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Abstract

This paper presents a new method for semi-
automatic detection of nature interventions in
Sentinel-2 satellite images with 10 m spatial res-
olution. The Norwegian Environment Agency is
maintaining a map of undisturbed nature in Nor-
way. U-Net was used for automated detection of
new roads, as these are often the cause whenever
the area of undisturbed nature is reduced. The
method was able to detect many new roads, but
with some false positives and possibly some false
negatives (i.e., missing new roads). In conclusion,
we have demonstrated that automated detection of
new roads, for the purpose of updating the map
of undisturbed nature, is possible. We have also
suggested several improvements of the method to
improve its usefulness.

1 Introduction

The Norwegian Environment Agency (in Norwe-
gian: Miljødirektoratet) is maintaining a map of
undisturbed nature in Norway. Undisturbed nature
is defined as areas 1 km or more from heavy tech-
nical interventions, such as roads, railways, built-
up areas, power lines, hydropower dams and wind
power turbines. Excluding Svalbard, about 45%
of Norway’s land area is undisturbed nature. The
database of undisturbed nature consists of several
thousand polygones, of which 2860 are larger than
1 km2.

The main source for updating the map of undis-
turbed nature is the regular update of the national

∗Corresponding Author: trier@nr.no

digital map series, based on aerial photography fol-
lowed by manual photo interpretation. For urban
areas, the update cycle is 1-3 years, but for rural
areas, forests and mountain areas, the update cy-
cle may be more than five years. Thus, alternative
sources for updating the map of undisturbed nature
were sought.

The Sentinel-2 satellites of the European Space
Agency provide weekly coverage of Norway in the
form of multispectral images at 10 m resolution.
Visual inspection of such images indicated that for-
est roads and construction roads may be detected
by automatic methods. However, due to varying
cloud cover, one may need to wait several weeks
until a new road is visible in the images. Thus
there may be a delay of several weeks from a new
road is constructed until it is visible in the Sentinel-
2 satellite images. Also, roads may be hidden by
snow cover in the winter season. Albeit these limi-
tations, it seemed realistic that Sentinel-2 could be
used to obtain much more frequent updates of the
map of undisturbed nature, preferably using auto-
mated methods.

In recent years, deep neural networks are being
used as the preferred method in many image de-
tection tasks in remote sensing. Salberg et al. [6]
and Liu et al. [2] investigate the potential of using
deep segmentation networks to map forest roads
from lidar images. Yang et al. [8] uses U-Net [5]
to detect roads in Google Earth images with 1.2 m
resolution. The hypothesis in this study was that
U-Net could be trained to detect roads also in the
coarser resolution of 10 m, but with the advantage
of having more spectral bands.
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2 Data

Multispectral satellite data from Sentinel-2 cover-
ing southern Norway were used. The Sentinel-2
satellite carries a multi-spectral optical sensor that
produces images of the ground with as high as 10
m spatial resolution in 13 spectral channels with
wavelengths from 492 nm to 2202 nm. We used 10
spectral channels (the 10 m and 20 m bands) as
input to the deep learning model. Data bands that
were of lower resolution were re-sampled to 10 m
spatial resolution using bi-linear interpolation. All
13 bands (10 m, 20 m and 60 m bands) were used
for cloud detection. The data is delivered as 100
km × 100 km image tiles projected to the near-
est UTM zone, which in this case was zone 32 N.
Of the 38 tiles, 34 tiles were used for training of
the parameters of deep neural network, and two
tiles were used for validation of the training and
were thus part of the data seen during training.
The validation tiles were T32VNL and T32VNN,
covering the Larvik and Lillehammer areas, respec-
tively. The tiles T32VMN and T32VNR, covering
the Geilo and Trondheim areas, respectively, were
reserved for testing and not seen during training.

Vector data of all known roads, ranging from
highways to forest roads, were used as ground truth
data and converted to a 10 m resolution raster road
mask for each 100 km × 100 km tile. Similarly,
vector data of lakes and rivers were converted to
a 10 m resolution water mask for each tile. The
purpose of the water masks was to mask false for-
est road predictions in dry periods, when rivers and
lake shorelines may have exposed bare rock surfaces
with spectral signatures similar to gravel roads.

3 Methods

3.1 Convolutional Neural Network
architecture

U-Net [5] is used in several image detection prob-
lems on remote sensing images. We modified the
U-Net architecture to accept input images with 10
spectral bands. The network consist of an encoder-
part and a decoder-part. Each of these consists of
a basic building block of three convolutional layers,
with subsequent batch normalization and a RELU-
activation function. In the encoder part, the im-

ages go through four convolution blocks with down-
sampling with a factor of two after each of them.
In the decoder part, the resulting feature-maps are
subject to four convolution blocks with a bi-linear
up-sampling operation after each of them, also with
a factor of two. The feature maps go through one
more block with convolutions before a final con-
volution and softmax layer that maps each pixel to
two bands, indicating the scores of forest roads and
background. Between the decoder and encoder,
high-resolution feature maps are bypassed to let the
network also make use of local high-resolution in-
formation.

3.2 Training procedure

The U-Net was trained and tested on cloud free
Sentinel-2 image tiles of southern Norway from
2018-2021, and the months April-September. Im-
ages with snow covered roads were not used.

We used a cross-entropy loss function. The op-
timization was done with the ADAM algorithm [1]
with a learning rate of 0.004. An iteration is the
process of running one batch through the network.
We trained the network with 5,000 batches of 16
random image crops of 256×256 pixels at 10 m res-
olution, and validated the model every 500th itera-
tion and selected the checkpoint associated with the
best validation-accuracy. The batches were gener-
ated with random samples from random Sentinel-2
images, and we continued to generate such random
batches until the total number of batches (5,000)
was reached.

3.3 Prediction pipeline

The detection method was then implemented in
an automatic pilot service. Each evening, new
Sentinel-2 images covering southern Norway, and
with less than 10% cloud cover, were downloaded
from https://scihub.copernicus.eu/dhus/. The fol-
lowing processing steps were used:

1. Perform cloud detection using the s2cloudless
python package 1

2. Preprocess data to input format required by U-
Net, including resampling the 20 m resolution
bands to 10 m resolution

1https://pypi.org/project/s2cloudless/
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3. Export bands 11, 8 and 3 to a false colour im-
age to aid visual inspection of predicted roads.

4. Create road mask and water mask for tile, if
not already created

5. Create mask of undisturbed nature for tile, if
not already created

6. Predict roads using U-Net

7. Remove predicted road pixels covered by water
mask

8. Using buffer analysis, identify predicted roads
that may reduce areas of undisturbed nature.

9. Upload new predictions and false colour im-
ages to an FTP site for download by clients.

The pilot service was run this summer until 1
October, both to demonstrate the usefulness of an
automatic detection service and to identify neces-
sary improvements.

3.4 Use of gradient of digital terrain
model

We wanted to investigate if the detection re-
sults could be improved by adding an extra in-
put band derived from a digital terrain model
(DTM). A DTM of Norway in 10 m resolution
and in UTM zone 33N was downloaded from
https://hoydedata.no. The DTM is derived from
airborne lidar data with 2-10 points per m2. From
the DTM, a gradient image G was obtained by
using Sobel’s edge detectors. Then, in order for
the gradient image to have roughly the same value
range as the spectral bands, a scaling was needed.
We used 0.1

√
G.

4 Results

4.1 Detection of existing roads in
Sentinel-2 images

By running the method on the test data, rates of
true positive, false positive and false negative pre-
dictions were obtained (Table 1). Two versions of
the ground truth data were used. When tractor
roads, i.e., the smallest forest roads, were included
in both training and testing, the true positive rate

dropped from 41 % to 29 % compared with when
tractor roads were excluded from training and test-
ing (Table 1). At the same time, the false positive
rate was slightly higher (7 %) when tractor roads
were included, compared to when tractor roads
were excluded (6 %). The reason for decreased
detection performance may be that tractor roads
are less visible in the satellite data, so that train-
ing on tractor roads was more difficult than on the
other, larger roads. This was also indicated by the
best validation scores during training, which were
70 % and 66 % for roads excluding tractor roads
and roads including tractor roads, respectively.

When a buffer was added to all roads, so that
pixels next to a road were ignored during training
and testing, the true positive rate increased from 41
% to 57 % (Table 2). However, at the same time,
the false positive rate increased from 6 % to 18
%. Another observation was that the true positive
rate varied between different acquisition dates for
the same tile. For T32VMN, the true positive rate
varied from 53 % to 64 %, and for T32VNR, from
48 % to 68 % (Table 2, columns 3-5). This indi-
cated that several acquisition dates may be needed
to increase the detection performance compared to
using a single acquisition date.

4.2 Detection of existing roads in
Sentinel-2 images and DTM gra-
dient

When U-Net was trained on all roads except tractor
roads, with a buffer on all roads, and DTM gradi-
ent was added as an extra input band to U-Net,
the true positive rate increased to 61 % (Table 2,
columns 6-8), with 39 % false negative rate. The
false positive rate increased to 23 %.

4.3 Detection of new roads

However, the main purpose of the detection method
was not to find existing roads, but to find new
roads, built after 1 January 2018, not present in
the current vector data. Since a correct ground
truth for new roads was not available, it was only
possible to do a visual inspection of predicted roads
in the satellite images. In tile T32VMN, there were
several predictions of new roads that seemed to be
correct (Figure 1a-b). However, there were also
predictions that were wrong (Figure 1c-e). Small
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creeks that were not included in the water mask
were often mistaken as small roads. Also, ridges
of bare rock and gravel landslides were sometimes
mistaken as roads, if they were long and narrow. In
tile T32VNR, there were also many predictions of
new roads that appeared to be correct (Figure 2).
In one of these (Figure 2a), only parts of the new
road was predicted. However, by using another im-
age acquisition date, almost all parts of the new
road was predicted.

4.4 Detection using DTM gradient
and Sentinel-2 images

By adding an extra band with gradient of the DTM
together with te spectral bands from Sentinel-2,
some of the false predictions of new roads disap-
peared. The number of false predictiopns were
reduced in the following situations: Creeks (Fig-
ure 3), elongated gravel slides (Figure 4) and ridges
with bare rock surfaces (Figure 5). In addition,
a few new roads were more completely predicted
(Figure 6). However, some situations with false
detections of creeks, ridges and gravel slides still
remained, where the use of DTM gradient was not
able to eliminate all false predictions. Due to lack
of time we were not able to manually count all the
improvements in the predictions of new roads.

5 Discussion and Conclusions

The false negative rate of the proposed method was
high (43% without using DTM gradient and 39 %
with DTM gradient) when applied on individual
image acquisitions. However, it was observed that
a missing road at one acquisition date could be pre-
dicted at another date. Thus, a possible improve-
ment of the method could be to accumulate road
predictions from several image acquisition dates.
The false positive rate (18% without DTM gradi-
ent and 23 % with DTM gradient) seemed to be
fairly high. However, this number includes both
the correct predictions of new roads and false road
predictions. To obtain the true positive rate for
new roads may be difficult, since new roads could
be missed also by manual inspection of the satellite
images.

False predictions of roads at the locations of
rivers were avoided by using a water mask which

included rivers. However, many narrow creeks
seemed to be missing in the water mask, thus many
creeks were falsely predicted as new roads. A pos-
sible solution could be to derive a map of drainage
channels, or stream network [4], from the detailed
DTM of Norway. At the same time, we suspect
that there exists additional vector lines of creeks
that we have not obtained, either from the Nowe-
gian Mapping Authority or the Norwegian Water
Resources and Energy Directorate.

Masking of drainage lines could potentially also
remove false predictions of roads at long and narrow
gravel land slide locations. Another possible source
of false road predictions could be areas with locally
delayed snow melt, thus reducing the vegetation
cover. Whenever these areas are long and narrow,
they might be mistaken as new roads.

False predictions of roads at ridges of bare rocks
could be more difficult to avoid, since new roads
could occasionally be located on ridges. However,
since ridge lines may also be derived from auto-
matic terrain analysis, masking of ridge lines could
be tested. Also, terrain analysis could be used to
mask areas unlikely for new roads, due to steep ter-
rain or other unsuitable conditions.

Another heuristic rule to remove false road pre-
dictions could be to remove predictions that are
clearly not connected to the existing road network,
since building a new road in isolation is impractical
for a number of reasons. Thus, predicted new roads
that are, say, more than 200 m from the nearest ex-
isting road could be discarded. The 200 m gap may
be needed since it may happen that parts of a new
road is missing from a predicted new road.

There is also a potential for improving the learn-
ing of the U-Net by using different loss functions.
This could be achieved by adding class weights into
the cross-entropy loss function, applying a sampling
strategy that makes sure that road segments are in-
cluded in each mini-batch, or using other loss func-
tions like the adaptive class weighting loss proposed
by Liu et al. [3]. Another loss function that may be
considered is the clDice loss function proposed by
Shit et al. [7], which is tailored to delineating roads
in remote sensing images.

In conclusion, we have demonstrated that auto-
mated detection of new roads, for the purpose of
updating the map of undisturbed nature, is possi-
ble. We have also suggested several improvements
of the method to increase its usefulness.
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Table 1: Prediction results on the test data.

roads roads and tractor roads
true false false true false false

tile date positive negative positive positive negative positive
T32VMN 2018-06-08 42 % 58 % 5 % 34 % 66 % 7 %
T32VMN 2018-07-03 52 % 48 % 6 % 41 % 59 % 7 %
T32VMN 2021-05-30 39 % 61 % 5 % 28 % 72 % 5 %
T32VMN 2021-07-22 45 % 55 % 7 % 36 % 64 % 7 %
T32VMN 2021-08-23 46 % 54 % 6 % 29 % 71 % 5 %
T32VNR 2018-05-09 37 % 63 % 5 % 25 % 75 % 6 %
T32VNR 2018-07-05 48 % 52 % 7 % 37 % 63 % 8 %
T32VNR 2019-04-24 30 % 70 % 4 % 20 % 80 % 5 %
T32VNR 2019-09-26 34 % 66 % 4 % 19 % 81 % 3 %
T32VNR 2020-06-19 52 % 48 % 8 % 41 % 59 % 13 %
T32VNR 2021-08-28 33 % 67 % 6 % 23 % 77 % 5 %

all test data 41 % 59 % 6 % 29 % 71 % 7 %

Table 2: Prediction results on the test data when buffers around roads were used in training.

roads; 10 spectral bands roads; 10 spectral bands + gradient
true false false true false false

tile date positive negative positive positive negative positive
T32VMN 2018-06-08 59 % 41 % 14 % 63 % 37 % 17 %
T32VMN 2018-07-03 64 % 36 % 12 % 69 % 31 % 15 %
T32VMN 2021-05-30 53 % 47 % 15 % 56 % 44 % 18 %
T32VMN 2021-07-22 61 % 39 % 17 % 65 % 35 % 18 %
T32VMN 2021-08-23 59 % 41 % 15 % 60 % 40 % 15 %
T32VNR 2018-05-09 55 % 45 % 19 % 57 % 43 % 24 %
T32VNR 2018-07-05 66 % 34 % 19 % 70 % 30 % 25 %
T32VNR 2019-04-24 48 % 52 % 23 % 53 % 47 % 29 %
T32VNR 2019-09-26 49 % 51 % 14 % 54 % 46 % 21 %
T32VNR 2020-06-19 68 % 32 % 23 % 72 % 28 % 31 %
T32VNR 2021-08-28 53 % 47 % 19 % 57 % 43 % 27 %

all test data 57 % 43 % 18 % 61 % 39 % 23 %
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(a) (b) (c) (d) (e)

Figure 1: Predicted new roads in tile T32VMN, acquired on 22 July 2021. In all the figures: all image
portions cover 1 km × 1 km; all coordinates are in UTM zone 32N; top row: false colour images; bottom
row: predicted new roads. (a) New road at 506,390 east, 6,728,350 north in Viken County. (b) New road
at 496,560 east, 6,734,470 north in Viken County. (c) Creek (dark red) falsely predicted as new road
but with river correctly masked (blue); at 428,320 east, 6,771,580 north in Viken County. (d) Ridges of
bare rock falsely predicted as new roads at 454,650 east, 6,706,620 north in Viken County. (e) Gravel
landslide falsely predicted as new road at 404,320 east, 6,752,590 north in Vestland County.

(a) (b) (c)

Figure 2: Predicted new roads in tile T32VNR, acquired on 28 August 2021. All image portions cover 1
km × 1 km; all coordinates are in UTM zone 32N. Top row: false colour images; bottom row: predicted
new roads. (a) New road at 568,360 east, 6,990,980 north in Trøndelag County. Dark red: predicted
new road in image of 28 August 2021. Pink: additional pixels predicted as new road in image of 19 June
2020. (b) New road at 548,780 east, 6,991,800 north in Trøndelag County. (c) New road at 563,530 east,
7,074,940 north in Trøndelag County.
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Figure 3: Creeks falsely predicted as new roads at
431,220 east, 6,793,390 north in Vestland County,
tile T32VMN acquired on 22 July 2021. Top left:
false colour image. Top right: gradient image
from lidar data. Bottom left: Predicted new roads
from Sentinel-2 data. Bottom right: Predicted new
roads from Sentinel-2 data and gradient image.

Figure 4: Gravel slides falsely predicted as new
roads at 410,710 east, 6,753,320 north in Vestland
County, tile T32VMN acquired on 22 July 2021.
Top left: false colour image. Top right: gradient
image from lidar data. Bottom left: Predicted new
roads from Sentinel-2 data. Bottom right: Pre-
dicted new roads from Sentinel-2 data and gradient
image.

Figure 5: Ridges of bare rock falsely predicted as
new roads at 456,930 east, 6,724,050 north in Viken
County, tile T32VMN acquired on 22 July 2021.
Top left: false colour image. Top right: gradient
image from lidar data. Bottom left: Predicted new
roads from Sentinel-2 data. Bottom right: Pre-
dicted new roads from Sentinel-2 data and gradient
image.

Figure 6: Improved detection of a new road at
489,230 east, 6,712,780 north in Viken County, tile
T32VMN acquired on 22 July 2021. Top left: false
colour image. Top right: gradient image from li-
dar data. Bottom left: Predicted new roads from
Sentinel-2 data. Bottom right: Predicted new
roads from Sentinel-2 data and gradient image.
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