
Quantifying means-end
reasoning skills in
simulation-based training: A
logic-based approach

Simulation
XX(X):2–39
©The Author(s) 2020
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Audun Stolpe1 and Jo Erskine Hannay12

Abstract
We develop a logic-based approach for designing simulation-based training scenarios. Our
methodology embodies a concise definition of the scenario concept and integrates the notions of
training goals, acceptable versus unacceptable actions and performance scoring. The approach
applies classical AI planning to extract coherent plays from a causal description of the training
domain. The domain- and task-specific parts are defined in a high-level action description language
AL. Generic causal and temporal logic is added when the causal theory is compiled into the
underlying Answer Set Programming (ASP) language. The ASP representation is used to derive
a scoring function that reflects the quality of a play or training session, based on a distinction of
states and actions into green (acceptable) and red (unacceptable) ones. To that end, we add to the
casual theory a set of norms that specify an initial assignment of colours. The ASP engine uses
these norms as axioms and propagates colours by consulting the causal theory. We prove that any
set of such norms constitutes a conservative extension of the underlying causal theory. With this
work we hope to lay the foundation for the development of design and analysis tools for exercise
managers. We envision a software system that lets an exercise manager view all plays of a tentative
scenario design, with expediency information and scores for each possible play. Our approach is
applicable to any domain in which means-ends reasoning is pertinent. We illustrate the approach in
the domain of crisis response and management.

Keywords
Simulation-based training, Means-end reasoning, Automated scoring, Answer Set Programming,
Deontic logic

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Simulation XX(X)

1 Introduction
Imagine a pan, without a lid, overheating on a stove in an industrial kitchen. The pan contains cooking
oil that will ignite and burn if left to itself. There is a kitchen policy and operating procedure designed
to protect against workplace hazards such as this, but working in a big kitchen is a high-stress job, and
continuous restaffing makes it difficult to keep all employees drilled in safety procedures at all times.

An astute employee who recognizes the danger may attempt to avert it, but even in a simple scenario
such as this, his success depends on his competence and training. In an optimal performance he would
notice that the pan is overheating and simply turn off the stove. But if he is new to the job, he may not
realize the danger until the pan starts to give off smoke. When this happens, there is still time to prevent
a fire if, say, the employee acts quickly and both turns off the stove and puts a lid on the pan. We are
supposing that the cooking oil has been brought so close to the point of ignition that the residual heat in
the stove will set it off unless the pan is covered.

Some actions that are open to the employee are prudent if performed at the right time but dangerous
otherwise. As an example, take the action of turning on the fan to dissipate the smoke. If the stove is
already turned off and the pan has a lid on it, then this is a useful thing to do. However, if the fan is on
when the oil catches fire, the fire spreads to the vent shaft. Other actions are downright bad ideas, for
instance pouring water on the fire. This causes a fire splash that spreads the fire to the kitchen cabinets as
well. If the employee next acts with acumen, he may still redeem himself by putting out all incipient fires
quickly. There are three different fire extinguishers hanging on a panel on the back wall of the kitchen. It
is important that the employee selects the correct extinguisher, for as one extinguisher is for grease fires,
the second for metal fires and the third for fires in combustible substances, it is easy to get things wrong.

Emergency exercises are specifically designed to prevent harmful incidents like this from evolving and
to drill the staff in efficient actions to mitigate the consequences. Simulation-based training (SBT)1–
understood as the systematic acquisition of concepts, knowledge, and rules in a designed practice
environment with both real and synthetic elements–offers a way for personnel to practice coping with
hazardous contingencies safely in their work environment. In other words, somewhere to learn from
mistakes without doing any damage and somewhere for management to validate and improve emergency
protocols with little overhead. A well-designed simulation enables deliberate practice,2,3 in which
trainees improve their procedural knowledge through tailored feedback on the effectiveness of their
means-ends reasoning.

Deliberate practice relies on monitoring trainee performance to tailor feedback and reruns. Individual
scores must be aggregated into time series if long-term learning effects are to be documented and the
training regime itself fine-tuned accordingly. Current practices are widely considered to fall short in this

1Dept. of Applied Research in Information Technology, The Norwegian Computing Center, Pb. 114 Blindern, 0314 Oslo,
Norway 2Center for Effective Digitalization in the Public Sector, Simula Metropolitan Center for Digital Engineering, Pb. 4 St.
Olavs plass, 0130 Oslo, Norway

Corresponding author:
Audun Stolpe, The Norwegian Computing Center, Pb. 114 Blindern, NO-0314, Norway.

Email: audun.stolpe@nr.no

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 3

respect. Costly exercises are regularly held with little or no means of documenting learning effects in
any principled manner.4,5 To be useful, SBT thus requires a set of well-defined performance metrics for
means-ends reasoning. Moreover, these metrics, and how and when in a simulation to collect data on
them, must be designed into the scenario.

The present paper elaborates on a foundational aspect of assessing means-end reasoning on the part of
those training in simulations. It is concerned with the problem of finding an easy-to-interpret and easy-to-
apply metric for scoring the instrumental rationality displayed by an agent in different plays of the same
simulation scenario.6 The central idea is that of interpreting a simulation scenario formally as a dynamic
system in the classical symbolic AI sense.7–10 In a nutshell, a dynamic system is a state transition diagram
where the transitions are actions whose effects are recorded as properties of the adjacent vertices. Such a
diagram is encoded in a causal language as a causal theory axiomatizing the effects of actions on objects
and the interaction between objects in the domain of interest. A causal theory additionally axiomatizes a
few general rules of causal reasoning, notably the default persistence of facts over time (inertia).11

In this paper, we adopt a two-step methodology: the domain-specific part of a causal theory is
represented in an abstract action description language, specifically the language AL.8,12 This language
abstracts away the logical details of causal and temporal reasoning, allowing domain experts and scenario
designers to focus on defining events and possible actions. Next, the resulting domain description is
translated into the declarative programming language Answer Set Programming (ASP), which automates
the causal reasoning and takes care of propagating facts through time.

The mode of execution of the compiled ASP program will depend on the problem to be solved. A
causal theory encoded in ASP can be used to predict and to plan. In a prediction problem, the task is
to determine how the current state of affairs will change after a given sequence of actions is executed.
In a planning problem, the task is to find a sequence of actions that causes an initial state to evolve into
a desirable end state, aka. a goal state.7 We have argued elsewhere13 that the planning mode is useful
in the scenario design phase to assist the designer in validating and exploring combinations of events.
For instance, a designer would typically want to check that the actions and events he has defined yield
coherent plays, that the different lines of evolution make sense from a skill-building perspective, and that
there are no anomalies in the scenario that can cause a trainee to mistrain. Prediction, on the other hand,
is useful in the actual simulation or training phase for managing the simulated events, say, in a virtual 3D
environment.14 Using the causal theory to predict the consequences of actions in a complex environment
over time, the simulation engine would essentially just have to render the ensuing states. This workflow,
based on a central knowledge base and the two aforementioned modes of automated reasoning, is the
main principle behind the ExManSim architecture (exercise management and simulation architecture)
that was proposed in an earlier article written by the present authors.5,13

The principal theme of the present paper, however, is that of performance scoring. We reduce the
problem of scoring training sessions to the problem of defining a function from plans to integers that
represents a reasoned assessment of a plan interpreted as a play. This reduction is based on identifying
a training scenario with the causal theory that describes it and a play with a plan of how to move from
an initial state to a goal state according to that theory. The core idea behind the performance metric
is to derive a scoring function from a distinction of states and actions into green (acceptable) and red
(unacceptable) ones. To that end, we add to the casual theory a set of colouring rules that we refer
to as norms which specify the conditions under which an action or state is to be deemed acceptable or
unacceptable. The set of norms constitutes a deontic specification that enables the ASP engine to compute

Prepared using sagej.cls



4 Simulation XX(X)

and propagate colours over all states in all plans. We prove that any set of norms as so defined constitutes
a conservative extension of the causal theory in the sense that computing performance metrics does not
affect the causal reasoning. A summary of the contributions of this paper goes as follows:

• We formalize the notion of simulation scenario in terms of dynamic systems declared in the action
languageAL. This formalization is also a contribution to the modelling and simulation field itself,
in that it provides a plausible clarification of an overloaded and under-specified notion.

• We axiomatize the concepts of acceptable and unacceptable actions and states in a deontic overlay
to the action language AL.

• We formally prove that this axiomatization has the property that any particular deontic
specification, i.e. set of norms, constitutes a conservative extension of the underlying causal theory.
This means that introducing the notion of expediency does not interfere with, or change, the
scenario itself.

• We formulate a set of requirements that a scoring function should satisfy.
• We define a function that meets these requirements by derivation from the number of green and red

entities contained in a plan.

We discuss a few sample runs from our prototype implementation offered as a proof of concept.

The paper is organized as follows: Section 2 puts our development in the relevant simulation-based
training context. Section 3 assembles enough background material to allow the paper to be self-contained;
it explains the basics of the ASP programming language, it introduces the action language AL, and
it explains how the ASP encoding of the AL action description defines a labelled transition diagram.
Transition diagrams are very useful for visually displaying causal theories. By way of illustration, we
formalize the kitchen scenario mentioned above and show parts of its associated transition diagram. It
will be used as a running example throughout. Section 4 discusses a crucial idea of this paper, which is
that of treating a simulation scenario as a causal theory and a play or training session as a sequence of
actions that leads from an initial state to a goal, i.e. as a plan. These sequences of actions form the domain
of the scoring function, which will calculate the overall quality of the play based on the combinations of
acceptable and unacceptable actions and states. To that end, Section 5 defines a deontic extension to the
AL language used to express the acceptable/unacceptable distinction. We prove that the general syntax
of this deontic language is such that any particular specification of acceptable and unacceptable states
and transitions in a given causal theory constitutes a conservative extension of that theory. The resulting
language, which we call ALD for easy reference, is next used to encode a normative specification for
the kitchen scenario, exemplifying how ALD defines a coloured transition diagrams from which the
acceptable and unacceptable choices at each point in time can easily be read off. In Section 6, a scoring
function is derived from the colouring of states and actions by certain algebraic operations on the number
of green and red actions and states of the play. It is argued that a score function should satisfy certain
desiderata, for instance that shorter plays should ceteris paribus be preferred to longer ones. Section 7
compares a selection of plays and explains discrepancies in their score by reference to causal laws and
deontic norms. These examples serve to illustrate how the causal theory, the deontic specification, and
the scoring function combine to form a single theory.

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 5

2 Background
The topic of scoring performance in simulations has been discussed in various forms in the literature;
perhaps most extensively for medical simulations and military simulations. Although discussions tend
toward platform-specific details of measurement, the salient issues in simulation-based performance
studies are, in fact, similar to those of empirical performance studies. In particular, both simulations
and empirical performance studies (especially controlled experiments) rely on administering small
representative tasks,15 in place of real-world tasks. This is out of necessity for conducting simulations
and studies in reasonable time, but also by design to accentuate learning and systematic assessment. The
question of scoring performance in simulations therefore relies on designing these small representative
tasks with sufficient construct validity16 and criterion validity17 to allow generalizability of training
and assessment results to the real world. Designing small representative tasks, in turn, relies on
comprehensive domain-specific task analyses18 and insight into how to build expertise and skills using
these tasks.19–25

However, or focus is, in one sense, not on such detailed task analyses. The task that is the subject of
our discussion is means-end reasoning.26 This is a judgement and decision-making task27–30 that consists
of choosing and sequencing procedural sub-tasks (means) in order to obtain desired outcomes (ends), in
other words to decide on the best, or alternatively, a satisfying,31 course of action. Although the design,
training and assessment of procedural tasks (handling fire extinguishers, using structured communication
formats when communicating an emergency, etc.) are essential for completeness in training, the means-
end reasoning that deploys such tasks has a generic task-independent aspect to it. It is precisely this
generic aspect that lends itself to the approach we shall elaborate on in the following.

The present research develops a logic-based approach for assessing performance on means-end
reasoning. The resulting framework is generic in two respects. First, the framework is domain and
task agnostic. Implementing a particular training scenario boils down to describing specific events and
tasks that stimulate the particular expertise and skills under training. Such instances are defined by
domain specific predicates that express the characteristics of the objects and interactions that make up
these events and tasks. In contrast, the logic of causation and inertia (i.e. the default propagation of
statefulness through time), as well as the deontic logic of reasoning about acceptable vs. unacceptable
courses of action, is handled by a background theory encoded in ASP. This separation of concerns allows
the scenario designer to focus on defining the desired expertise and skills rather than on the physical
simulation itself.

Secondly, since the framework is fully expressed in logic, it is also fully declarative and therefore
independent of any particular simulation platform. Platform and implementation independence is a major
concern in the modelling and simulation community. The high-level architecture (HLA) is a standardized
simulation protocol32 that can be implemented in various simulation frameworks and engines. HLA
comes with an abstract specification format called the Base Object Model (BOM) format,33 and more
expressive abstractions have been proposed in the form of ontology-based34 semantic extensions to
the BOM format.35 Such ontologies are currently under development for both military and civilian
domains,36–41 where they are also studied as prerequisites for the modelling and simulation as a
service (MSaaS) vision.42 To enable exercise managers, who may be non-technical experts, to compose
simulations from simulation services, the services must have semantic and abstract non-technical, but
machine-readable, service descriptions.43,44 The relevance of the work discussed in this article to all of
the above is that the logical framework can be seen to represent such abstract specifications (BOMs,

Prepared using sagej.cls



6 Simulation XX(X)

ontologies, service descriptions) in such a way as to enable machine reasoning over those specifications.
This is essential for a structured design and analysis approach to designing skill-centred training
scenarios, and so in another sense than above, or focus is indeed on detailed task analysis; namely on
analyzing the task of means-end reasoning in a given domain.

From a methodological point of view, the present work is most aptly viewed as an application of
classical AI planning to the problem of scoring plays of a simulation-based training scenario. The
literature on classical planning spans 50 years of research, and the interested reader is referred to Russell
and Norvig’s overview of the subject.10 The scoring function that is proposed is derived from a division of
nodes and edges in a transition diagram (corresponding to a causal theory in the sense used in symbolic
AI into acceptable (green) and unacceptable (red) actions and states. More specifically, the function
measures the performance of an agent by calculating the ratio of acceptable and unacceptable actions to
the complexity of a task and the actual number of actions performed by the agent. We regard this as the
principal idea of the present paper and as its main contribution. Given the qualitative basis of this function
(that is, the distinction between green and red) its values are most naturally interpreted as a measure of
the instrumental rationality, i.e. the effectiveness of an agent’s means-ends reasoning.

Coloured transition diagrams are defined in a language ALD which is a straightforward extension of
the action language AL8 with norms. The idea of expressing the discrepancy between acceptable and
unacceptable actions by a red-green colouring of transition diagrams is not itself one for which we claim
originality. Our approach closely follows the deontic action language nC+ of Sergot and Craven,45 which
is itself a deontic extension of the languageC of Giunchiglia et al.46 Indeed, languageALD is essentially
a re-implementation of Sergot and Craven’s deontic extension on top of the action language AL instead
of on top of C. There are two main reasons for doing this, the first has to do with the expressiveness of
the respective action languages. More specifically:

• AL unlike nC+ allows recursive rules.47 Recursion is important for any domain in which an action
may have to be repeated an indefinite number of times until a condition is met.

• AL unlike nC+ has explicit negation aka. strong negation which is useful for distinguishing
between what is known to be false and what is not known to be true.48

The second reason for choosingAL over C is practical and has to do with the availability of software.
Language AL comes with an encoding into ASP (we extend this encoding to ALD). ASP is a general
purpose programming language for NP-hard problems, it is actively developed, and it exists in a rich
ecosystem of programming language APIs and third-party libraries. Examples of programming APIs
include Clyngor* and Clorm† for Python, Clj-ansprog for Clojure‡ and EmbASP§ for Java, Python and
C#. Third-party libraries include the Asprin49 library for complex preference reasoning and aspStream¶

for stream reasoning. In comparison, nC+ is implemented on top of the action language C in a special
purpose tool called the Causal Calculator or CCalc. The Causal Caculator was part of Norman McCain’s
dissertation “Causality in commonsense reasoning about actions” from 1997. It was later incorporated

*https://pypi.org/project/clyngor/
†https://github.com/potassco/clorm
‡https://github.com/zootalures/clj-ansprog
§https://www.mat.unical.it/calimeri/projects/embasp/
¶https://github.com/potassco/aspStream

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 7

in the MAD-language (The Modular Action Description language), but does not seem to be actively
maintained at present. There is a software tool called Cplus2ASP that translates C theories into ASP,50

but due to discrepancies in the respective semantic underpinnings, the encoding is not very easy to
read (for instance preconditions of causal laws are prepended by double negation as failure, and fluent
constants are heads of rules with a double negation of itself as condition). In contrast the ASP encoding
of AL is simple and fairly direct, and therefore easier to inspect, amend and debug.

Non-logical simulation-specific formalisms exists, and it is in place to comment on why we do not
use any of these. Foremost among them is the Discrete Event System Specification (DEVS) of Zeigler
et al.51 DEVS is based on automata theory with mixed-in features from process modelling and object
orientation. In the interest of brevity, we give a brief comparison of DEVS with ASP, taking them as
representative of system-theoretical and logic-based approaches respectively:

• Research traditions:

– DEVS derives from systems theory, particularly automata theory.52

– ASP comes from non-monotonic logic and more generally symbolic AI.

• Simulation model:

– DEVS is a discrete event formalism. That is, time is continuous and any pair of events can be
separated by any length of time. As such it is appropriate for modelling the internal state of
cyber-physical systems such as robots.53

– ASP is more compatible with discrete time models, that is, with an abstract representation
of time as a sequence of discrete steps of the same duration. ASP is appropriate for solving
problems that that can be construed as logic problems, e.g. planning, diagnosis, explanation.

• Supported Operations:

– ASP supports reasoning. An ASP theory can be used to predict events, to explain observations
and to answer queries.

– DEVS defines simulations that can be run from start to finish. To answer a query, one typically
has to run the entire system until the simulation of an action sequence is complete.54

Foo and Peppas54 summarize the relative merits of system-based and logic-based formalisms with the
following two maxims:

1. If simulating a system that is inertial, meaning that facts are propagated forward in time by default,
then use DEVS and not logic.

2. In query answering or planning use a logic-based approach.

The first of these maxims, Foo and Peppas argue, follows from the fact that inertia is implicit in the DEVS
framework but requires verbose and intricate axiomatizations in logic-based formalisms. However, they
only consider early logic-based formalisms such as the situation calculus of McCarthy55 and the event
calculus of Kowalski and Sergot.56 ASP is a more recent language based on the stable model (answer set)
semantics of logic programming proposed by Gelfond and Lifschitz.57 The stable model semantics does
have inertia built in, so this particular reason for preferring DEVS falls away. Moreover, since planning
is the central inference operation in this paper—as we shall argue later, scoring plays of a simulation
scenario is essentially scoring plans—ASP becomes the natural choice.

Prepared using sagej.cls



8 Simulation XX(X)

3 Causal theories and action description languages
This section presents an overview of the three formalisms we use to specify dynamic systems in our
discussion. As will be apparent, each formalisms serves a particular purpose. Thus, we summarize the
action description language AL,8,58 Answer Set Programming (ASP),7–9,59,60 an encoding from AL into
ASP,8 and transtition diagrams8,58 at the levels of detail needed for our discussion.

An action description language is a formal language for defining state transition systems modelling
the effects of actions on the world. Such state transition systems will henceforth also be called causal
theories. Action languages are commonly used in artificial intelligence and robotics to implement an
agent loop comprising the steps observe-plan-execute. Well known examples from the literature are the
STRIPS language,61 the situation calculus,62 the event calculus,56 the language C+ 46 and the language
AL.58 The latter is the language of choice in the present article, for the reasons mentioned in Section 2.
We start by describing this language in a bit more detail.

3.1 The action language AL
The action language AL is parameterized by a signature σ that declares symbols of two sorts: fluent
and action constants. Fluent constants represent properties that can be changed by actions, that is, facts
that are true at one point in time and false at another. They can be thought of as atomic propositions.
Action constants represent actions, which in this context are atomic (i.e. not complex) performances of
an unspecified agent. We shall use a, a1, a2, . . . for action constants and f, f1, f2, . . . for fluent constants.
A fluent literal denoted l, l1, l2, . . . is a fluent constant f or its negation ¬f . Similarly an action literal
denoted e, e1, e2, . . . is an action constant or its negation. A set of fluent literals S is complete if for any
f either f or ¬f is in S. It is consistent if there is no f such that both f and ¬f are in S.
AL allows three types of statement:

1. Causal Laws:

e1 . . . em causes l if l1, . . . , ln

2. State constraints:

l if l1, . . . , ln

3. Executability conditions:

impossible a if l1, . . . , ln

Causal laws describe the effects on an environment of simultaneously executing a set atomic actions
whilst refraining from others (the latter represented by negated action literals). This feature, i.e.
concurrent actions in the heads of causal laws is a slight generalization of the AL language that is useful
in practice. In the kitchen scenario it allows an agent to turn off the stove and put a lid on the pan at the
same time. Another generalization is that we allow negations of actions to occur as conditions in causal
laws. For succinctness of expression the following abbreviation8 is adopted henceforth.

e1, . . . , em causes l =df e1, . . . , em causes l if >

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 9

where > is an arbitrary tautology.
State constraints define causal relations between fluents and thereby also indirect effects of actions. An

executablity condition states that an action a can not be performed under the circumstance described by
l1, . . . , ln. In the literature, executability conditions sometimes take the more general form

impossible a1, . . . , am if l1, . . . , ln
This generalized version says that it is impossible to execute a1, . . . , am simultaneously in a state
satisfying l1, . . . , ln.8 This additional expressiveness is not needed for present purposes, though.

Example 1. The kitchen scenario. We give an AL representation of a simplified version of the kitchen
scenario from the introduction: There is a pan with cooking oil on a stove that is turned on too hot. There
is a lid for the pan, a kitchen fan, and a vent. The actions available to the agent are

• put the lid on the pan: put(lid, pan),
• turn off the stove: turnOff(stove),
• turn on the fan: turnOn(fan), and
• a wait action that has no effect on fluents.

The wait action will function as a device for saying that the agent does not do anything else. It is
convenient for triggering negative action literals in causal rules, as explained below.

The fluents that describe the relevant properties of the domain are

• on(stove) representing that the stove is on,
• on(fan) representing that the fan is on,
• on(lid, pan) representing that the lid is on the pan,
• heats(pan) representing that the pan is overheated,
• smoke(pan) representing that smoke is developing from the pan,
• fireIn(oil) and fireIn(vent) representing fire in oil and fire in vent.

Note that although these actions and fluents are complex terms (e.g. built from put(), lid, pan), they are
considered atomic here in the context of AL; they are simply actions or fluent. In this running example,
these terms anticipate the finer-grained signatures of ASP in the next section. The actions and fluents are
related by the following causal laws:

turnOff(stove) causes ¬on(stove) (1)
turnOn(fan) causes on(fan) (2)
put(lid, pan) causes on(lid, pan) (3)
put(lid, pan), turnOff(stove) causes ¬fireIn(oil) if ¬fireIn(oil) (4)
¬turnOff(stove) causes heats(pan) if on(stove) (5)
¬turnOff(stove) causes smoke(pan) if on(stove), heats(pan) (6)

and state constraints:

fireIn(oil) if heats(pan), smoke(pan) (7)
fireIn(vent) if fireIn(oil), on(fan) (8)
¬fireIn(oil) if¬on(stove),¬smoke(pan) (9)

Prepared using sagej.cls



10 Simulation XX(X)

Some noteworthy elements on this list are: The causal law (4) states that putting the lid on the pan and
turning off the stove simultaneously always suffices to prevent a fire given that the fire has not already
erupted. Causal laws (5) and (6) represent sins of omission, as it were. If the agent does anything other
than turning off the stove, say he waits or turns on the fan, then the situation deteriorates. Note also state
constraints (9); it says that there is one more way to avert a fire, namely to turn off the stove before smoke
develops from the pan.

Finally, one may add executability conditions to prevent the agent from futile pursuits such as trying
to turn off a stove that is not on, or repeatedly putting the lid on the pan:

impossible turnOff(stove) if ¬on(stove) (10)
impossible turnOn(fan) if on(fan) (11)
impossible put(lid, pan) if on(lid, pan) (12)

As well as constraints making the wait action incompatible with all other actions

impossible turnOff(stove) if wait (13)
impossible turnOn(fan) if wait (14)
impossible put(lid, pan) if wait (15)

This gives a simple action description for the kitchen scenario that will be used as a running example
throughout.

An important feature that makes AL particularly suitable for the purposes of the present paper is that
its semantics is defined in terms of an encoding into ASP. The ASP encoding allows AL descriptions to
be compiled into computable causal theories in a logic programming language that supports a wide range
of reasoning tasks such as planning and prediction.

The reader may wonder why AL is needed at all, and why we choose to work with more than one
knowledge representation language. There are two reasons for this: First, AL abstracts away a lot of
the nitty-gritty details of causal theories including, incrementing the time counter, axiomatizing general
causality and declaring sorts, actions, and fluents. In other words,AL acts as a high-level API that allows
non-programmers to concentrate on describing domain-specific actions and events in a very simple and
abstract rule language. Secondly, although AL can be compiled into ASP, it does not have to be. It
could equally well be compiled into another logic programming language such as Prolog, or even into
imperative languages such as C# for the purposes, say, of simulating a scenario in a 3D engine such as
Unity. In other words, language AL fully decouples a causal theory from any particular implementation
of it, which in turn enhances the versatility and reuse value of the causal theory.

3.2 Answer Set Programming
The signature σ of an answer set program consists of variable symbols, object names (also known
as constants or object constants), function symbols, predicate symbols and logical connectives. The
convention is that variable symbols are arbitrary strings of letters and numbers that start with an upper-
case letter, while constants, predicate symbols and function symbols are strings that start with a lower-
case letter. Object and function constants are used to construct terms, which are defined inductively:

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 11

Definition 1. Term.

1. A variable is a term.
2. A constant is a term.
3. f(t1, . . . , tn) is a term whenever f is an n-ary function symbol and t1, . . . , tn are terms.

A term is ground if it contains no variable symbols. An atom is a formula p(t1, . . . , tn) where t1, . . . , tn
are terms. If each term ti is ground then the atom is ground. A simple literal is either a simple atom
or an atom preceded by strong negation ¬. We continue to denote simple literals by l, li, with the
intent to state the correspondence between AL and ASP at this level of syntax, relying on context to
disambiguate the two formalisms when necessary. If Γ is an ASP program, lit(Γ) denotes the set of
simple literals contained in a program Γ. A complex literal is defined inductively as either a simple literal
or a complex literal prepended by ‘not’. The connective ‘not’ denotes negation as failure, a notion that
will be explained shortly. A rule is ground if each literal that occurs in it is ground. A program gr(Γ)
consisting of all ground instances of all rules in Γ is called the ground instantiation of Γ.

For the purposes of the present paper we shall work with rules restricted to the following forms:

1. Facts:
l. (16)

2. Rules:
l← l1, . . . , lm, not lm+1, . . . , not ln. (17)

3. Integrity constraints:
← l1, . . . , lk, not lk+1, . . . , not lm. (18)

The expression to the left of← is the head of a rule and the expression to the right of← its body. The
comma-separated lists of the body denote conjunctions of complex literals. Facts and integrity constraint
are degenerate cases of a rule, in the former case a rule with an empty body and in the latter case a rule
with an empty head. This redundancy in the presentation is common and convenient.

Rules of form (17) may be thought of as production rules: If the body of the rule can be deduced from
a program then the head of the rule is added to the set of facts (16). Integrity constraints act as filters that
exclude models satisfying the body of the constraint. Equivalently, an integrity constraint lists conditions
that cannot all be true, forcing models not to have that particular combination of properties. The difference
between explicit negation and negation as failure, also known as epistemic negation, is very important:
An explicitly negated atom ¬p(t1, . . . , tn) is deducible from a program if that literal occurs in the head
of some rule of form (17). In other words p(t1, . . . , tn) is asserted to be false under the conditions
stipulated in the body of the rule. In contrast not p(t1, . . . , tn) is true in absence of evidence to the
contrary; that is, it is true if p(t1, . . . , tn) can not be deduced from the rules of the program. To understand
the difference between negation as failure and explicit negation, consider the typical example48 of the
distinction between the rule cross← not train that captures the criterion “you can cross if you have
no evidence that a train coming,” and the rule cross← ¬train which means “you can cross if you have
evidence that no train is coming”. Negation as failure induces non-monotonic behaviour in an answer
set program and is crucial for formalizing default reasoning in general and causality in particular. Some
examples of this as it pertains to the encoding of the causal theories in general, and the kitchen theory in
particular, will be discussed in due course.

Prepared using sagej.cls



12 Simulation XX(X)

The semantics of answer set programs is defined for ground programs, and its full statement requires
a fair bit of technical nomenclature. Suffice it here to outline the essentials: we start with the classical
notion of an interpretation or model: a model I of a program Γ is a subset of lit(Γ) that is closed under
the rules of Γ, meaning that I satisfies the head of a rule of form (17) whenever it satisfies its body. The
satisfaction relation I � φ between a model I and a formula φ (rule or conjunction of complex literals)
is defined as:

I � p iff p ∈ I, for an atom p

I � not p iff p /∈ I
I � ¬ p iff ¬p ∈ I
I � φ, ψ iff I � φ and I � ψ

I � φ← ψ iff I 2 ψ or I � φ

The reader should note the difference between the second and third item on this list.
The answer sets, also known as the stable models, of a program Γ is a particular subset of the set of

models defined above, namely the models that can plausibly be treated as idealized representations of
the belief sets of a rational agent. These are the minimal models with the property that they are are both
closed wrt. to the rules of Γ and such that every fact holding in them is supported by applications of those
rules. The reader should note that there are in general minimal models that are not answer sets in this
sense.

Answer sets are easily identified for certain classes of simple programs. For instance, if a program has
a finite set of rules and no epistemic negation, then it has a unique minimal model which is also its answer
set—it is the single model that satisfies the set of rules with no gratuitous information. A program that
contains complex literals, on the other hand, may have more than one minimal model. For example,

Γ =

{
b← not a
a← not b

has two minimal models {a} and {b}. These models can be identified as fixpoints of the operation of
reducing Γ to a negation-free program relative to a model. More precisely, the reduct, ΓI of Γ relative to
a model I of Γ is the set of rules derived from rules of form (17) by including

l← l1, . . . , lm (19)

in ΓI whenever {lm+1, . . . , ln} ∩ I = ∅ for the complex literals not lm+1, . . . , not ln. Thus, the general
definition of an answer set; a model I of an ASP program is an answer set iff I is the minimal model of
the reduct ΓI . We will denote the answer sets of Γ as M(Γ).

3.3 Encoding action descriptions in ASP.
AL is a high-level language for defining causal theories. The semantics of an AL description is defined
in terms of its encoding into ASP. Considered in the abstract, this encoding can be viewed as an operation

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 13

ASP (·) that takes anAL description A and a non-negative integer n called a horizon and outputs an ASP
program ΓA

n. The program ΓA
n gives a computable description of all plans of alternating actions and states

of length up to n determined by action description A. One way to view ΓA
n is as a labelled transition

diagram where nodes are states and transitions are actions. Plans then become paths through the diagram
from the initial state to a goal state at most n steps distant. We shall return to transition diagrams shortly,
as they have practical utility for our discussion. For now, the following points should be noted: An action
description A describes the effect of actions in general terms. The causal theoryASP (A, n) = ΓA

n models
the evolution of an initial state over time as a consequence of actions a ∈ A being performed, in general,
more than once, at various moments. Therefore, the essential step in defining the encoding ASP (·) is to
assign time indices to fluents and actions as a means of representing when they are, respectively, executed
and true. This involves a manoeuvre called reification, which in knowledge representation is the process
of turning a predicate into an object. The ASP (·) encoding uses the meta-predicates occurs and holds
for this purpose.7 A statement occurs(a, 2) asserts that action a is performed at time-step 2 (assuming
2 ≤ n), whilst holds(f, 2) asserts that fluent f is true at step 2. For positive action and fluent literals,AL
rules translate as follows:

• Every causal law a1, . . . , an causes l if l1, . . . , ln becomes an ASP rule:

holds(f, T + 1)← holds(f1, T ), . . . , holds(fn, T ),
occurs(a1, T )
. . .
occurs(an, T )
T < n.

(20)

• Every state constraint f if f1, . . . , fn becomes an ASP rule:

holds(f, T )← holds(f1, T ), . . . , holds(fn, T ). (21)

• Every executability condition impossible a if f1, . . . , fn becomes an ASP rule:

¬occurs(a, T )← holds(f1, T ), . . . , holds(fn, T ). (22)

Note that this gives the translation for the case of positive literals only. In the general case, negated action
literals, say e = ¬a, would be translated as ¬occurs(a, T ) (as anticipated in rule 22), and negated fluent
literals, say l = ¬f , as ¬ holds(f, T ). It is straightforward to generalize the rules (20-22) accordingly,
but rather tedious and unenlightening, so we leave it at that.

Causal laws, state constraints and executability conditions form the domain-specific part of a causal
theory corresponding one-to-one to rules in theAL description in question. In addition, the ASP encoding
also maintains general axioms for holds and occurs that characterize the concept of causal reasoning as
such. Causal reasoning, unlike classical logical deduction, is non-monotonic. Informally, this means that
a reasoning agent is allowed to jump to a certain conclusion in the absence of evidence to the contrary
if that conclusion is warranted in typical cases. This is a pervasive inference pattern in commonsense
reasoning. For instance, if you are told that Juliette lives in Rouen you may assume that she appreciates
a good Livarot, since this is a cheese of the Normandy region. Yet, upon learning that Juliette is lactose
intolerant you would probably retract this conclusion. This example illustrates that in non-monotonic

Prepared using sagej.cls



14 Simulation XX(X)

reasoning the set of conclusions does not necessarily increase as more information becomes available.
Some inferences are tentative, meaning that their justification appeals to the absence of evidence to the
contrary. Tentative conclusions can therefore be withdrawn when one learns something new.

Inference rules that are sensitive to the absence of information in this manner are known as defaults
or exception-allowing rules. A default that occupies pride of place in causal theories is the so-called
inertia axiom. It formulates the commonsense law that facts tend to persist from one moment in time
to the next unless acted upon by an opposite force. The inertia axiom prevents objects from behaving
erratically. For instance, moving a cup will not close the door since the door’s being closed is a fact that
is propagated forward in time by inertia and there is no causal rule that connects the cup to the door.
The problem of finding a concise and accurate representation of inertia, known as the frame problem, has
been a central topic in symbolic AI for more than forty years. With the development of new programming
paradigms, such as Answer Set Programming and new action languages such as the ASP-based AL, the
frame problem can now be said to have been satisfactorily solved. In the ASP encoding of AL, inertia is
expressed as follows:

holds(f, T + 1)← holds(f, T ),
not¬holds(f, T + 1),
T < n.

(23)

Spelled out, this rule says that if f is true at time T and it may, for all we know, continue to be true at
time T + 1, then it is assumed to be true also at time T + 1. Notice how strong negation and epistemic
negation are combined here to propagate the truth of fluents through time: Given that the falsity of f at
T + 1 is represented as ¬holds(f, T + 1), the absence of evidence of the falsity of f at T + 1 can be
represented with epistemic negation as not¬holds(f, T + 1) which warrants jumping to the conclusion
that holds(f, T + 1). Of course, if one were to learn that ¬holds(f, T + 1) then the rule of inertia would
yield to that exception.

Finally, the encoding adds the so-called closed world assumption for actions. For variable A,

¬occurs(A, T ) ← not occurs(A, T ), action(A). (24)

It sanctions the conclusion that an action is not performed if it has not been explicitly recorded or deduced.
This rule has a crucial role to play in connection with causal rules with a negative premise, for instance
rules (5) and (6) above. Recall that these rules express that if the agent does anything other than turning
off the stove in any situation prior to the breakout of a fire then the situation worsens. The closed world
assumptions for actions allows ASP to reason from the absence of an explicit record of the turnOff(stove)
action at some time-step T , to the non-performance, i. e. the explicit falsity, of that action at T , thus
triggering the conditions of causal rules (5) and (6).

3.4 Transition diagrams.
AL descriptions and their corresponding causal theories can be visualized in a convenient format as
transition diagrams. Such diagrams are useful for discussing the red/green labelling of plays/histories
from which the proposed scoring function will be derived. Transition diagrams for action descriptions in
AL are discussed in the literature.8,58 However, the definition that follows is novel and rather different,

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 15

for reasons that will be explained.

Definition 2. A transition diagram for an AL action description A is a structure D = 〈S,A,R, s∗〉,
where

1. S is a complete and consistent set of fluent literals from the signature of A satisfying the state
constraints in A,

2. R ⊆ S × 2A × S is a transition relation between states labelled by a set of action constants A
from the signature of A, and

3. s∗ is a designated initial state.

Some additional nomenclature is needed to define the set of states S and the relation R: Let f be a fluent
constant inASP . For convenience8 we define h(l, i) as holds(f, i) if l = f and as ¬holds(f, i) if l = ¬f .
Whether negated or not, such statements will be referred to collectively as holds statements.

Let n be our horizon. For any set of fluents s and time m ≤ n, define

ρ(s,m) =df {h(l,m) : l ∈ s}

Intuitively ρ(s,m) takes the AL fluent literals in s and converts them into reified holds statements of
ASP, time-stamped with m. For example, consider Fig. 1, which displays a sub-graph of the transition
diagram for the kitchen scenario, where the initial state s∗ is outlined in bold. Then, ρ(s∗, 1) gives the set
of appropriate holds statements in ASP for each of the fluent literals in s∗. These holds statements are then
used, together with the occurs statement of the relevant action literal (e.g. occurs(turnOff (stove), 1)) to
compute the consequential holds statements according to the causal theory. This computation is formally
given by a nxt operator as follows:58 Let M(Γ) be the operator that returns all stable models of the ASP
program Γ. Then, for a set of fluents s, action a and time m,

nxt(s, a,m) =df

{
M(ΓA

n ∪ ρ(s,m) ∪ occurs(a,m)) if ΓA
n ∪ {a} is consistemt,

∅ otherwise

This definition presupposes that the causal theory is deterministic in the sense that an action always
produces a single next state. Under this assumption an action generates a next state if it is not excluded
by an executability constraint in ΓA

n.
Conversely, let ∆ be a set of holds statements of ASP time-stamped with m and define:

ρ−1(∆) =df{f : holds(f,m) ∈ ∆} ∪
{¬f : ¬holds(f,m) ∈ ∆} ∪
{¬f : holds(f,m) /∈ ∆,¬holds(f,m) /∈ ∆, f ∈ Sig(A)}

The operation ρ−1 takes a set of holds statements, converts it to a set of literals of AL, and then
completes it to make an AL state out of it. Completion here means to add the negation of all fluent
constants f that do not occur in the set ∆. For example, given the set of holds statements computed
by nxt(s∗, turnOff (stove), 1), ρ−1 will convert those holds statements to the set of fluent literals in the

Prepared using sagej.cls



16 Simulation XX(X)

Figure 1. An excerpt of the kitchen scenario. Strongly negated fluent literals are written as -f .

top left state in Fig. 1. The entire step from transition diagram state via ASP computation to the next
transition diagram state is given formally by

scc(s, a,m) =df ρ
−1(nxt(s, a,m))

that is, the successor state of a state s relative to a and m in D. It is easy to verify for any complete and
consistent set s of AL fluent literals ρ−1(ρ(s)) = s, that ρ−1 is the inverse of ρ.

The idea behind the diagram construction is to induce the set of states S and the transition relation R
from the consequences according to the theory ΓA

n of performing an action a in a state s. The bijection
ρ, ρ−1 allows us to move from states in D to the corresponding sets of holds-statements in ASP, and back
again. We are now in position to give the full definition of the transition diagram induced by anAL action
description A:

Definition 3. Let A be anAL action description with action constants A and assume an initial state s∗.
Let S and R be defined by a double induction as follows:

1. S0 = {s∗}, R0 = ∅
2. Sn+1 = Sn ∪ {scc(s, a, n) : s ∈ Sn, a ∈ A},
3. Rn+1 = Rn ∪ {〈s, a, s′〉 : s′ = scc(s, a, n), s ∈ Sn}.

Put R =df

⋃n
i=1Rn and S =df

⋃n
i=1 Sn. Then 〈S,A,R, s∗〉 is a transition diagram for A with initial

state s∗.

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 17

This definition has a rather different flavour from that of previous approaches,8,58 and some comments
are perhaps called for: First, unlike those approaches, Definition 3 ignores all complete and consistent
sets of fluents that are not reachable from the initial state, since these are irrelevant from the point of
view of simulation-based training. Conversely, just as unreachable states are irrelevant, the same goes for
transitions that link them to each other. Honing in on only relevant states and transitions makes the two
concepts interlock in a manner that requires the double induction of Definition 3.

Nevertheless, a transition diagram as so defined will still be large for all but trivial theories as it will
contain all allowable combinations of actions and states. Many if not most of these possibilities are not
practically interesting, for instance applying a fire extinguisher to a pan that isn’t burning. Although
a discerning use of executability constraints can eliminate choices like this that no one would make,
transition diagrams are still best regarded as a tool for conceptual clarification or as a tool for defining
reasoning problems that to be embedded in an ASP theory.

4 Plays as plans
We have proposed to give the concept of a training scenario the formal meaning of a dynamic system or
causal theory (in the present context these two terms can be used interchangeably). The term “scenario”
has many definitions.63 The definition used in this paper is the one used by the Simulation Interoperability
Standards Organization in their scenario development guidelines document:6

“A scenario is a description of the hypothetical or real area, environment, means, objectives,
and events during a specified time frame related to events of interest.”

This is very close to the idea of a dynamic system as a finite number of states causally interlinked by
actions. Close enough, at any rate, to treat the latter concept as a reasonable formal approximation of
the former for computational purposes. Henceforth, therefore, we shall talk interchangeably about causal
theories, action descriptions, and transition diagrams, on the one hand, and training scenarios on the
other. That is, we are treating an action description in AL, its ASP encoding and its associated transition
diagram as different representations of the same training scenario.

As regards the concept of a play, which is ultimately the unit of interest here since it is plays that
will be scored, it is intuitively clear that a play is just a directed path through the transition diagram.
In order to assess trainee performance, one needs to distinguish between those plays in which hazards
are handled with some degree of competence or success and those in which they are not, allowing for
a sufficiently general criterion of success. For instance, preventing a fire from arising will count as a
successful handling of the industrial kitchen scenario, but so may putting the fire out, or pressing the alarm
button when things really get out of hand. These plays will be scored differently, of course, according to
the training objectives as expressed in part by a deontic specification. Purely unsuccessful developments
consists of the plays in which the trainee’s pursuits are futile. Say he searches for an extinguisher but
never finds one, or applies a standard foam extinguisher on a metal fire, etc. All courses of action in this
latter group will be scored at zero. The problem of scoring plays is thus primarily about the former group.

The computational model behind ASP as a programming language is a good fit for extracting and
evaluating plays from a training scenario insofar as problem solving in ASP reduces to enumerating
satisfying models. Inference engines that compute the answer sets of ASP programs are usually referred
to as answer set solvers.64 An answer set solver attacks the computation of a program in a two-stage

Prepared using sagej.cls



18 Simulation XX(X)

process: first it starts with grounding the ASP program, which means instantiating its variables by ground
terms. The resulting program has the same answer sets as the original but is essentially propositional. In
the second stage, the answer sets of the grounded program are computed using substantially modified
and expanded satisfiability checking algorithms, usually a variant of the Davis-Putnam resolution
algorithm.8,9 Thus, given an ASP program, an answer set solver grounds the program and generates
models that satisfy all rules of the program and that violate none of its integrity constraints.

Applied to a causal theory, this model of computation can be used to extract sequences of actions that
lead from an initial state to a goal state in a dynamic domain. Here a goal state is understood as any
state that conforms to some criterion of success as explained above. The concept of a play we thus arrive
at—a sequence of actions conforming to a criterion of success—coincides with the concept of a plan in
a classical planning problem.8,10 A classical planning problem has the following constituents:

• A goal description which in the context of a causal theory is a set of fluent literals describing
features of one or more desirable state of affairs, i.e. goals.

• An initial state from which a goal state is to be reached.
• A horizon which is a limit on the length of allowed plans.

Planning is the problem of computing a sequence of actions that evolves the initial state into a goal state
within the limit of steps set by the horizon. Given an ASP causal theory a planning module can be added
in four lines of code, that exemplify a well-documented technique in automated planning.7–9,60,65

1{occurs(A, T ) : action(A)}2← T < n. (25)
goal(T )← . . . (26)
goal(achieved)← goal(T ), T <= n. (27)
← not goal(achieved). (28)

The rule (25) is a choice rule, which describes alternative ways to form an answer set by choosing
elements described by the set builder notation. The numbers flanking the expression in braces are upper
and lower bounds on the cardinality of the selection that is triggered when the condition in the body
is satisfied. Informally, the rule says: for each time-step within the horizon n, choose at least one and
at most two (concurrent) actions to be performed. Note that this rule does not conform to any of the
schemata in the list (17-18) However, choice rules can be translated into a set of rules of form (17).60

This is a matter of some importance for the proof of conservativeness of the deontic extension in Sect. 5.
The second rule (26) is elliptical for a goal description where the ellipsis would be replaced by a list of
fluents. Rule 27 can be read as an existentially quantified expression which states that the goal has been
achieved if satisfied at some time point T . Dually, the rule (28) is a constraint the excludes all models in
which the goal is never achieved.

A goal may be described in multifarious ways some of which do not say anything in particular about
the domain. For instance the limiting case

goal(T )← T = n. (29)

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 19

deems any plan that exhausts the horizon n a successful play. This goal specification makes the answer
set solver generate all plays of length n. It is useful for obtaining a complete picture of all possible plays,
acceptable or unacceptable.

For an example of a domain-specific goal, consider:

goal(T )← ¬ holds(fireIn(oil), T ), T < n. (30)

This goal requires that there be no fire at any time-point within the horizon n.
Fig. 2 shows two answer sets (projected onto actions) generated by adding rules (25-28) and (30) to

the kitchen scenario from the previous section. In the first play, the agent allows the pan to overheat, then
successively turns off the stove and puts a lid on the pan. These actions successfully prevent a fire in the
cooking oil. No further action is required and the trainee waits. In the second play, the trainee turns off
the stove and puts the lid on the pan at the same time and at the last minute. This suffices to avert a pan
fire. The trainee waits for two time-steps and then turns the fan on.

The action of turning on the fan is interesting. It is sometimes harmful, and sometimes OK. If there
is already a fire in the cooking oil, then it is harmful according to the causal theory since it may cause
the fire to spread to the vent shaft. If the fire has been averted, as is the case in the second play, turning
on the fan merely dissipates the smoke which is ok. The example demonstrates that the desirability or
undesirability of an action is a context-sensitive affair. An action may not be good or bad per se. Rather
the determination of its deontic status, its value or utility or what have you, involves a computation that
derives all the significant facts about the situation pertaining to that action.

occurs(wait, 1)

occurs(turnOff (p), 2)

occurs(put(lid, pan), 3)

occurs(wait, 4)

occurs(wait, 5)

occurs(wait, 6)

occurs(wait, 1)

occurs(wait, 2)

occurs(put(lid, pan), 3)

occurs(turnOff (p), 3)

occurs(wait, 4)

occurs(wait, 5)

occurs(turnOn(fan), 6)

Figure 2. Two example plans.

We have our work cut out for us, then: identifying plays with plans we are after a principled way to
assign scores to sequences of actions such as those in Fig. 2. Clearly, such a scoring function needs to be
more sophisticated than, say, just measuring the length of successful plays, since different orderings of
the same set of actions implies different contexts of agency that may imbue the same action with different
utility or value. This is the problem to which we turn next.

Prepared using sagej.cls



20 Simulation XX(X)

5 The deontic overlay
In this section, we turn to the task of defining a deontic overlay to the action language AL. The basic
idea is to provide a means of specifying what is to count as acceptable (i.e. useful or prudent) and
unacceptable (worthless or imprudent) actions, and to have ASP work out the normative consequences of
this classification. Following Sergot,45 we represent these classes of states and actions at the ASP level by
the respective colours red and green. Colours are propagated exhaustively throughout a transition diagram
by computing the consequences of a set of norms, which areAL/ASP rules that give the conditions under
which an action or state is to be deemed acceptable or unacceptable for a particular purpose. This set of
norms will be referred to as a deontic specification or overlay. The syntactical form of these norms is
designed to balance expressiveness against conservativeness; we want to be able to state useful constraints
on acceptable plays of a simulation scenario (expressiveness), yet we do not want norms to interfere with
the causal theory itself (conservativeness). We give a proof that this is indeed so.

5.1 The language ALD
The deontic overlay consists of rules specifying the conditions under which a state or transition is to
be classified as acceptable or unacceptable. Such rules will be referred to as norms. Norms can be
represented by extending the action language AL by two new kinds of rules:

1. State norms:
unacceptable f if l1, . . . , lm. (31)

2. Action norms:
unacceptable a if l1, . . . , lm. (32)

We shall call the new language ALD for easy reference. Note that both kinds of rule allows mixed
formulae in the body, that is, it allows both action literals and fluent literals in conditions.*

*As pointed out by one of the reviewers, the language ALD has interesting parallels to the language APL proposed
by Gelfond and Lobo. 66 They consider authorization policies that partition actions into permitted and not permitted ones. A
state/action pair is defined as compliant with a policy if the state entails the permission of the action. The central reasoning problem
is that of computing the compliance of a given sequence of state/action pairs with a policy. A detailed comparison of ALD and
APL is out of scope for the present paper. Suffice it for now to point out a few of the more conspicuous similarities and differences:
while the red/green distinction in ALD corresponds to permitted/not permitted in APL, a strictly permissive reading of red and
green is not mandatory. Rather the red/green distinction is intended primarily to express norms governing instrumental rationality
understood as the prudence or utility of an action in light of a goal. In ALD it is conceptually the goal that renders an action green
or red, whereas permission in APL is defined by an authorization policy.

On a formal level we note the following: unlike ALD, APL allows one to express priorities between defeasible norms. This is
an interesting candidate for further development of ALD. Next, permissions in APL apply to actions only, whereas the red/green
distinction in ALD applies to both actions and states. Therefore, ALD unlike APL can express recovery from suboptimal states
as chains of red states linked by green actions, and it can express propagation rules such as the ggg-constraint. Finally, in APL
the central reasoning problem is that of computing the compliance of a given sequence of state/action pairs with an authorization
policy. In contrast, the central reasoning problem of ALD is to compute all action sequences that lead from an initial state to a
goal with their corresponding scores. There is no assumption that these sequences are classifiable into compliant or non-compliant
ones wrt. a policy. And of course, there is no assumption that all choices are even good ones, although a domain description must
generate at least one sequence with only green choices if inherent task complexity, and thus scores, are to be computable.

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 21

Example 2. To the simple kitchen theory in Example 1, one might consider adding norms that express
mandatory actions for a trainee to complete the exercise successfully. For instance, if preventing fire is
the training objective, then the trainee should be forbidden to allow the pan to catch fire. The following
list gives some examples of the norms that may be entertained:

• Action norms:

unacceptable turnOn(fan) if smoke(pan), on(stove) (33)
unacceptable wait if heats(pan) (34)
unacceptable wait if smoke(pan) (35)

• State norms:

unacceptable heats(pan) if > (36)
unacceptable smoke(pan) if > (37)
unacceptable fireIn(oil) if > (38)
unacceptable fireIn(vent) if > (39)

Here, > denotes an arbitrary tautology, meaning that the head of the norm is unacceptable under all
circumstances. Note that the first action norm is context sensitive. Turning on the fan is not deemed
unacceptable as such, but only if the pan is overheating and smoke develops from it. These conditions
may in turn depend on other causal rules in the underlying AL action description. In other words,
unacceptable states and actions need not be explicitly marked as such. They are in general computed
from the norms and the underlying causal theory.

5.2 Translation to ASP
Norms in ALD are translated into ASP as follows

• Every state norm unacceptable f if l1, . . . , lm becomes an ASP rule:

status(red, T )← holds(f, T ),
holds(l1, T ), . . . , holds(lm, T ),
T < n.

(40)

• Every action norm unacceptable a if l1, . . . , lm becomes an ASP rule:

trans(red, a, T )← occurs(a, T ),
holds(l1T ), . . . , holds(lm, T ),
T < n.

(41)

State and action norms form a group that may be called domain norms. These are domain- and task
specific norms that label concrete actions and fluents occurring in the causal theory as either acceptable
or unacceptable according to the particular scenario under development. In addition, the deontic overlay
provides generic norms that are more appropriately classified as logical norms. Their role is not

Prepared using sagej.cls



22 Simulation XX(X)

to annotate the causal theory directly, but rather to govern the logic of the acceptable/unacceptable
distinction by propagating colours throughout the diagram. This group of norms can be subdivided into
the set of closure conditions and the singleton consisting of the so-called green-green-green constraint
(ggg-constraint):

• Closure conditions: every state and transition is green by default.

status(green, T )← not status(red, T ), T < n. (42)
trans(green, A, T )← not trans(red, A, T ), action(A), T < n. (43)

• The ggg-constraint: An action is red if it leads from a green to a red state (note that this makes
concurrent actions red if one of their elements is).

trans(red, A, T )← status(green, T ),
occurs(A, T ),
status(red, T + 1),
T < n.

(44)

The closure conditions guarantee that the colouring is exhaustive; there are no uncoloured nodes or
transitions. Note, that the default colour of a state or transition is green. This is not strictly necessary, but
it is usually easier to say what is unacceptable than what is acceptable. Conceptually, the colour green
corresponds to the concept of negative permission from deontic logic; what is not explicitly forbidden is
permitted67,68 (in jurisprudence this principle is known as nullum crimen sine lege).

As regards the rationale behind the ggg-constraint, studies of database constraints suggest that few
deontic constraints can be assumed to hold between information states in general. Illegal transitions can
result in an acceptable state, and an acceptable or green action need not restore a red state to a green one.
Examples of this are quite frequent. The only relationship that has been found to be generally plausible
is the ggg-constraint.69,70 Other more global constraints are clearly conceivable, though. For simulation
scenarios in particular it makes sense to require the existence of a green path from a start state to a goal
state. We shall see later how this can be expressed in ASP.

5.3 ALD transition diagrams.
The state and action norms (40) and (41) encode domain-specific qualitative criteria of the unacceptability
of a state or transition symbolized by the colour red. The logical norms essentially propagate colours. The
colour red is propagated by the ggg-constraints whereas the closure conditions propagate the colour
green. The role of the logical norms is easier to explain by considering an ALD description as an
extended transition diagram, that is, as a tuple 〈S, Sr, A,R,Rr, s

∗〉. Here, the reduct 〈S,A,R, s∗〉 is
an AL transition diagram as specified in Definition 3. The new components Sr ⊆ S and Rr ⊆ R are
respectively the red states and transitions. The rules (42) and (43) are closure conditions making sure that
the remainders Sg = S − Sr and Rg = R−Rr after colouring states and transitions red are coloured
green. Considered as an abstract condition on transition diagrams the ggg-constraint (44) is the condition:

(si, a, sj) ∈ R and si ∈ Sg and s2 ∈ Sr implies (si, a, sj) ∈ Rr (45)

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 23

This is equivalent to:

if (si, a, sj) ∈ Rg and si ∈ Sg then sj ∈ Sg (46)

which gives it a more direct expression.70 The overall effect of the rules (42 - 44) is (i) to colour a state
green unless coloured red by some state norm, and (ii) to colour a transition red if it is coloured red by
some action norm or by the ggg-constraint; otherwise it is green (ibid.).

Fig. 3 gives a version of the diagram in Fig. 1 coloured in accordance with the state and action norms
from Example 2. Note that unacceptability is context sensitive in the aforementioned sense. For instance,
once the pan overheats and smoke starts to develop, merely turning off the stove is an unacceptable action.
If the lid is placed on the pan at the same time, however, then turning off the stove is also acceptable.

Figure 3. The kitchen scenario coloured.

5.4 The conservativeness of the deontic specification
It is reasonable to require the deontic overlay to leave the causal theory intact. The purpose of the deontic
specification is merely to indicate what state of affairs are unacceptable, and, by derivation from the
causal theory, when certain actions should not be performed. It should not interfere with the causal laws
themselves.

A different way to say the same thing is to say that the norms should be of such a form that the addition
of the deontic specification constitutes a conservative extension of the underlying causal theory. That is,
every consequence that is derivable in the language of the causal theory with state and action norms
added should be derivable from the causal theory without these norms. In this section we verify that this

Prepared using sagej.cls



24 Simulation XX(X)

is so for any set of rules of form (42–44), and thereby verify that the deontic specification really is an
‘overlay’.

There is a rich body of research on conservative extensions in logic programming to draw on. The
following definition from Baral9 will suffice for present purposes:

Definition 4. Let Γ and Γ′ be ground programs such that Γ ⊆ Γ′. Then Γ′ is said to be a conservative
extension of Γ if the following condition holds: A is a consistent answer set for Γ iff there is a consistent
answer set A′ for Γ′ such that A = A′ ∩ lit(Γ).

The following simple property must surely be recorded somewhere in the literature, although we have
not been able to find a statement of it. A simple proof is therefore provided:

Lemma 1. Let Γ2 be a conservative extension of Γ1 and Γ3 a conservative extension of Γ2. Then Γ3 is
a conservative extension of Γ1.

Proof. For the left-to-right direction of the bi-conditional: by Definition 4 we can select three answer
sets A1 of Γ1, A2 of Γ2 and A3 of Γ3 such that A2 = A3 ∩ lit(Γ2) and A1 = A2 ∩ lit(Γ1). Substituting
A3 ∩ lit(Γ2) for A2 it follows that A1 = A3 ∩ lit(Γ2) ∩ lit(Γ1), which since Γ1 ⊆ Γ2 is true iff A1 =
A3 ∩ lit(Γ1).

The hard work of proving the conservativeness of the deontic overlay can be delegated to a special case of
a theorem due to Lifschitz.71 Here naf (r) denotes the set of literals in r that are prepended by negation
as failure:

Theorem 1. Let Γ be a ground program consisting of rules of form (17), and let D be a consistent set of
literals such that D ∩ lit(Γ) = ∅. Let ∆ be a ground program of the same form as Γ such that for every
rule r ∈ ∆:

1. head(r) ⊆ D, and
2. naf (r) ⊆ lit(Γ)

Then Γ ∪∆ is a conservative extension of Γ.

The restriction to rules of form (17) can be relaxed to allow disjunctive heads in Γ, but not in ∆.

Theorem 2. Let Γ be a be the ground instantiation of the encoding ASP (A,n) and ∆ the ground
instantiation of the encoding ASP (D,n) of a deontic specification D. If head(∆) is consistent and
head(∆1) ∩ lit(Γ) = ∅, then Γ ∪∆ is a conservative extension of Γ.

Proof. It is necessary first to verify that all rules of Γ ∪∆ conform to the schema (17). This is immediate
for rules of form (17), (21) and (23) in Γ and rules of form (40–44) in ∆. This leaves only rules of forms
(22) and (24) which have strongly negated heads. It suffices to note that a strongly negated atom is a
literal, so (22) and (24) are also of form (17).

Next, split the rules in ∆ into the following sets:

• ∆1 contains state norms (40), action norms (41) and the ggg-constraint.
• ∆2 contains the two closure conditions (42, 43)

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 25

The set head(∆1) consists of atoms of form {status(red,m), trans(red, a,m)} and is clearly consistent.
Moreover, for r ∈ ∆1

1. head(r) ⊆ head(∆1) trivially since r ∈ ∆1, and
2. naf(r) ⊆ lit(Γ) vacuously, since no r ∈ ∆1 contains naf -literals.

Suppose the condition head(∆1) ∩ lit(Γ) = ∅ of the theorem is true. Since it has already been
established that all rules in Γ ∪∆1 conform to the schema (17) it follows that Γ, ∆1, and head(∆1)
satisfy all the conditions of Theorem 1 (substituting head(∆1) for D and ∆1 for ∆). Hence Γ ∪∆1 is a
conservative extension of Γ.

The set head(∆2) consists of atoms of form {status(green,m), trans(green, a,m)} also clearly
consistent. For every r ∈ ∆2

1. head(r) ⊆ head(∆2) trivially since r ∈ ∆2, and
2. naf(r) ⊆ lit(Γ ∪∆1) since the naf -literals in the rules (42–43) consists of atoms of form
{trans(red, a,m), status(red,m)} and all of these are in ∆1.

Suppose the condition head(∆2) ∩ lit(Γ ∪∆1) = ∅ of the theorem is true. Since each of the rules
conform to the schema (17) it follows that Γ ∪∆1, ∆2, and head(∆2) satisfy all the conditions of
Theorem 1 (substituting Γ ∪∆1 for Γ, head(∆2) for D and ∆2 for ∆) and hence that Γ ∪∆1 ∪∆2 is a
conservative extension of Γ ∪∆1.

Lemma 1 can now be applied to conclude that Γ ∪∆1 ∪∆2 is a conservative extension of Γ. Since
∆ = ∆1 ∪∆2 this completes the proof.

The provisos in Theorem 1 must be managed carefully, and in particular is very sensitive to the form
of rules. A fortiori this also goes for Theorem 2. If the causal theory Γ conforms to the format of schema
(17) then the conservativeness of the deontic extension is guaranteed. The ASP encoding of AL action
descriptions stays within this language fragment, but it is not obvious that the planning module, with its
choice rule (25), does. However, there is a faithful translation of choice rules into normal non-disjunctive
rules of form (17).60 Hence, the deontic overlay remains conservative when the causal theory is used for
planning, or in our case, for extracting plays of a training scenario.

As an example of a non-conservative extension, suppose one wishes to ensure that no states or
transitions are labelled both green and red. This appears to be a sensible requirement, and one that is
not implicit in the logical deontic norms. The logical norms do ensure that every state and transition is
coloured; i.e., either red or green, but it does not preclude the possibility of ‘chromatic superposition’. It
is tempting to require this to be so by adding a rule to that effect, viz:

T1 != T2← status(red, T1), status(green, T2). (47)

Recall that the restriction of ∆ (the deontic overlay) to rules of form 17 in Theorem 1 is essential. Rule
(47), however, is equivalent to a constraint:

← status(red, T1), status(green, T2), T1 = T2. (48)

Formula (48) is not of the form (17), and therefore violates the provisos of Theorem 1. It follows that
it may interfere with a causal theory via its deontic extension. Consider for instance a causal theory

Prepared using sagej.cls



26 Simulation XX(X)

consisting of the two state constraints

Γ =

{
holds(f2, 1)← not holds(f1, 1).
holds(f1, 1)← not holds(f2, 1).

and the deontic specification

∆ =

{
status(red, 1)← holds(f2, 1).
status(green, 1)← holds(f2, 1).

Admittedly, this deontic specification does not make much intuitive sense, but it is well-formed
according to the syntactic restrictions of Theorem 1, and since the labelling of states and transitions
are in general computed from arbitrarily complex conditions, one can easily imagine situations
such as this arising from design errors. Now, the program Γ ∪∆ has two answer sets, viz. A =
{holds(f2, 1), status(red, 1), status(green, 1)} and A′ = {holds(f1, 1)}, whereas the program Γ ∪∆ ∪
{47} only has one, namely {holds(f1, 1)}. Clearly A′ ∩ lit(Γ ∪∆) = A′ which since A′ and A are
different entails that the addition of rule (47) to Γ ∪∆ is non-conservative.

The moral of this story is that it is not possible to ensure programmatically and conservatively that a
deontic overlay is well-defined, if well-definedness is taken to mean that a unique colour is assigned to
every state and transition. True, models superimposing two colours onto the same node or transition will
be eliminated by the constraint (47), but as these models may capture valid interpretations of the causal
theory, that theory would then have been changed.

6 Scoring
Intuitively, a path in the transition diagram for a causal description of a simulation scenario corresponds
to a play of that scenario. It is one possible sequence of events unfolding from the initial situation ensuant
to the trainee’s choices.

In this section we turn to the problem of developing a quantitative performance metric from
the red/green labelling of states and actions. Behind this approach is the two-fold assumption that
competency in means-ends reasoning is most naturally expressed in qualitative terms* whereas the
concept of overall performance is most useful as a numeric indicator. The problem addressed in the
present section is therefore that of translating a qualitative description of skilful action into a numeric
measure of the quality of a particular course of action.

For any scoring function, certain demands should be placed on it to make it useful. We shall focus on
the following two:

i) a scoring function should output interpretable values, and
ii) different outputs should be instructively comparable; that is, the relative performance of an agent

in different plays of possibly different scenarios should be comparable.

*It should be stressed that this assumption is not true in general, a simple counterexample would be measuring time to
completion.

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 27

Let s(g, n) denote the stipulated scoring function where g is the number of green actions and states
(henceforth the green number) and n is the length of a play, i.e. the number of actions (edges) in the
corresponding path in a transition diagram. Moving towards a formal regimentation of requirement (i)
it seems reasonable to require scores to increase with the green number—the more the trainee gets right
the higher his performance should be rated. However, this measure should be tempered by the length of
a play, since shorter plays are intuitively better than longer ones (as long as they are successful). The
assumption here is that if a task can be completed to satisfaction quickly, then it is always better to do so.

The picture that emerges is of a scoring function that balances the green number against the length of
a play to reach a verdict on the performance of an agent. To capture this formally, we require the scoring
function s to satisfy the following formal conditions:

• Monotony in the green number:

If gi ≤ gj then s(gi, n) ≤ s(gj , n) (49)

• Antitony in the length of a play:

If ni ≤ nj then s(g, nj) ≤ s(g, ni) (50)

As regards point (ii), the demand that values of s be comparable can plausibly be taken to mean that
they all fall on the same scale within a fixed numerical range. A candidate function meeting both (i) and
(ii), as so understood, would be the ratio of actual green actions and states to the number of possible
green actions and states in a play:

s(g, n) =
g

2n+ 1
, g ≤ 2n+ 1 (51)

This function fulfils the listed desiderata; the output grows with increasing values of g and shrinks with
increasing values of n. Moreover, since g lies in the integer interval [0, 2n+ 1], values of s are rational
numbers between 0 and 1.

6.1 Factoring in task complexity
Although it gets a number of things right, the function s has the rather serious limitation that it does not
factor in the complexity of a play. In the limiting case where an agent only performs green actions leading
to green states, the green number will be equal to 2n+ 1 and hence the score to 1, irrespective of n. In
other words it does not matter how efficiently or inefficiently the agent completes a task. As long as he
meets his objective and does not make a blunder he gets the highest score.

This feature can lead to anomalies. Consider a slight modification of the industrial kitchen scenario:
suppose only states in which there is a fire are deemed unacceptable. In other words, we are supposing
that a smoking or overheated pan is not in and of itself considered a problem. As long as a fire does not
break out the agent is free from blame in Management’s eyes. A matching modification of the kitchen
theory can be made by removing the action norms (34) and (35) as well as the state norms (36) and
(37) from the deontic specification. The colouring of the associated transition diagram changes to that of
Fig. 4.

The most effective way to prevent a pan fire is still to turn off the stove immediately (by the
conservativeness of the deontic specification, changing it does not change the causal theory). This is

Prepared using sagej.cls



28 Simulation XX(X)

Figure 4. The kitchen scenario with only fires disallowed.

the play of length 1 with green number 3 indicated by the label ‘play 1.1’ (meaning play 1, action 1) in
Fig. 4 which is scored at s(3, 1) = 1. A less informed, or insouciant, agent might idle for one or more
steps before he decides what to do. The longer he waits, the more precarious the situation becomes, so less
waiting is intuitively better. Consider the plays labelled 2.1–2.2 and 3.1–3.3 which are both alternative
courses of action to avert the pan fire, but ones in which the agent does not act expeditiously. In play
2.1–2.2 the agent turns off the stove in the second time-step. It suffices to defuse the hazard, but the wait
is unnecessary. Nevertheless, it is intuitively better than the play 3.1–3.3 in which the agent idles for
two time-steps before he places a lid on the pan and turns off the stove in one go. This is in the nick of
time, according to the kitchen theory, since the fire could not have been prevented any later. Still, it is a
successful play, as measured by the goal of averting fire, although the agent dawdles and performs two
actions where one would have sufficed. The difference in quality is not visible in the score, unfortunately,
since all plays have a green number of 2n+ 1 where n is its length. Thus, play 1.1 has a green number of
3 and length 1, play 2.1–2.2 has green number 5 and length 2 and play 3.1–3.3 has green number 7 and
length 3. The scores are therefore

s(3, 1) = s(5, 2)

= s(7, 3)

= 1

In other words, the scoring function s is not able to distinguish between efficient and inefficient plays.
The play in which an agent does nothing for as long as he can do so with impunity is rated equally to a
simpler and more efficient solution.

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 29

This goes to show that the inherent complexity of the task at hand needs to be factored into the
assessment of a play. In the kitchen scenario, fire can be prevented in one step by immediately turning off
the stove. We shall say that its task complexity is 1. The reason why the play 1.1 is intuitively the optimal
play is because it stays within this bound. Similarly 2.1–2.2 is intuitively a better play than 3.1–3.3 since
the latter exceeds the task complexity with more steps than the former does. We need to work out the
formal ramifications of this intuition.

What is needed for present purposes is a simple and operationalizable concept of minimum length of
a causal chain necessary to complete a task successfully. For training, success can plausibly be taken
to entail conformity to the standard of propriety expressed by the deontic specification. Hence task
complexity, we propose, should be understood as the simplest way to complete the task in an acceptable
manner. This concept comes close to what Wood calls component complexity,72 which he construes as
a direct function of the number of distinct acts that need to be executed in the performance of the task.
There is a difference though; we require the acts in questions to be acceptable means of achieving the
goal, that is, that they be green transitions:

Definition 5. The complexity of a scenario is the shortest green path from the initial state to a goal
state.*

This simple concept can be factored into the score function (51) by multiplying the function s (the
ratio of the actual green number to the possible green number) with the ratio of the task complexity to
the actual length of a play. Letting c denote task complexity, this becomes

s∗(g, n, c) := s(g, n)× c

n

=
g

2n+ 1
× c

n

=
gc

2n2 + n

Function s∗ is a generalization of s since s∗(g, n, c) = s(g, n) whenever c = n. Since ASP does not have
real numbers, only integers, it is a good idea to scale the result and round it. Adding the appropriate
domain restrictions on the arguments, our definition becomes:

Definition 6.
s∗(g, n, c) =df d100

gc

2n2 + n
e, n ≥ c, g ≤ 2n+ 1, c ≥ 1

The domain restrictions are summarized as follows:

• n ≥ c since the length of a play cannot be shorter than the task complexity,

*A path’s being green does not entail that every state on it is green as well. It is entirely possible, according to the proposed
definition of a deontic overlay, to have a play consisting entirely of red states with all transitions green. This is as it should be. Think
of any action that reduces loss without eliminating it. Picture a fireman evacuating a burning building. Every person he rescues out
of the inferno represents an acceptable action, obviously. Nevertheless as long as there are still people in the building, the current
state of affairs is red all the same. This pattern of green transitions linking red states is typical of gradual recovery from sub-optimal
situations. It is a large part of what training is about. Since the only constraint we have placed on the colouring of a transition
diagram is the ggg-constraint, this possibility is left open.

Prepared using sagej.cls



30 Simulation XX(X)

• g ≤ 2n+ 1 since the green number is upper bounded by the length of a play, and
• c ≥ 1 since no non-trivial task can be solved in no steps at all

Definition 6 presupposes the existence of a green path from the initial state to a goal. This is an example
of a constraint one may consider adding to the deontic specification (it is not implied as it is). It can be
verified by checking the satisfiability of the theory after adding the following constraint:

← not trans(green, A, T ), action(A), T < n. (52)

Of course (52) does not extend a theory conservatively since only green paths will satisfy (52). In
general, however, models of a deontically annotated causal theory include plays in which the agent makes
mistakes and acts with imprudence. We do not wish to exclude these plays as they represent real strategies
a trainee may pursue.

A practical solution to this is to run the answer set solver in planning mode twice, once with and once
without the constraint (52). When run with (52), the solver returns models of green paths. The solver can
be instructed to optimize over length and select the shortest of these. The task complexity of the scenario
is then set to that length. When the solver is run without the constraint, on the other hand, it generates all
possible plays. Having the task complexity available from the first step, one can use the function s∗ to
assign a score to each of these. This is how it is implemented in the ExManSim architecture.

Returning to the example that motivated the need for generalizing s to s∗, we note that Definition 6
eliminates the particular anomaly in that example. When task complexity is factored into the assessment,
play 1.1 scores s∗(3, 1, 1) = 100, play 2.1–2.2 scores s∗(5, 2, 1) = 50 and play 3.1–3.3 scores
s∗(7, 3, 1) = 34. This linear ranking of the three plays accords well with intuition. Of course, further
benchmarking is necessary. Theorem 3 collects some properties of s∗ for easy reference, all of them are
straightforward to verify.

Theorem 3.

1. s∗ is monotone in its first argument,
2. s∗ is monotone in its third argument,
3. s∗ is antitone in its second argument,
4. s∗ is antitone in the difference between the second and third argument, i.e.

s∗(g, n′, c′) ≤ s∗(g, n, c) whenever n− c ≤ n′ − c′

5. the range of s∗ is the integer interval [0, 100],
6. s∗(g, n, n) = s(g, n),
7. s∗(g, n, c) = 100 whenever g = 2n+ 1 and n = c
8. s∗(g, n, c) = 0 whenever g = 0

To analyze the behaviour of s∗ one must examine projections onto lower dimensional spaces, which
means fixing one or more of the function variables to a constant value. Setting task complexity to 5 gives
the plot in Fig. 5, from which some of the properties of Theorem 3 can be confirmed by inspection: A
green number of zero always gives score zero, the length of a play impacts scores negatively but can
be balanced by green numbers, and so on. Fixing complexity and length gives the plot in Fig. 6a, which
shows that the score is a linear function of the green number for the same values of length and complexity.

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 31

Figure 5. Plot of score s∗ with constant complexity.

The slope of the line is influenced both by complexity and length. Fixing the green number of a play and
complexity gives the curves in Fig. 6b. Values decrease logarithmically due to the quadratic denominator
of s∗.

(a) Score s∗ as a function of the green number (b) Score s∗ as the function of the length of a play

Figure 6. Behaviour of score s∗

By superimposing the function that takes green numbers as inputs (Fig. 6a) with the function that takes
length as input (Fig. 6b), an example of the trade-off between length and green numbers can be read of
from the intersection, cf. Fig. 7. The plot shows that s∗(11, 6, 5) ≥ s∗(7, 5, 5). Informally, a minimal-
length play with about a 60/40 ratio of green to red transitions and states is dominated by a play of the
same complexity in which the trainee performs one unnecessary action but raises the green to red ratio to
approx. 85. In other words, a play that exceeds task complexity is not automatically inferior to a play that

Prepared using sagej.cls



32 Simulation XX(X)

Figure 7. The green number vs. the length of a play

does not. It depends on how the goal is reached. If the minimal-length play includes many unacceptable
means and intermediate states whereas the longer play largely avoids them, the green number of the latter
may overtake the efficiency of the former as the main influence on the score.

7 Sample plays
In this section we compare a selection of plays and explain discrepancies in their score by reference
to the causal laws and deontic norms. These examples serve to illustrate how the causal theory, the
deontic specificaton, and the scoring function combine to form a single theory. The plays are shown in
an abbreviated form as alternating sequences of actions and fluents: for each time-step the chosen action
is displayed together with a selected fact that explains the colour of the state at that time instant. A green
state or transition is indicated by the sign 3 in the right margin and a red one with 7. A goal state is
marked ,. We consider two goal descriptions ¬holds(fireIn(oil), T) in Fig. 8 and T = n in Fig. 9.

Starting with Fig. 8a, the first thing to note is that the initial state is green even though the supposition
is that the stove is turned on too hot. This is due to the closure condition (42) and the absence of a
deontic norm outlawing hot stoves. They combine to make the state at step 1 green by default. In this
particular play the agent perceives the hazard immediately and turns off the stove. The turnOff action
causes ¬holds(on, 2), by causal law (1) and since the pan is not smoking, state constraint (9) is triggered,
and state 2 becomes a goal state. This is an optimal play with a score of a 100.

In Fig. 8b the agent turns on the fan at step 1. This is not directly harmful, but by casual law (5) it is
not an action that prevents the pan from overheating. The pan consequently overheats in step 2 colouring
that state red. Since the initial state is green, the ggg-constraint kicks in and colours the act of turning on
the fan red. This contrasts instructively with the act of turning off the stove in step 2 of the same play.
Since the stove is already overheated at this moment, turning it off does not suffice to prevent smoke
from developing at the next instant. Hence state 3 is red. Yet, since state 2 is also red, the ggg-constraint
is not triggered, and the action at that step (turning off the stove) is coloured green by default. Now, by
the axiom of inertia (23) the effect of turning off the stove in step 2 persists in state 3 where it combines
with the action of putting the lid on the pan. Therefore causal law (5) causes state 4 to become a goal
state thus ending the play. This play exceeds the task complexity of the kitchen scenario by two steps and
has a red to green ratio of 3/4. It is scored at 23.

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 33

holds(on(stove), 1) 3
occurs(turnOff(stove), 1) 3
¬holds(fireIn(oil), 2) , 3
score(100)

(a)

holds(on(stove), 1) 3
occurs(turnOn(fan), 1) 7
holds(heats(pan), 2) 7
occurs(turnOff(stove), 2) 3
holds(smoke(pan), 3) 7
occurs(put(lid, pan), 3) 3
¬holds(fireIn(oil), 4) , 3
Score(23)

(b)

holds(on(stove), 1) 3
occurs(put(lid, pan), 1) 7
holds(heats(pan), 2) 7
occurs(wait, 2) 7
holds(smoke(pan), 3) 7
occurs(turnOff(stove), 3) 3
¬holds(fireIn(oil), 4 , 3
score(14)

(c)

holds(on(stove), 1) 3
occurs(wait, 1) 7
holds(heats(pan), 2) 7
occurs(turnOn(fan), 2) 3
holds(smoke(pan), 3) 7
occurs(wait, 3) 7
occurs(put(lid, pan), 4) 3
occurs(turnOff(stove), 4)
¬holds(fireIn(oil), 5) , 3
Score(11)

(d)

Figure 8. Sample plays with goal ¬holds(fireIn(oil), T).

Step 1 of the play in Fig. 8c is similar to step 1 of Fig. 8b insofar as the agent chooses the wrong action.
He puts the lid on the pan when he should have turned the stove off first. In step 2, he waits. Since the
pan overheats at this point, waiting is expressly forbidden by the norm (34). Waiting also causes the pan
to start smoking in state 3, at which point the agent turns off the stove just in time to prevent the fire.
Compared to play (8a), the forbidden wait in step 2 is the negative difference that explains why play (8c)
scores considerably lower at 14.

Turning now to the play in Fig. 8d, the agent procrastinates in step 1. Again, since this is not an action
that prevents the stove from overheating, it is coloured red by the norm (34) (and would be anyway by
the ggg-constraint). Next, the agent makes the rather uninformed choice of turning on the fan in step 2.
However, there is no rule that expressly prohibits this; turning on the fan is acceptable even though it
allows smoke to develop at the next step. Contrast this with the wait action which is covered by the
norm (35). Intuitively, the meaning of (35) is to prohibit an action if it does contribute to suppressing the
smoke from the pan. The lack of generality of norms (34–35) may therefore be considered a flaw in this
particular deontic specification, and one may consider replacing them with

unacceptable ¬turnOff(stove) if heats(pan) (53)
unacceptable ¬put(lid, pan) if smoke(pan) (54)

Prepared using sagej.cls



34 Simulation XX(X)

holds(on(stove), 1) 3
occurs(put(lid,pan),1) 7
holds(heats(pan), 2) 7
occurs(turnOn(fan),2) 3
holds(smoke(pan), 3) 7
occurs(wait,3) 7
holds(smoke(pan), 4) 7
holds(fireIn(oil), 4) 7
occurs(turnOff(stove), 4) 3
holds(fireIn(vent), 5) 7
occurs(wait, 5) ,7
score(5)

(a)

holds(on(stove), 1) 3
occurs(wait,1) 7
holds(heats(pan), 2) 7
occurs(wait,2) 7
holds(smoke(pan), 3) 7
occurs(wait,3) 7
holds(fireIn(oil), 4) 7
occurs(wait, 4) 7
holds(fireIn(oil), 5) 7
occurs(wait, 5) ,7
score(1)

(b)

Figure 9. Sample plays with goal T = n.

Norms (53–54) follow the same representational strategy as employed in causal laws (5–6). It draws on
the closed world assumption for actions expressed by rule (24) to conclude that the lid has not been put
on the pan (resp. the stove turned off) if that action has not been explicitly recorded or deduced. Now,
moving forward one time-step, the agent also chooses to do nothing in step 3, which forces him to put on
the lid and turn off the stove in one go in step 4. This is the very last time-point at which the fire can be
prevented, which is why the play scores very low at 11.

Now, changing the goal from ¬holds(fireIn(oil), T) to T = n means that we are allowing the agent
to fail. The new goal is simply to extract sequences of actions that are as long as the planning horizon,
irrespective of the outcome. This way, poor plays in which a fire does break out, in the pan or in the vent
shaft etc., come into scope for the scoring function. Fig. 9 shows two such plays.

The play in Fig. 9a displays features that we have already discussed; the action in the first time-step is
the wrong one, so state 2 becomes red, which in turns entails that the action in question is coloured red
by the ggg-constraint. Turning on the fan in step 2 is deemed acceptable, even though it allows smoke to
develop—another illustration that the norm (35) should probably be generalized. The agent woefully does
nothing in step 3, closing his window of opportunity to prevent fire in the cooking oil which consequently
breaks out in state 4. The agent then turns off the stove. Although that is an acceptable action at this point,
it is too late to prevent the fire. It also does not prevent the fire from spreading to the vent shaft in step 5,
which it does because the fan is on. Needless, to say this is a poor play. It gets a score of 5.

An even worse performance is the play in Fig. 9b. Indeed this is as bad as it gets according to this
particular deontic specification. The agent does nothing at all, allowing the pan fire to break out and rage
on. One thing to note though, is that this scenario scores less than the play 9a although the outcome is less
severe. More specifically, the fire does not spread to the vent shaft since the fan is not on. This suggests
that a binary scoring scheme where states and actions are either good or bad may be a bit too simplistic.
An interesting generalization would be to subdivide the class of unacceptable actions into those that do
not have positive consequences (such as waiting) and those that may have negative consequences (such

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 35

as turning on the fan). These actions could then be scored differently. We leave this topic of degrees of
goodness and badness for future research.

8 Discussion and Final Remarks
The scoring scheme we have proposed is most aptly viewed as expressing a concept of instrumental
rationality, or more precisely the efficacy of an agent to achieve the desired ends given the means
provided. A next step would be to develop scoring functions for other skills. As an example, consider the
skill of situation awareness.73 A trainee can exhibit various degrees of effective means-ends reasoning
in a scenario, but one would not know if this was due to excellent situation awareness, knowledge
of routines, other skills or pure good fortune. The type of scoring function presented above may
be extendable to situation awareness, either by carefully designing tasks that eliminate routine and
familiarity effects, or by randomizing the selection and location of key objects in the scene. This is a topic
we are actively researching at the time of writing. An expected gain is to have some way of assessing
situation awareness, that unlike other techniques like e.g. the SAGAT method,73 does not require plays
to be suspended whilst trainees are queried.

To make our work of use to exercise managers and domain experts, we are also developing graphical
tools for scenario design.74 Specifically, we are investigating block-based programming* for selecting
ontology-defined objects and actions and composing scenarios from them. The Blockly design space is
combined with a sunburst diagram† that displays all possible plays of a scenario, including colours and
scores for each play. A scenario designer can thus assess whether a particular scenario design has the
appropriate complexity and the relevant events to train the desired skills, and redesign if needed. Such a
design space will present a major improvement on current practices. Note also that the designer will be
oblivious to all the ASP computing going on behind the scene.

The framework as described above, has a binary scoring scheme: states and transitions are either good
or bad. This scheme is easily extendable to ordinal or interval scoring scales, to reflect further degrees of
goodness or badness.

We expect the development in this article to have a significantly positive impact on planning and
analyzing simulation-based training. Once the framework has been implemented in an exercise design
and analysis tool, empirical validation of usability can commence. Our approach is instrumental in
acquiring structured training data. When large amounts of such data have been secured, machine learning
techniques can be employed on that data to give input to scenario design as described in this article. In
this way, both machine reasoning and machine learning may work together for better design and analysis
of simulation-based training. However, the main contribution of the present article is its theoretical
elaboration of AI planning for simulation-based training and the resulting stringent definition of the
scenario concept, including plays, goals and scoring.

Funding

This research was by the Research Council of Norway under project no. 282081 “MixStrEx”.

*https://developers.google.com/blockly
†https://datavizproject.com/data-type/sunburst-diagram/

Prepared using sagej.cls



36 Simulation XX(X)

References

1. Salas E, Wildman JL and Piccolo RF. Using simulation-based training to enhance management education.
Academy of Management Learning & Education 2009; 8(4): 559–573.

2. Ericsson KA. The influence of experience and deliberate practice on the development of superior expert
performance. In Ericsson KA, Charness N, Feltovich PJ et al. (eds.) The Cambridge Handbook of Expertise
and Expert Performance, chapter 38. Cambridge Univ. Press, 2006. pp. 683–703.

3. Beaubien JM, Shadrick SB, Paley MJ et al. Using deliberate practice to train military-civilian interagency
coordination. In Proc. Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2006.
National Training and Simulation Association, pp. 151–158.

4. Grunnan T and Fridheim H. Planning and conducting crisis management exercises for decision-making: the
do’s and don’ts. EURO Journal on Decision Processes 2017; 5: 79–95.

5. Hannay JE and Kikke Y. Structured crisis training with mixed reality simulations. In Proc. 16th Int’l Conf.
Information Systems for Crisis Response and Management (ISCRAM). pp. 1310–1319.

6. Simulation Interoperability Standards Organization, Orlando. Guideline on Scenario Development for
Simulation Environments, 2016.

7. Lifschitz V. Answer set programming. Springer Heidelberg, 2019.
8. Gelfond M and Kahl Y. Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The

Answer-Set Programming Approach. Cambridge University Press, 2014.
9. Baral C. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press,

2003.
10. Russell S and Norvig P. Artificial Intelligence: A Modern Approach. Third ed. Series in Artificial Intelligence,

Prentice Hall, 2010.
11. Sergot M. (C+)++ : An action language for modelling norms and institutions. Technical report, Imperial College,

2005.
12. Gelfond M and Lifschitz V. Action languages. Electronic Transactions on Artificial Intelligence 1998; 3: 195–

210.
13. Rouwendal van Schijndel DK, Hannay JE and Stolpe A. Simulation vignette generation from Answer Set

specifications. In Proc. 17th Int’l Conf. Information Systems for Crisis Response and Management (ISCRAM).
pp. 110–121.

14. Rouwendal DK, Stolpe A and Hannay JE. Toward an AI-based external scenario event controller for crisis
response simulations. In Proc. 18th Int’l Conf. Information Systems for Crisis Response and Management
(ISCRAM). pp. 106–117.

15. Ericsson KA. An introduction to Cambridge Handbook of Expertise and Expert Performance: Its development,
organization, and content. In Ericsson K, Charness N, Feltovich P et al. (eds.) The Cambridge Handbook of
Expertise and Expert Performance, chapter 1. Cambridge Univ. Press, 2006. pp. 3–20.

16. Shadish WR, Cook TD and Campbell DT. Experimental and Quasi-Experimental Designs for Generalized
Causal Inference. Houghton Mifflin, 2002.

17. Cronbach LJ and Meehl PE. Construct validity in psychological tests. Psychological Bulletin 1955; 52(4):
281–302.

18. Schraagen JM. Designing training for professionals based on subject matter experts and cognitive task analysis.
In Ericsson KA (ed.) Development of Professional Expertise, chapter 7. Cambridge University Press, 2009. pp.
157–179.

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 37

19. Hærem T and Rau D. The influence of degree of expertise and objective task complexity on perceived task
complexity and performance. Journal of Applied Psychology 2007; 92(5): 1320–1331.

20. Shanteau J. Competence in experts: The role of task characteristics. Organizational Behavior and Human
Decision Processes 1992; 53: 252–266.

21. Chi MTH, Glaser R and Rees E. Expertise in problem solving. In Sternberg R (ed.) Advances in the Psychology
of Human Intelligence. Lawrence Erlbaum Associates, Inc., 1982. pp. 17–76.

22. Ford DN and Sterman JD. Expert knowledge elicitation to improve formal and mental models. System Dynamics
Review 1998; 14(4): 509–340.

23. Sternberg RJ. Cognitive conceptions of expertise. International Journal of Expert Systems 1994; 7(1): 1–12.
24. Bereiter C and Scardamalia M. Surpassing Ourselves: An Inquiry into the Nature and Implications of Expertise.

Open Court, 1993.
25. Johnson EJ. Expertise and decision under uncertainty: Performance and process. In Chi MTH, Glaser R and

Farr MJ (eds.) The Nature of Expertise. Lawrence Erlbaum Associates, Inc., 1988. pp. 209–228.
26. Papineau D. The evolution of means-end reasoning. Royal Institute of Philosophy Supplements 2001; 49:

145–178.
27. Tversky A and Kahneman D. Judgement under uncertainty: Heuristics and biases. Science 1974; 185(27):

1124–1131.
28. Hammond KR, Brehmer TR and Steinmann DO. Social judgement theory. Human Judgment and Decision

Processes 1975; : 271–312.
29. Hogarth R. Beyond discrete biases: Functional and dysfunctional aspects of judgmental heuristics.

Psychological Bulletin 1981; 90(2): 197–217.
30. Gigerenzer G and Todd PM (eds.) Simple Heuristics that Make Us Smart. Oxford University Press, 1999.
31. Simon HA. The Sciences of the Artificial. Third ed. MIT Press, 1996.
32. IEEE Standards Association. 1516-2010 – IEEE Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA), 2010.
33. Simulation Interoperability Standards Organization. SISO-STD-003-2006 – Standard for Base Object Model

(BOM) Template Specification, 2006.
34. Gruber TR. A translation approach to portable ontology specifications. Knowledge Acquisition 1993; 5(2):

199–220.
35. Mojtahed V, Andersson B, Kabilan V et al. BOM++, a semantically enriched BOM. In Proc. 2008 Spring

Simulation Interoperability Workshop (SIW). Simulation Interoperability Standards Organization, pp. 315–327.
36. De Nicola A, Melchiori M and Villani ML. Creative design of emergency management scenarios driven by

semantics: An application to smart cities. Information Systems 2019; 81: 21–48.
37. Steel J, Iannella R and Lam HP. Using ontologies for decision support in resource messaging. In Proc. 5th Int’l

Conf. Information Systems for Crisis Response and Management (ISCRAM). pp. 189–196.
38. Bénaben F, Hanachi C, Lauras M et al. A metamodel and its ontology to guide crisis characterization and its

collaborative management. In Proc. 5th Int’l Conf. Information Systems for Crisis Response and Management
(ISCRAM). pp. 189–196.

39. Durak U, Oğuztüzün H, Köksal Algin C et al. Towards interoperable and composable trajectory simulations: an
ontology-based approach. Journal of Simulations 2011; 5(3): 217–229.

40. Singapogu SS, Gupton K and Schade U. The role of ontology in C2SIM. In Proc. 21st International Command
and Control Research and Technology Symposium (ICCRTS 2016). The International Command and Control
Institute, pp. 1–21.

Prepared using sagej.cls



38 Simulation XX(X)

41. Simulation Interoperability Standards Organization. The Command and Control Systems – Simulation Systems
Interoperation (C2SIM) Product Development Group (PDG) and Product Support Group (PSG), 2019. Accessed
December 19, 2019.

42. van den Berg TW, Huiskamp W, Siegfried R et al. Modelling and Simulation as a Service: Rapid deployment
of interoperable and credible simulation environments – an overview of NATO MSG-136. In Proc. 2018 Winter
Simulation Innovation Workshop. pp. 149–166.

43. Hannay JE, van den Berg T, Gallant S et al. Modeling and Simulation as a Service infrastructure capabilities for
discovery, composition and execution of simulation services. J Defense Modeling and Simulation: Applications,
Methodology, Technology 2020; 14(2): 139–158.

44. Hannay JE and van den Berg TW. The NATO MSG-136 Reference Architecture for M&S as a Service. In Proc.
NATO Modelling and Simulation Group Symp. on M&S Technologies and Standards for Enabling Alliance
Interoperability and Pervasive M&S Applications (STO-MP-MSG-149). NATO Science and Technology
Organization, pp. 1–18.

45. Sergot M and Craven R. The deontic component of action language nc+. In Proceedings of the 8th International
Conference on Deontic Logic and Artificial Normative Systems. DEON’06, Berlin, Heidelberg: Springer-Verlag,
p. 222–237.

46. Giunchiglia E, Lee J, Lifschitz V et al. Nonmonotonic causal theories. Artificial Intelligence 2004; 153(1–2):
49–104.

47. Lee J, Lifschitz V and Yang F. Action language bc: preliminary report. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI). pp. 983–989.

48. Gelfond M and Lifschitz V. Classical negation in logic programs and disjunctive databases. New Generation
Computing 1991; 9: 365–385.

49. Brewka G, Delgrande J, Romero J et al. asprin: Customizing answer set preferences without a headache. In
Twenty-Ninth AAAI Conference on Artificial Intelligence. pp. 1467–1474.

50. Babb J and Lee J. Cplus2asp: Computing action language C+ in answer set programming. In Cabalar P and Son
TC (eds.) Logic Programming and Nonmonotonic Reasoning. Springer Berlin Heidelberg, pp. 122–134.

51. Zeigler BP, Praehofer H and Kim TG. Theory of Modeling and Simulation. 2nd ed. Academic Press, 2000.
52. Foo N and Peppas P. System properties of action theories. In Kim TG (ed.) Artificial Intelligence and Simulation.

Springer Berlin Heidelberg, pp. 416–427.
53. Wainer GA, Goldstein R and Khan A. Introduction to the discrete event system specification formalism and its

application for modeling and simulating cyber-physical systems. In 2018 Winter Simulation Conference (WSC).
pp. 177–191.

54. Foo N and Peppas P. Systems theory: Melding the ai and simulation perspectives. In Kim TG (ed.) Artificial
Intelligence and Simulation. Springer Berlin Heidelberg, pp. 14–23.

55. McCarthy JW. Situations, actions, and causal laws. In Semantic Information Processing. MIT Press, p. 410–41.
56. Kowalski R and Sergot M. A logic-based calculus of events. In Schmidt JW and Thanos C (eds.) Foundations of

Knowledge Base Management: Contributions from Logic, Databases, and Artificial Intelligence Applications.
Springer Berlin Heidelberg, pp. 23–55.

57. Gelfond M and Lifschitz V. The stable model semantics for logic programming. In Kowalski R, Bowen and
Kenneth (eds.) Proceedings of International Logic Programming Conference and Symposium. MIT Press, pp.
1070–1080.

58. Baral C and Gelfond M. Reasoning agents in dynamic domains. In Logic-based artificial intelligence. Springer,
2000. pp. 257–279.

Prepared using sagej.cls



A. Stolpe and J. E. Hannay 39

59. Gelfond M. Answer sets. Foundations of Artificial Intelligence 2008; 3: 285–316.
60. Gebser M, Kaminski R, Kaufmann B et al. Answer Set Solving in Practice. Morgan & Claypool Publishers,

2012.
61. Fikes RE and Nilsson NJ. Strips: A new approach to the application of theorem proving to problem solving.

Artificial Intelligence 1971; 2(3): 189 – 208.
62. McCarthy J and Hayes PJ. Some philosophical problems from the standpoint of artificial intelligence. In Meltzer

B and Michie D (eds.) Machine Intelligence 4. Edinburgh University Press, 1969. pp. 463–502.
63. Siegfried R, Laux A, Rother M et al. Scenarios in military (distributed) simulation environments. In Proc. 2012

Spring Simulation Interoperability Workshop. 12S-SIW-014, pp. 1–12.
64. Gebser M, Leone N, Maratea M et al. Evaluation techniques and systems for answer set programming: a

survey. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-
18. International Joint Conferences on Artificial Intelligence Organization, pp. 5450–5456.

65. Gebser M, Jost H, Kaminski R et al. Ricochet robots: A transverse asp benchmark. In Cabalar P and Son TC
(eds.) Logic Programming and Nonmonotonic Reasoning. Berlin, Heidelberg: Springer Berlin Heidelberg, pp.
348–360.

66. Gelfond M and Lobo J. Authorization and obligation policies in dynamic systems. In Garcia de la Banda M and
Pontelli E (eds.) Logic Programming. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-540-89982-
2, pp. 22–36.

67. Stolpe A. A theory of permission based on the notion of derogation. Journal of Applied Logic 2010; 8(1):
97–113.

68. Stolpe A. Relevance, derogation and permission: A case for a normal form for codes of norms. In Proceedings
of the 10th International Conference on Deontic Logic in Computer Science. DEON’10, Berlin, Heidelberg:
Springer-Verlag, p. 98–115.

69. Carmo J and Jones AJI. Deontic database constraints, violation and recovery. Studia Logica: An International
Journal for Symbolic Logic 1996; 57(1): 139–165.

70. Craven R and Sergot M. Agent strands in the action language nC+. Journal of Applied Logic 2008; 6(2): 172 –
191. Selected papers from the 8th Int’l Workshop on Deontic Logic in Computer Science.

71. Lifschitz V and Turner H. Splitting a logic program. In Hentenryck V and Pascal (eds.) Proceedings of
International Conference on Logic Programming (ICLP). pp. 23–37.

72. Wood RE. Task complexity: Definition of the construct. Behaviour and Human Decision Processes 1986; 37:
60–82.

73. Endsley MR. Theoretical underpinnings of situation awareness: A critical review. In Endsley MR and Garland
DJ (eds.) Situation awareness analysis and measurement. Lawrence Erlbaum Associates Publishers, 2000. pp.
13–32.

74. Rouwendal van Schijndel DK, Stolpe A and Hannay JE. Using block-based programming and sunburst
branching to plan and generate crisis training simulations. In Stephanidis C and Antona M (eds.) Proc.
22nd International Conference on Human Comupter Interaction (HCI International 2020), Communications
in Computer and Information Science, volume 1226. Springer International Publishing, pp. 463–471.

Prepared using sagej.cls


