduced in [22].

Expanding the lower bound in Eq. (4) and assuming
(z, hx2 |x1, x2) = q(z|x1, x2)q(hx2 |x2), we get that

(x2, x1) =Eq(z|x1,x2)[log p(x2|x1, z) + log p(z|x1) − log q(z|x1, x2)]
+Eq(hx2 |x2)[log p(hx2 ) − log q(hx2 |x2)]
=Eq(z|x1,x2)[log p(x2|x1, z)] − KL[q(z|x1, x2)||p(z|x1)]

−KL[q(hx2 |x2)||p(x2)]. (5)

hile in some cases optimizing Eq. (5) should be sufficient to do
mortized inference and to reconstruct x2 correctly, it has been
hown that this formulation of the lower bound has two main
roblems [20,23]. First, it can fail to learn an amortized inference

https://github.com/rogelioamancisidor/cbmd
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c

istribution q(z|x1, x2) that correctly approximates p(z|x1, x2).
econd, the model can focus on reconstructing x2 ignoring the
atent data representation z , which implies that z does not de-
end on x2. This problem is called posterior collapse [24] and
e attempt to solve it by the explicit optimization of the mutual

nformation between x2 and z .
To solve the aforementioned challenges, we propose a new

bjective function that maximizes mutual information between z
nd x2. Note that, assuming the factorizations q(x1)q(x2|x1)q(z|x1)
nd q(z|x2, x1)q(x2|x1) = q(x2, z|x1), the conditional mutual in-
ormation I(x2, z|x1) can be written as

(x2, z|x1) =Eq(x2,z,x1)

[
log

q(x2, z|x1)
q(x2|x1)q(z|x1)

]
=Eq(x2,z,x1)

[
log

q(z|x1, x2)q(x2|x1)
q(x2|x1)q(z|x1)

]
=Eq(x2,z,x1)[log q(z|x1, x2) − log q(z|x1)
+ log p(z|x1) − log p(z|x1)]
=Eq(x2,x1)

[
KL[q(z|x1, x2)||p(z|x1)]

]
−Eq(x1)

[
KL[q(z|x1)||p(z|x1)]

]
, (6)

here q(x2, x1) and q(x1) are estimated using the empirical data
istribution. Hence, adding the mutual information term (1 −

)I(x2, z|x1) to Eq. (5) we obtain the objective function for a
ingle data point

(x1, x2) =Eq(z|x1,x2)[log p(x2|x1, z)] − KL[q(z|x1, x2)||p(z|x1)]
−KL[q(hx2 |x2)||p(x2)] + (1 − ω)[KL[q(z|x1, x2)||p(z|x1)]
−KL[q(z|x1)||p(z|x1)]]
=Eq(z|x1,x2)

[log p(x2|x1, z)] − KL[q(hx2 |x2)||p(hx2 )]

−ωKL[q(z|x1, x2)||p(z|x1)] + (1 − ω)KL[q(z|x1)||p(z|x1)],
(7)

here ω ∈ [0, 1] is a weight hyperparameter. The first two KL
ivergence terms in Eq. (7) have an analytical solution. How-
ver, the last KL divergence is intractable, due to the marginal
istribution q(z|x1), but can be replaced by any strict diver-
ence term [20], e.g. maximum mean discrepancy divergence
MMD) [25]. We choose the non-parametric squared MMD that
an be estimated numerically and is given by

MD[F, p, q] = Ep(x,x′)[k(x, x′)] − 2Ep(x),q(z)[k(x, z)]

+ Eq(z,z ′)[k(z, z ′)], (8)

here F be a unit ball in a universal reproducing kernel Hilbert
pace H, p and q are Borel probability measures and k(·, ·) is a
niversal kernel. We use a Gaussian kernel in our proposed model
o obtain the objective function

(x1, x2) =Eq(z|x1,x2)
[log p(x2|x1, z)] − KL[q(hx2 |x2)||p(hx2 )]

−ωKL[q(z|x1, x2)||p(z|x1)]

+(1 − ω)λMMD[q(z|x1)||p(z|x1)], (9)

here λ counteracts the loss imbalance between X 2 and Z
paces. Eq. (9) give us more flexibility to reconstruct all features
n modality x2 utilizing the joint latent representation z and to
earn amortized inference distributions q(z|x1, x2).

It is worth analyzing Eq. (5) and (6). Given that the KL diver-
ence is non-negative, Eq. (6) implies that (for one observation)
L[q(z|x1, x2)||p(z|x1)] ≥ I(x2, z|x1). In other words, the diver-
ence KL[q(z|x1, x2)||p(z|x1)] is an upper bound on the condi-
ional mutual information. Further, note that the upper bound is
he same KL divergence as in Eq. (5). Hence, optimizing the reg-
lar lower bound imposes an upper bound on I(x2, z|x1), which
an result in the undesired posterior collapse problem.
5

However, we are interested in developing a model that, in
ddition to generate modality x2, can also classify the outcome
f the loan. Further, given that we have a supervised data set,
e want to use label information to learn joint latent represen-
ations. Hence, we add a classification loss q(y|z, hx2 ) and replace
(z|x1, x2) by q(z|x1, x2, y) in Eq. (9) to obtain the following final
oss function in our proposed model

= −L(x1, x2, y) − α log q(y|z, hx2 ), (10)

here α controls the importance of the classification loss in the
bjective function, and its plate notation is shown in Fig. 2.
We minimize Eq. (10) using SVGB and automatic differen-

iation routines in Theano [26]. Note that the reconstruction
erm of Eq. (9) can be efficiently estimated using the reparam-
terization trick [22], the KL divergence term has a closed-form
xpression [22,27], and the MMD divergence is approximated
umerically by sampling from q(z|x1, x2, y) and p(z|x1) for a given
ini-batch of data as suggested by [25].
Finally, we assume the following density functions in our

roposed CBMD model

p(hx2 ) ∼N (0, 1)
p(z|x1) ∼N (z|x1; µ = fθ(x1), σ2

= fθ(x1)),
p(x2|x1, z) ∼N (x2|x1, z; µ = fθ(x1, z), σ2

= fθ(x1, z)),
(z|x1, x2, y) ∼N (z|x1, x2, y; µ = fφ(x1, x2, y), σ2

= fφ(x1, x2, y)),
q(hx2 |x2) ∼N (hx2 |x2; µ = fφ(x2), σ2

= fφ(x2)),

q(y|z, hx2 ) ∼Bernoulli(y|z, hx2; πy|z,hx2 = fφ(z, hx2 )), (11)

here N denotes the Gaussian distribution and f (·) is a multi-
ayer perceptron (MLP) network [28]. That is, the density param-
ters µ, σ2, and πy|z,hx2 are parametrized using neural networks
ith learnable parameters denoted by θ and φ.
The first density in Eq. (11) is non-informative about the

uture credit data, while the second equation learns a latent
epresentation (z) based on the available information (x1) during
he loan application process. In other words, p(z|x1) represents
ur prior beliefs about the joint representation z and it is based
n information available during the application process. The third
ensity learns a data generating process to draw future credit
coring data (x2) based on available information (x1) and the
oint representation (z). The fourth density function, where we
dd the class label information (y), learns the posterior latent
epresentation for credit data. The fifth density learns a latent
epresentation for future credit data. Finally, the last density
unction classifies the outcome of a loan y using latent represen-
ations (z and hx2 ) for credit scoring data, and encourages latent
epresentations to capture higher-level of abstractions that are
seful for classification and to generate modality x2.

. Experiments and results

The motivation for the experiments is threefold. First, we com-
are the generative process of our proposed methodology with
xisting multi-modal learning models using two modalities. Sec-
nd, we show how financial institutions can utilize the generative
etwork in the CBMD model to generate future data. Third, we
ompare the predictive power of the learned data representation
or all models. In all experiments, we assume that only x1 is
vailable at test time to generate joint representations z which
re further used for downstream generative and classification
asks

The models included in this section are CCA [4], KCCA [9],
CCA [17], and DCCAE [1], which all are based on canonical
orrelation. We also include VCCA [2] and JMVAE [13] that are
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Fig. 2. Plate notation for our proposed bi-modality discriminative model for credit scoring. The left side shows the generative model, where the prior distribution of
z is condition on the modality x1 . The right side shows the inference model, where we explicitly optimize maximum mean discrepancy to minimize the information
preference problem.
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variational-based methods.4 To allow a fair comparison to CBMD,
all models are tested without pre-trained weights as in [1] or
without adding generative adversarial networks to further im-
prove reconstructed values as in [13]. In the classification ex-
periments, we use fixed variance parameters in the generative
networks for VCCA and JMVAE as suggested in their original
papers. Otherwise, downstream classification is poor. It is worth
mentioning that, in our experiments, VCCA is more prone to poor
classification than JMVAE if the variance parameters are learned
during the optimization process.

In order to test the generalization properties of our proposed
model, we include a real data set for purchase prediction con-
taining 200 features. Hence, we can test CBMD on scenarios with
large number of missing features at test time. Note, data modal-
ities do not need to be time-dependent. Therefore, creating a
bi-modal data set based on the predictive power for each feature,
which we explain in the next section, is a valid approach.

4.1. Data description

We use two real and publicly available data sets in this sec-
tion.5 The first data set corresponds to customers at Banco San-
tander and it contains 200 (anonymized) numerical features for
purchase prediction, i.e. which customer will make a future trans-
action regardless of the amount. A training and test data set are
available, but we only use the training data set since the test data
set has no label information. The training data set contains 200
000 observations and there are 20 098 customers that made a
purchase, which corresponds to 10.05% of customers. Given that
behavioral models have higher model performance than credit
scoring models [29], we assume that features with high predictive
power6 correspond to modality x2. Therefore, in the experiments
conducted in Section 4.3.2, we select the top 50 features as
modality x2, while the rest of the features correspond to view x1.
Given the number of features in this data set, we also tested all
models under a more challenging scenario where modality x1 and
x2 contain 100 features each.

The second data set consists of peer-to-peer loan applications
from January 2009 to December 2013 at Lending Club.7 We only

4 In our experiments, we use the implementations for CCA, KCCA, DCCA,
CCAE, and VCCA at https://ttic.uchicago.edu/ wwang5/. While, results for JMVAE
re based on our own implementation.
5 Banco Santander data set: https://www.kaggle.com/c/santander-customer-t

ansaction-prediction/data. Lending Club data set: https://github.com/nateGeorg
/preprocess_lending_club_data.
6 We use the method introduced in [30] to estimate feature importance.
7 Lending Club is the world’s largest peer-to-peer lending company and it
as the first peer-to-peer lender to register its offerings as securities with the
ecurities and Exchange Commission in the U.S., and to offer loan trading on a
econdary market.
6

include accepted loans with 36-months maturity and some obser-
vations have been excluded using the same criteria as in [27,31].
This data set contains 89 998 accepted applications, where 10
896 are defaulted loans, i.e. default rate is 12.11%. Further, we
choose the modality x1 to be all common features in accepted and
rejected applications, which are only 5 features. All categorical
features in modality x1 are transformed to one-hot-encoders,
resulting in a 18D vector. On the other hand, the modality x2
contains 72 features and we select only features that are both
continuous and with empirical distributions resembling Gaussian
densities. Hence, we select 8 features for the modality x2 in the
experiments conducted in Section 4.3.2. This choice is driven by
the fact that modality x1 has only 5 original features. Details
about data modalities in the Lending Club data set are shown in
Appendix A.

4.2. Model training and testing

We use MLP networks with softplus activation functions in
all hidden layers to parametrise µ, σ2 and πy|z,hx2 in Eq. (11).
For the output layers parameterizing µ and σ2, we use linear
activation functions, while for the classifier we use a softmax
activation function. The minimization of the loss function is done
using the Adam optimizer [32] with learning rate equal to 1e-4.
The final architectures that we used in our proposed model, as
well as all architectures used in the grid-search to tune the MLPs,
are shown in Table B.1 in the Appendix B and are chosen based
on both classification and generative performance. All CCA-based
and variational-based models are trained with similar architec-
tures to CBMD for a fair comparison. Further, for DCCAE we tune
the λ parameter by grid search as suggested in [1]. Similarly, we
tune the α and variance parameters by grid search in JMVAE and
VCCA respectively. Finally, both data sets are scaled between 0
and 1 for better training stability.

During training we have a supervised data set containing both
x1 and x2, as well as the class label y. At test time we assume
that only modality x1 is available. Therefore, at training time
we draw samples from q(z|x1, x2, y) to reconstruct modality x2
using the generative process p(x2|x1, z) in our proposed CBMD
model. While at test time, we need to rely on the conditional prior
distribution p(z|x1) to draw z . Then, we use that representation
o generate x2 using p(x2|x1, z). In other words, we generate
uture credit data (x2) based on current information about the
oan application (x1) and based on the prior distribution (p(z|x1))
f the joint latent representation. Note that the conditional prior
istribution in our proposed model is more informative than the
lassical choice z ∼ N (0, I).
We observed in our experiments that training the classifier

ith z ∼ q(z|x1, x2, y) leads to unstable classification perfor-
ance. This problem arises because we assume that x is missing
2
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t

Fig. 3. Forward propagation in our proposed model. The dotted arrow indicates a forward pass during training, which is replaced by the dashed arrow at test time.
Solid arrows depict a common forward propagation during training and test.
at test time and we only can draw z from the prior, i.e. we
need to test the classifier using representations from the prior
distribution. We hypothesize that the prior and posterior are
characterized by different statistical properties, e.g. different kind
of representation and correlational structure. Hence, the prior dis-
tribution reproduces the test scenario more accurately compared
to the posterior distribution.8 On the other hand, we generate
hx2 from q(hx2 |x̂2) at training and test time, drawing x̂2 from the
generative process p(x2|x1, z). For clarity, Fig. 3 shows the for-
ward propagation during training and test time in our proposed
methodology.

Inspired by JMVAE, we tried to bring together the private la-
tent representation q(hx2 |x2) and the joint representation
q(z|x1, x2, y), but using MMD as divergence measure and the
sampling approach described at the end of Section 3.1. While we
do not see a clear benefit in the generative process of the model
or in the predictive power of it, we see faster model convergence.

4.3. Experimental design

We use 70% of the data to learn a common data representation
for both data modalities, which is further used to generate the
modality x2 and to train a multilayer perceptron (MLP) classifier.
Note that CBMD trains a classifier at the same time as it learns
shared data representations and generates x2. For this 70% of the
data, we down-sample the majority class (y = 0) to balance
both class labels. Further, we use 25% of the data to test the
predictive power of the classifier for all models and the quality
of the reconstructed modality x2 using JMVAE, DCCAE and CBMD.
Note that the test data set preserves the original balance between
the two classes and that it is only used for testing purposes.
Finally, we use the remaining 5% of the data to calibrate class
probabilities using the beta calibration approach [33]. We report
average values over 10 different runs.

8 In [2] latent representations conditioned on the available modality at test
ime also give relatively stable performance.
7

4.3.1. Generating modality x2 — Lending club

Accuracy
Of all models tested in this research, only DCCAE, JMVAE and

CBMD are able to generate modality x2 based on the available
modality x1 during test time. Models with autoencoder-like ar-
chitectures, e.g. VCCA or DMDGM, learn to reconstruct x̂2 based
on x2 and therefore cannot be used under the test scenario
in this research. Note that both JMVAE and CBMD estimate a
posterior distribution for modality x2. Hence, using a quadratic
loss function L = (x2 − x̂2)2 we obtain a point estimate x̂∗

2 =

argminE[L = (x2 − x̂2)2|x1, z]. Taking the first derivative of the
expectation with respect to x̂2 and forcing the result equal to
0, we obtain x̂∗

2 = E[x2|x1, z]. This expectation is exactly what
JMVAE and CBMD parametrise with MLPs (see Eq. (11)), and it
is our choice for a point estimate in this section. On the other
hand, DCCAE utilizes deterministic neural networks to generate
x2, hence its output is a single point estimate. Note that to draw
x2 with DCCAE, we use latent representations generated with x1.

Table 2 shows true and average and standard deviation values
for all generated features in the modality x2 for the test data
set. Interestingly, all models estimate highly accurate the support
of the empirical distribution for each feature. However, JMVAE
clearly fails at recognizing the dispersion in each feature. This
results is most likely due to the information preference problem,
meaning that p(x2|z) is basically the same for all z [20]. Similarly,
DCCAE does not match the empirical standard deviation for all
features. On the other hand, our proposed CBMD model matches
the variation for most of the features in modality x2. For features
1, 4, and 6, CBMD fails to capture the dispersion in the features. A
possible solution to overcome this problem is to choose a model
architecture for CBMD based only on its generative performance.
Another alternative to further improve the generative process in
CBMD is to use generative adversarial networks like in JMVAE.

Fig. 4 shows histograms for all true (solid curve) and gener-
ated features in modality x2. The generated features are depicted
by the dashed and dotted curves, and the dotted vertical line,
which correspond to CBMD, JMVAE, and DCCAE respectively. It
is interesting to see that CBMD centers it mass in the main mode
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Table 2
Average and standard deviation values for the true and reconstructed x2 features in the test data set using CBMD, JMVAE, and DCCAE. All models are able to capture
he empirical mean for each feature. However, JMVAE and DCCAE fail at capturing the variation across different customers.
Feature name True x2 CBMD x̂2 JMVAE x̂2 DCCAE x̂2

Average Std. deviation Average Std. deviation Average Std. deviation Average Std. deviation

Feature 1 0.17728 0.11037 0.18052 0.03246 0.18232 1.49011e−08 0.17613 0.01057
Feature 2 0.68461 0.15871 0.71402 0.14718 0.68072 1.19209e−07 0.70614 0.05208
Feature 3 0.74140 0.14333 0.75308 0.13515 0.74729 5.96046e−08 0.74132 0.02919
Feature 4 0.19370 0.08624 0.19388 0.03549 0.19306 1.48926e−08 0.16939 0.01109
Feature 5 0.46439 0.20650 0.41057 0.21793 0.46315 1.98431e−08 0.39902 0.09241
Feature 6 0.23878 0.12198 0.24361 0.03986 0.23649 1.49216e−08 0.21474 0.02407
Feature 7 0.20347 0.15674 0.20166 0.12713 0.20162 6.12372e−09 0.21303 0.03387
Feature 8 0.22988 0.19139 0.23108 0.16712 0.22704 1.49011e−08 0.23958 0.04155
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Fig. 4. Solid curves show the true empirical distributions for all features in
modality x2 in the Lending Club test data set, while the dashed and dotted
curves show the empirical distributions for the generated features using CBMD
and DCCAE respectively. The dotted vertical line shows generated values using
JMVAE.

of complex densities such as those for feature 2 and 3. Further,
skewed densities like feature 5, 7, and 8 are reconstructed highly
accurate. On the other hand, both JMVAE and DCCAE fail to
capture the dispersion across different customers.

Ablation experiments
To further analyze the quality of the drawn x2 variables, we

reate 5 equally-sized groups with different risk profiles based
n posterior class probabilities estimated with q(y|z, hx2 ). Group
has the lowest class posterior probability, while group E has the
ighest class posterior probability. Table 3 shows these 5 groups,
ogether with true and generated average values for all features
n the test data set. True values are shown in the first row for each
roup, while in the second and third row we generate x2 using the
ptimal ω∗ value and ω = 1 in our proposed objective function
Eq. (9)). The latter corresponds to the classical lower bound in
eep generative models (Eq. (4)). We can see that for all groups,
ut A, the optimal ω∗ value generates relatively more accurate
eatures as suggested by the root mean squared error (rmse),
howing the positive effect of optimizing the mutual information
erm in our proposed model. For some features in some groups
he generated x2 values are highly accurate. Note that for group
the high rmse for ω∗ is mainly driven by feature 2. The last row

n each group, x̂2 CBM(ω∗), shows the average of the generated
eatures with our proposed model and with the optimal ω∗ value,
ut without the discriminative model (hence the CBM name). We
8

bserve that the classifier in CBMD encourages the generative
odel to draw x2 accurately.
Table 3 shows from another perspective why models should

ot use fixed variance parameters in the generative process, as is
he case for JMVAE and VCCA. Such a practice impedes a model
o capture the variability among customers. Similarly, using de-
erministic neural networks to generate x2, as in DCCAE, makes it
more challenging to capture the variation across customers.

The 5 groups that we created are shown in the left panel of
Fig. 5, which are two-dimensional t-sne [34] components of the
latent space z ∼ p(z|x1) for the test data set. Note that the

groups that we have defined are clustered in a well-defined
tructure with minimal overlap. Furthermore, the right panel of
ig. 5 shows a colormap of the same t-sne components where
he color is given by the posterior class probability estimated
sing q(y|z, hx2 ). Note that there is a smooth transition across
he two dimensions. This is a characteristic of the learned latent
pace with deep generative models, which preserves the spatial
oherence of creditworthiness [35].

usiness application
Financial institutions use repayment data or behavior data,

hich is generated after x1 is obtained, for launching new prod-
cts, cross-selling or marketing campaigns. This section presents
n alternative approach where we use the modality x1 at test
ime and the generative process of the trained CBMD model of
ection 4.2 to generate future data x2. To that end, we define
nchor customers, which serve as point of reference.
Suppose a bank wants to launch a new private loan for high-

isk customers. At test time, we define as anchor customer the
lient in group E (the group with lowest creditworthiness) with
he highest posterior class probability. This customer is depicted
n the right panel of Fig. 5 by a red scatter point in the zoom box
t the top-left corner. Then, we use x1 for the anchor customer
o draw the latent representation z ∼ p(z|x1). Further, we use
he generated representation z together with x1 to generate the
uture credit data using the generative process p(x2|x1, z).

Note that CBMD assumes per-observation latent variables and
ensity functions, hence the Gaussian generative process for the
’th anchor customer is given by the distribution
(x(i)2 |x(i)1 , z (i); µ(i), σ2(i)). That is, CBMD estimates a density func-

ion for the i’th anchor customer and hence we can draw several
alues for x2. At the bottom of Table 3, we show the average of
00 different x2 values. We can see that on average the anchor
ustomer will have, just as expected, a low risk score (feature 3).
imilarly, the bottom row in Table 3 shows average values for a
ifferent anchor customer, this time an anchor customer with the
owest class probability (see the yellow scatter in the zoom box
t the top-right corner of Fig. 5). Note that instead of looking at
verage values for the i’th anchor customer, banks can utilize any
alue from the whole distribution, e.g. top or bottom quantiles,
epending on the task at hand.
Another possibility to choose anchor customers is to select
set of customers within a given segment of interest. In this
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We use estimated class probabilities using CBMD to create 5 equally-sized groups (A–E). Further, we show true x2 average values and generated x̂2 average values
sing our proposed lower bound and the classical lower bound denoted by ω∗ and ω = 1 respectively. The last column shows root mean squared error.
Group & model Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 rmse

A

true x2 0.1992 0.6304 0.8565 0.1531 0.2349 0.2222 0.2447 0.3129
x̂2(ω∗) 0.1904 0.7332 0.8291 0.1559 0.2171 0.2119 0.2352 0.3096 0.0386
x̂2(ω = 1) 0.2134 0.6481 0.7885 0.1661 0.2600 0.2070 0.2398 0.2976 0.0284
x̂2 CBM(ω∗) 0.1938 0.6600 0.7845 0.1562 0.2466 0.2039 0.2300 0.2878 0.0304

B

true x2 0.1852 0.6242 0.8199 0.1602 0.4077 0.2142 0.2627 0.3239
x̂2(ω∗) 0.1830 0.6729 0.7515 0.1681 0.3627 0.2150 0.2466 0.3067 0.0348
x̂2(ω = 1) 0.1997 0.6317 0.7260 0.1804 0.4090 0.2060 0.2465 0.2880 0.0373
x̂2 CBM(ω∗) 0.1754 0.6399 0.7108 0.1611 0.4011 0.19 0.2411 0.2767 0.0441

C

true x2 0.1826 0.6317 0.7973 0.1636 0.4764 0.2134 0.2674 0.3205
x̂2(ω∗) 0.1771 0.6342 0.7191 0.1743 0.4287 0.2147 0.2469 0.2952 0.0347
x̂2(ω = 1) 0.1922 0.6274 0.6966 0.1859 0.4780 0.2047 0.2368 0.2669 0.0428
x̂2 CBM(ω∗) 0.1659 0.6299 0.6808 0.1619 0.4706 0.1816 0.2407 0.263 0.0487

D

true x2 0.1768 0.6362 0.7834 0.1694 0.5044 0.2140 0.2576 0.3016
x̂2(ω∗) 0.1682 0.6068 0.6967 0.1788 0.4766 0.2130 0.2392 0.2762 0.0359
x̂2(ω = 1) 0.1855 0.6250 0.6733 0.1914 0.5293 0.2048 0.2264 0.2475 0.0467
x̂2 CBM(ω∗) 0.1581 0.6241 0.6608 0.1628 0.5208 0.1753 0.232 0.2441 0.0516

E

true x2 0.1663 0.6396 0.7646 0.1805 0.5322 0.2240 0.2318 0.2638
x̂2(ω∗) 0.1585 0.5829 0.6766 0.1890 0.5278 0.2212 0.2177 0.2406 0.0385
x̂2(ω = 1) 0.1790 0.6240 0.6477 0.2071 0.5889 0.2151 0.2108 0.2203 0.0505
x̂2 CBM(ω∗) 0.1582 0.6229 0.6462 0.1728 0.5735 0.1825 0.2086 0.2105 0.0515

Highest π 0.1310 0.5704 0.6526 0.2138 0.5884 0.2518 0.1280 0.1260
Lowest π 0.1798 0.6656 0.9791 0.1146 0.0122 0.1547 0.0348 0.0471
Fig. 5. Two-dimensional t-sne components of the latent space z ∼ p(z|x1) for the Lending Club test data set. The left panel shows the 5 groups that we created
ased on average values for posterior class probabilities, while the right panel shows a colormap of the same t-sne components where the color is given by the
osterior class probability estimated by the CBMD model. Note the smooth transition across the two dimension.
p

ase, it might be preferable to use the expectation for each x(i)2
n the set of the selected customer, which is the µ(i) parameter
n N (x(i)2 |x(i)1 , z (i); µ(i), σ2(i)) and that has been parametrized by a
neural network in CBMD. Given the flexibility of this approach
to generate the future modality x2, anchor customers and their
generated x2 data can be used as support when designing market-
ing campaigns, cross-selling strategies or launching new financial
products. However, a detailed development of real-life strategies
require access to more customer’s information, e.g. target vari-
ables in actual cross-selling strategies, that we do not have at
hand.

4.3.2. Classification using data representations
Even though the main motivation to include a classifier model

in our proposed methodology is to generate accurate features
in modality x2, Table 4 compares classification performance for
all benchmark models in terms of AUC, GINI, and H-measure to

provide different angles from which to examine the classification

9

performance.9 Given that the Santander Bank data set has 200
input features, we train all models in two different scenarios.
In the first scenario x1 has 150 features and x2 has 50 features,
while in the second scenario both modalities have 100 features.
Model M-x1 provides a baseline for the traditional credit scoring
approach where only x1 is used for training and testing.

Our experiments show that on average CCA-based models per-
form better for credit scoring than VCCA and JMVAE. This result
has been explained in [1] and it happens when the modalities
in the data sets are uncorrelated. Remember that the objective
function in CCA-based models maximize canonical correlation.
Further, it is interesting to see that both CCA and KCCA have
slightly higher performance than the base model for the Lending
Club data set. On the other hand, DCCA, DCCAE, and VCCA have
the lowest model performance for the Lending Club data set.

9 In credit scoring models, score-specific performance metrics, e.g. recall or
recision, are not common to use since banks use the probabilities πy|z,hx2 to

rank customers.
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Table 4
The first model M-x1 uses only modality x1 to classify y with a MLP model. All CCA-based models, VCCA and JMVAE use shared data representations to classify y
in a two-stage approach. On the other hand, our proposed CBMD model classifies labels in a unified framework. Average AUC, GINI, and H-measure are shown in
the above table.
Model name Lending Club (x1 : 18 x2 : 8) Santander Bank (x1 : 150 x2 : 50) Santander Bank (x1 : 100 x2 : 100)

AUC GINI H-measure AUC GINI H-measure AUC GINI H-measure

M-x1 0.61986 0.23972 0.04720 0.73844 0.47688 0.18509 0.63245 0.26490 0.06035

CCA 0.62004 0.24009 0.04733 0.73299 0.46597 0.17779 0.63141 0.26282 0.05919
KCCA 0.61996 0.23993 0.04684 0.74495 0.48989 0.19382 0.63152 0.26303 0.05822
DCCA 0.60783 0.21566 0.03787 0.74002 0.48004 0.18740 0.62420 0.24841 0.05246
DCCAE 0.60798 0.21597 0.03797 0.73756 0.47511 0.18273 0.62282 0.24564 0.05169
VCCA 0.60909 0.21818 0.04062 0.73621 0.47243 0.18211 0.63060 0.26120 0.05801
JMVAE 0.61920 0.23840 0.04654 0.68974 0.37948 0.11839 0.59354 0.18708 0.03200
CBMD 0.62049 0.24098 0.04764 0.74014 0.48028 0.18764 0.63395 0.26790 0.06146
However, DCCA achieves on-pair model performance compared
to the baseline model for the Santander data set with 50 features
in modality x2. It is important to note that [1] used pre-trained
weights for DCCAE. We do not follow such practices to allow a fair
comparison with CBMD. Hence, it might be possible to improve
DCCAE performance by doing so.

Our proposed CBMD model performs slightly better than the
baseline in all 3 experiments. Similarly, we also observe that
CBMD achieves higher performance than most benchmark mod-
els. The only model with higher performance than CBMD is KCCA,
which achieves the highest performance for the Santander data
set with 150 features in modality x1. However, when we in-
crease the number of features in x2 to 100, CBMD has a marginal
improvement in performance compared to both KCCA and the
baseline model. The fact that none of the benchmark models
are able to achieve a significant improvement over the baseline,
may suggest that the data modalities are not conditional inde-
pendent given the data representations, which is an assumption
in downstream classification tasks with multi-modal learning
models [2].

It is important to mention that CBMD does not need to use
fixed values for the variance parameters in the generative net-
work p(x2|x1, z), as opposed to VCCA and JMVAE, since CBMD is
able to learn these parameters during the optimization procedure.
It is also worth mentioning that we use the same model architec-
ture and hyperparameter values in the experiment where both x1
and x2 have 100 features as in the experiments where x1 has 150
features. If we tune the ω parameter in CBMD for the experiments
with 100 features in both modalities, we obtain an average AUC of
0.63414. It would be interesting to see if pre-trained weights, as
done in [2], can improve the classification performance. Likewise,
adding dropout layers to the classifier might help to use repre-
sentation from the posterior distribution q(z|x1, x2, y) to train the
lassifier, which can lead to higher classification performance.
Finally, Fig. 6 shows average AUC as a function of ω in Eq. (9).
value ω = 1 corresponds to the classical lower bound (Eq. (4)),
hile ω = 0 maximizes mutual information Iq(x2,z|x1)(x2, z), and
alues between 0 and 1 maximize our proposed lower bound
n Eq. (9). We can see that our proposed objective function
chieves higher AUC compared to the classical lower bound, both
or the Santander (solid lines) and Lending Club (dashed line) data
ets. These results show that optimizing the mutual information
erm in our proposed model not only improves the generative
rocess but also the classification performance.

. Model interpretability

Model performance in advanced deep generative models, like
BMD, comes at the cost of model interpretability. Fortunately, in
he last decade, there has been an increasing interest in designing
pproaches to explain these advanced models. [36] introduce
unified approach, Shapley Additive Explanations (SHAP), for
10
Fig. 6. Average AUC performance for the Santander (solid lines) and Lending
Club (dashed line) data set. For ω = 1 CBMD optimizes the classical lower bound
in generative models, while ω = 0 optimizes mutual information between z and
x2 . For ω values in between, CBMD optimizes the lower bound introduced in
this paper. Note that the optimal ω value, 0.8 for Lending club and 0.05 for
Santander data set, achiever AUC.

interpreting any model prediction. The SHAP values for a given
feature is the average expected marginal contribution of this fea-
ture after all possible feature combinations have been considered.
Hence, it considers both the effect the feature has by itself and in
combination with the other features in the model. SHAP values
offer an intuitive approach for model interpretability, providing
useful insight to understand the CBMD output. Such informa-
tion is valuable in different applications such as credit scoring,
healthcare, and insurance to name a few.

We estimate SHAP values for the Lendig Club data set using
the Kernel SHAP method introduced in [36] and utilize the python
library developed by the same authors.10 Fig. 7 shows SHAP val-
ues11 for the classification prediction (a panel) and the generative
process for the feature revolving utilization in the modality x2 (b
panel). Each point in each of the two panels is the SHAP value
for one specific feature and one specific observation in a sub-
sample of the test data set. The x-axis shows the SHAP values
and the color represents values of the feature from low to high.
As can be seen from the figure, the loan amount has the largest
impact on the classification performance and generative process
of CBMD. Larger loan amounts increase both the output of the
classifier and the revolving utilization of the credit line. There
is no clear pattern on the effect of debt-to-income and bureau
score values for the classification prediction. This result implies
that both features reflect customers creditworthiness at the time

10 https://github.com/slundberg/shap.
11 We only plot SHAP values for the continuous features in modality x1 and
not for the ones converted to one-hot-encoding. SHAP values for the rest of
features in x can be found in Appendix C.
2

https://github.com/slundberg/shap
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Fig. 7. SHAP values for the classification output in CBMD (a panel) and for the CBMD generated revolving utilization feature in modality x2 (b panel).
f application and can deteriorate with time. On the other hand,
ureau score is the second most import feature for generating
he revolving utilization feature. The higher the score, the larger
evolving utilization amount.

. Conclusion

In this research, we develop a novel conditional bi-modal
iscriminative (CBMD) model that learns a joint representation
and generates the modality x2 conditioned on data representa-
ions and the modality x1, which is our best source of information
bout future customer behavior. CBMD is not only able to gen-
rate x2 but also can classify the outcome of loans using the
oint representations z . Further, its generative process keeps the
elationship between the modalities x1 and x2 for each customer
nd it is useful in scenarios where only one modality is available
t test time. We show, under a simple scenario, the potential use
f CBMD in launching new products. With access to the right
ata, CBMD can be used to design effective real-life cross-selling
nd marketing strategies or to analyze the difference in default
robabilities by incorporating future behavior data.
Our proposed CBMD model optimizes a novel objective func-

ion that maximizes mutual information between the latent data
epresentation z and the modality x2. This loss function learns
n amortized inference distribution for q(z|x1, x2, y), which con-
ributes to an efficient generative model for x2. Therefore, we
o not need to fix the variance parameters in the generative
rocess as VCCA and JMVAE do. To further improve the generative
rocess, we introduce a classifier model that encourages the gen-
rative model to draw x2 accurately. Our empirical results suggest
hat including the classification loss and the mutual information
erm in the objective function effectively improve the accuracy of
enerated features in x2. Finally, our proposed objective function
lso achieves higher AUC compared to the classical lower bound
n generative models.

To the best of our knowledge, this research presents the first
redit scoring model based on bi-modal learning able to generate
uture credit data x2 and therefore it opens an interesting avenue
or future research. Likewise, our proposed methodology offers
ew possibilities on how banks could implement the use of
enerated x2 values in their activities that involve the prediction
f customer’s credit behavior.
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Table A.1
Lending Club data modalities.

Variable name

Modality x1 Loan amount
Fico score
Address state
Debt to income ratio
Employment length

Modality x2 (feature 1) days_earliest_cr_line
(feature 2) days_last_pymnt_d
(feature 3) last_risk_score
(feature 4) open_acc
(feature 5) revolv_util
(feature 6) total_acc
(feature 7) total_pymnt
(feature 8) total_rec_prncp
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Appendix A. Data sets

We select modality x1 for the Lending Club data set using the
common features for accepted and rejected applications, since
this is the case in real loan application process. These features are
loan amount, Fico scores, address state, debt to income ratio, and
employment length. Further, we follow the practice as in [27,31]
and create 4 different groups using address state, which are
further transformed to one-hot encoders. Similarly, given that
employment length has 11 different categories, we also convert
it to one-hot encoders. Therefore, modality x1 has 18 features.

From the remaining 72 features for accepted applications, we
select those variables whose empirical distribution resembles a
Gaussian density. Remember that our proposed CBMD model
assumes a multivariate Gaussian distribution for modality x2.
Given that we only have 5 original features for modality x1, we
select 8 features for modality x2 and can be found in Table A.1.

Appendix B. Model architectures

Table B.1 shows all architectures tested for hyperparameter
optimization for our proposed CBMD model, JMVAE, VCCA, and
DMDGM model. We use the notation for CBMD to specify the
different MLP networks, but all models have a similar network
just with different inputs. For example, JMVAE uses q(z|x1, x2) as
inference network. For models with two inference or generative
networks, e.g. JMVAE has p(x1|z) and p(x2|z), we use the same
architecture for both networks.
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Fig. C.1. SHAP values for the CBMD generated features in modality x2 .
Table B.1
Grid for hyperparameter optimization for CBMD, JMVAE, and VCCA. The numbers within brackets specify the number of neurons in each hidden layers, i.e. [10 10]
eans two hidden layers with 10 neurons each. Superscripts *, **, *** show the final architecture for CBMD, JMVAE, and VCCA, respectively.
Lending Club

MLP network Number of hidden layers and dimensions

p(x2|x1, z) [50], [60], [70], [80], [100], [120], [150], [200] [50 50], [60 60], [70 70], [80 80], [100 100]***, [120 120], [150 150]**,
[200 200]*, [50 50 50], [60 60 60], [70 70 70], [80 80 80], [100 100 100], [120 120 120], [150 150 150], [200 200 200]

p(z|x1) [20], [30], [40], [50], [60], [70], [80], [100]*, [120], [150]
q(z|x1, x2, y) [40]***,[50], [60], [70], [80], [100]∗,∗∗ , [120], [150], [200] [50 50], [60 60], [70 70], [80 80], [100 100], [120 120], [150 150],

[200 200], [50 50 50], [60 60 60], [70 70 70], [80 80 80], [100 100 100], [120 120 120], [150 150 150], [200 200 200]
q(y|z) [50], [60], [70],[80], [100], [120], [150], [50 50], [60 60], [70 70],[80 80], [100 100]*, [120 120], [150 150]

Parameter/hyperparameter Value

z dimension 10, 20, 30, 40, 50∗,∗∗,∗∗∗,∗∗∗∗ , 70, 90, 110, 130, 150, 170
ω 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8*, 0.9, 1
λ 1000, 2000, 3000, 4000*
α 1, 5, 10, 15, 20∗,∗∗∗∗ , 30, 40, 50

Santander Bank

p(x2|x1, z) [100 100], [200 200], [300 300], [500 500], [700 700], [900 900], [100 100 100],[200 200 200], [300 300 300],[500 500 500],
[700 700 700], [900 900 900]∗

p(z|x1) [100], [200], [300]∗ , [400], [500]
q(z|x1, x2, y) [100 100], [200 200], [300 300], [500 500], [700 700], [900 900], [100 100 100], [200 200 200], [300 300 300],[500 500 500],

[700 700 700]∗ , [900 900 900]
q(y|z) [100], [200], [300], [400], [500], [700]∗ , [900]

Parameter/hyperparameter Value

z dimension 100, 200, 300, 400∗,∗∗,∗∗∗ , 500, 600, 700, 800, 900
ω 0, 0.1*, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
λ 1000, 2000, 3000, 4000*
α 1, 5, 10, 15, 20∗,∗∗∗ , 30, 40, 50
12
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Table B.2
Average root mean squared errors between the generated features by CBMD and
their true values in the test data set. We generate the features in the modality x2
sing the tanh, sigmoid and softplus activation function in the hidden layers of
BMD. The last row shows the AUC in the test data set for each of the activation
unctions.
Group Activation function

tanh sigmoid softplus

A 0.2396 0.6845 0.0285
B 0.2224 0.5014 0.0252
C 0.2142 0.4286 0.0248
D 0.2104 0.4028 0.0275
E 0.2046 0.3969 0.0310

Classification performance

tanh sigmoid softplus

AUC 0.6190 0.6147 0.6229

Activation function. Table B.2 shows the 5 different groups cre-
ted in Section 4.3.1 and the average root mean squared errors
etween the generated features by CBMD and their true values
n the test data set. We generate features using the tanh, sig-
oid and softplus activation function in the hidden layers of
ur proposed CBMD model. Further, the last row in Table B.2
hows the AUC for each activation function. Note that the rest
f hyperparameters are the same as in Table A.1.

ppendix C. SHAP values

Fig. C.1 shows SHAP values for the generative process in CBMD.
ach point is the SHAP value for one specific feature and one
pecific observation in a sub-sample of the test data set for
ending Club. The x-axis shows the SHAP values and the color
epresents values of the feature from low to high.
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