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Kary Främling*1,2[0000−0002−8078−5172], Marcus Westberg1[0000−0001−5261−8898],
Martin Jullum3[0000−0003−3908−5155], Manik Madhikermi1[0000−0002−0811−2256],

and Avleen Malhi2,4[0000−0002−9303−655X]

1 Department of Computing Science, Ume̊a University, Sweden
{kary.framling,marcus.westberg,manik.madhikermi}@umu.se

2 Department of Computer Science, Aalto University
{kary.framling,avleen.malhi@aalto.fi}

3 Norwegian Computing Center, Gaustadalleen 23a, 0373 Oslo, Norway
jullum@nr.no

4 Department of Computing and Informatics, Bournemouth University, UK
amalhi@bournemouth.ac.uk

Abstract. Different explainable AI (XAI) methods are based on dif-
ferent notions of ‘ground truth’. In order to trust explanations of AI
systems, the ground truth has to provide fidelity towards the actual be-
haviour of the AI system. An explanation that has poor fidelity towards
the AI system’s actual behaviour can not be trusted no matter how
convincing the explanations appear to be for the users. The Contextual
Importance and Utility (CIU) method differs from currently popular out-
come explanation methods such as Local Interpretable Model-agnostic
Explanations (LIME) and Shapley values in several ways. Notably, CIU
does not build any intermediate interpretable model like LIME, and it
does not make any assumption regarding linearity or additivity of the
feature importance. CIU also introduces the value utility notion and a
definition of feature importance that is different from LIME and Shap-
ley values. We argue that LIME and Shapley values actually estimate
‘influence’ (rather than ‘importance’), which combines importance and
utility. The paper compares the three methods in terms of validity of
their ground truth assumption and fidelity towards the underlying model
through a series of benchmark tasks. The results confirm that LIME re-
sults tend not to be coherent nor stable. CIU and Shapley values give
rather similar results when limiting explanations to ‘influence’. However,
by separating ‘importance’ and ‘utility’ elements, CIU can provide more
expressive and flexible explanations than LIME and Shapley values.
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1 Introduction

The need for explainability in Artificial Intelligence (AI) has been understood
since the very beginnings of AI, as seen for instance in MYCIN [23]. Even though
the term Explainable AI (XAI) is quite recent, AI explainability was a very active
domain during the 1990’s when a list of five general desiderata for any explana-
tion was identified in [24], which were Fidelity, Understandability, Sufficiency,
Low Construction Overhead, and Efficiency. XAI research in the 1990’s can be
considered to have focused on so-called intrinsic interpretability or interpretable
model extraction [7], i.e. extract rules or other interpretable forms of knowledge
from a complex black box model and then use that representation as an expla-
nation. One exception to that trend was the Contextual Importance and Utility
(CIU) method for outcome explanation, first presented in [12] and explained in
detail in [9]. However, CIU seems to have passed unnoticed by the XAI com-
munity because the first paper on CIU since 1996 wasn’t published until 2019.
Using modern terms of XAI, CIU can be classified as a model-agnostic outcome
explanation method. The first objective of this paper is to provide a compari-
son of CIU with two of the most popular model-agnostic outcome explanation
methods available, i.e. Shapley values [16, 22] and LIME [21]. The category of
use cases and data sets considered in this paper is tabular data only.

CIU’s mathematical foundation and underlying philosophy are different from
those of Shapley values and LIME. Notably, CIU is not an additive feature
attribution method. Furthermore, CIU estimates Contextual Importance (CI)
and Contextual Utility (CU) instead of estimating feature ‘influence’ like most
(or all) comparable methods. However, ‘influence’ can be calculated directly
from CI and CU values, which simplifies the comparison with influence-based
methods, such as LIME and Shapley values. The second objective of the paper is
to study to what extent the explanations produced by the studied XAI methods
provide fidelity towards the true behaviour of the model.

The next section provides a background and definitions used in the paper, as
well as an overview of Shapley values and LIME methods. Section 3 describes
CIU and its use in this paper. Section 4 shows experimental results and com-
parisons between the three methods, followed by Conclusion.

2 Background and Definitions

The outcome explanation concept may be divided into two separate settings
based on the aim of the explanation task. The first setting seeks explanations
of how (each of) the input features influences the outcome solely through the
given prediction model. This setting is most relevant when trying to understand
the behaviour of the prediction model in itself. The second setting also accounts
for the dependence between the input features, and may therefore assign high
importance to an input feature that has a minor direct impact on the output
through the prediction formula, if the feature is highly correlated with one or
more features that do have such a high direct impact. This is most relevant when
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the actual real behaviour of the modelled output is of interest. Leaning on the
fidelity criterion described below, we concentrate on the former setting here.

Going forward, it is important that we look at our definitions of the terms
’fidelity’ and ’ground truth’: When we refer to ’fidelity’, what we mean is how
accurately the explanation remains faithful/truthful to the underlying black-
box model in its representation thereof. This follows similar definitions in [5,
19]. Following on that, the ’ground truth’ of a model is the actual observed
behaviour of that model. Concentrating solely on the model itself, it is generally
admitted in the XAI domain that the actual input versus output behaviour of
the underlying model is the so called ground truth against which the fidelity of
an explanation should be assessed [4, 26]. The LIME (Local Interpretable Model-
Agnostic Explanations) method [21], for instance, calculates to what extent the
generated interpretable linear model gives similar results to the original black
box model. That is called the Explanation Fit and is the R2 error between
the linear model and the actual model. Shapley values do not have a proper
intermediate model where an Explanation Fit makes sense. However, one may
interpret the additive Shapley value explanation as a model which is linear in
the set of indicator variables defined as whether each of the input features are
observed or not.

In human-to-human communication, an explanation lacking fidelity towards
the real underlying model is usually considered to be a lie although it can appear
convincing to the explainee. When developing and comparing XAI methods, the
fidelity of the provided explanation in regard to the underlying model should
be the first and foremost assessment criterion. An explanation lacking in fidelity
might be considered easier to understand and accept than a true explanation, as
depicted in some human surveys for assessing the goodness of different methods.
However, a false explanation or lie that looks or sounds convincing should not
lead to consideration that the underlying XAI method is better.

2.1 Core Definitions

The two fundamental concepts of CIU are ‘importance’ and ‘utility’ as explained
in this section. Their origin is in Multi-Attribute Utility Theory [25], as ex-
plained also in [10]. An ‘influence’ concept can be calculated from ‘importance’
and ‘utility’ but it is not a core CIU concept and is here used mainly to simplify
comparisons with other methods. In our usage of the terms ’influence’, ’impor-
tance’ and ’utility’, the ‘importance’ of ‘something’ (such as an input feature of
an AI model) denotes the significance of that ‘something’ but does NOT express
adjoining positive or negative judgements. Something like ‘good importance’,
‘bad importance’, ‘typical importance’, etc., are not accurately represented by
importance alone. Instead, adjectives such as ‘good’, ‘bad’, ‘typical’, ‘favorable’,
etc., express judgments of the utility of feature values for the situation or context
at hand, as provided by a utility function that expresses the value utility of both
output and input values. LIME and Shapley values do not have a utility concept
and typically use the term ‘importance’ for what we here call ‘influence’. Even
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(a) Weighted sum. (b) Rule-based. (c) Non-linear.

Fig. 1: Examples of linear, rule-based and non-linear models.

though [16] also uses the term ‘importance’, more recent Shapley values litera-
ture tends to also use the term feature influence [1]. [17] uses the term ‘effect’
in the same sense as we use ‘influence’ here.

The influence of a feature will depend on the feature’s importance as well as
on the utility of the current feature value. A feature with high importance and a
good value utility will have great positive influence on the result. A feature with
high importance and a bad value utility will have great negative influence on the
result. A feature with zero importance for the output will have zero influence on
the result, no matter what value utility it has. As such, our definitions for the
core concepts of CIU look like this:

– Importance: The feature importance in a particular context of a factor
impacting a particular decision.

– Utility: How well the values of the features in the same context match
outcome expectations. This follows from the definition of utility function in
decision theory, where it is a numerical representation of preference/desir-
ability orderings [25].

– Influence: A combination value of utility and importance, representing the
positive or negative impact of a factor on a particular decision, typically
relative to some ‘baseline’ [6].

In the function y = b(x) = 0.3x1 + 0.7x2, represented by Figure 1a, the
influence of the x1 term is 0.3x1 and the influence of the x2 term is 0.7x2 if we
use a zero baseline. The function could also be expressed in the more generic
form y = w1 × x1 + w2 × x2. The weights (importances) w1 and w2 are in this
case 0.3 and 0.7. The utility function in this case is unity because the utility or
‘goodness’ of an input value is directly the input value itself. For instance, if x1
and x2 have different value ranges, then it becomes necessary to apply a utility
function to them. If the input value range would be [0, 5] rather than [0, 1], then
a utility function ui(xi) = xi/5 would be appropriate. For generic black box
models, the utility function can be an arbitrarily complex, non-linear function.

Interpretability becomes more challenging when dealing with step-wise func-
tions such as the one illustrated in Figure 1b, which corresponds to the kind
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of functions produced by rules and decision trees. Model-agnostic methods like
the ones studied in this paper can also deal with such models. However, the sig-
nificance of the concepts influence, importance and utility becomes more com-
plicated than for the linear case. When dealing with non-linear models such as
that in Figure 1c (y = sin(

√
x21 + x22)/

√
x21 + x22), the ‘influence’ concept alone

becomes increasingly challenging to use. Thus, we argue for the contextual ’im-
portance’ and ’utility’ concepts used in CIU.

2.2 LIME

Ribeiro et al. [21] in their research work proposed a method called Local Inter-
pretable Model agnostic Explanations (LIME) for explanation of an individual
prediction b(x) made by a black box machine learning model. The approach
used to explain the individual predictions can be detailed as: In sampling step
(1), a set of normally distributed instances Xsx is drawn having same mean and
standard deviation as the original feature space of X, which is done indepen-
dently of the instance x to be explained. For the labels Ysx = b(Xsx), LIME
works with the prediction returned by the model b. In surrogate fitting step (2),
the LIME surrogate is trained to locally approximate the decision boundary of
the black-box model. The standard version (Linear LIME) uses linear regression
with regularization to do this. The local surrogate model centered on x is fit-
ted by having each instance of Xsx associated with a weight calculated using an
RBF kernel by default, i.e. higher importance will be assigned to instances closer
to x during the training [15]. In the last explanation step (3), the explanations
for the prediction b(x) are generated by using the trained surrogate sx’s linear
regression coefficients. Choosing an adequate and representative sampling strat-
egy for generating the instances to fit the surrogate model has a major impact
on the quality of the local approximation of the black-box model and thus on
the accuracy of the generated explanation [14]. In particular, the effect of locally
important features can be hidden by globally important ones.

LIME’s ground truth could be summarized as follows: Find a linear re-
gression function that locally approximates the tangent plane of the underlying
model as well as possible for the current instance.

LIME’s fidelity towards the LIME ground truth is assessed based on how
well the linear regression corresponds to the actual behaviour of the model,
which LIME calls the ‘explanation fit’ and is an R2 value calculated on the
difference between the actual model output and the output given by LIME’s
linear regression function.

The LIME experiments of this paper have been executed using the R-package
lime, version 0.5.1 [20].

2.3 Shapley values

Shapley value is a concept originating from cooperative game theory [22]. The
concept was picked up by the XAI community and became popular for produc-
ing outcome explanations following [16], and the introduction of SHAP (SHapley
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Additive exPlanations). The method distributes the difference between the pre-
diction output and the global mean prediction, additively on the input features
according to a formula which is consistent with a set of four theoretical prop-
erties. A key ingredient in the Shapley values methodology is the contribution
function v(S), measuring expected output b(x) when only a subset S of the input
features were available (xS). Motivated by the fidelity criterion, we have used the
so-called interventional conditional expectation, as in [16]. Other choices may be
more appropriate in other explanations settings, as explained e.g. in [6]. In the
case of interventional conditional expectation, the Shapley value for feature i is a
weighted mean over v(S+ i)−v(S) for all subsets S, and therefore measures the
influence that the act of observing feature i has on the predicted output, with
or without each of the other features observed. This allows the Shapley value
for a feature to be compared with other features within the individual/instance
and also with the same feature for other individuals/instances. A significant
drawback with Shapley values is that it is computationally costly when there
are many input features. Explanation through Shapley values also requires the
availability of the training set, which may not always be easily accessible.

Shapley values’ ground truth could be summarized as follows: Distribute
the difference between the current and expected (e.g. the global mean prediction)
output value to the input features according to a ‘fairness estimation’ about how
much each feature attributed to the output in a positive or negative way.

The fidelity of Shapley values towards the Shapley value ground truth can be
guaranteed by a sufficiently great sampling of all value combinations. The main
challenge is that the number of such combinations grows exponentially with the
number of input features.

The experiments of this paper have been executed using the iml (Inter-
pretable Machine Learning) R-package, version 0.10.1 [18].

3 Contextual Importance and Utility (CIU)

A formal presentation of CIU can be found in [11]. In this paper, we will explain
the principles of CIU using the so-called ‘sombrero’ function in Figure 1c as
an example. The studied instance or Context

#»

C is indicated by the red dot in
Figure 1c and corresponds to the input values (x1, x2) = (−7.5,−1.5). Figure 2
shows how the output value y changes as a function of x1 and x2 when keeping
the other input at the

#»

C value. The range of possible input values is here [−10, 10]
for both x1 and x2. In Figure 2, five values are indicated:

– absmin, absmax: The minimal and maximal values that the output y can
get. In classification tasks these values are typically zero and one for all
outputs.

– Cmin, Cmax: The minimal and maximal values that the output y can take
by changing the value of the studied input.

– out: The value of output y for the studied instance, i.e. with input values
#»

C .

In Figure 2, absmin = −0.217, absmax = 1 and out = 0.128. For the x1 input
Cmin = −0.217 and Cmax = 0.664. The contextual importance CI expresses
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Fig. 2: CIU for sombrero function.

to what extent an input can modify the output value, which leads us to the
following definition

CIj(
#»

C, {i}) =
Cmaxj(

#»

C, {i})− Cminj(
#»

C, {i})
absmaxj − absminj

, (1)

where the different variables have the same meaning as before but with appro-
priate indices as follows:

– {i} defines the indices of inputs #»x for which CIU is calculated.
– j is the index of the studied output.

For input x1 in Figure 2, this gives CIx1
= 0.664−(−0.217)

1−(−0.217) = 0.724 and CIx2
=

0.128−(−0.0912)
1−(−0.217) = 0.18 for input x2. Therefore, x1 is about four times as important

as x2 in the studied context
#»

C .
CU expresses to what extent the current feature value(s) contribute to a

high-utility output value, i.e what is the utility of the input value for achieving
an output value that has a high utility. CU is expressed as

CUj(
#»

C, {i}) =
yj(

#»

C)− Cminj(
#»

C, {i})
Cmaxj(

#»

C, {i})− Cminj(
#»

C, {i})
, (2)

where yj = b(
#»

C) corresponds to the out value in the example. For input x1 in

Figure 2, this gives CUx1
= 0.128−(−0.217)

0.664−(−0.217) = 0.392 and CUx2
= 0.128−(−0.0912)

0.128−(−0.0912) =

1 for input x2. Therefore, x1 has a less than average favorable value, whereas x2
has the most favorable value possible in the context

#»

C .
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CI and CU are limited to the interval [0, 1] by definition. In classification
tasks, the transformation of output values into utility values is trivial because
the output value can be considered to already be a probability/utility value in
the range [0, 1]. For regression tasks, the output values need to be mapped into
utility values through a utility function u(yj), where yj is the value of output
j. For instance, in the well-known Boston Housing data set, the output value
is the median value of owner-occupied homes in $1000’s and is in the range
[5, 50]. A straightforward way of transforming that value into a utility value is
an affine transformation [5, 50] 7→ [0, 1], assuming that the preference is to have
a higher value. However, from a buyer’s point of view, the preference might be
for lower prices and then the transformation would rather be [50, 5] 7→ [0, 1]. It
is important to point out that the definitions of CI and CU in Equations 1 and 2
assume that u(yj) is an affine transformation of the form u(yj) = Ayj + b where
A is positive. In principle, u(yj) could have any shape as long as it produces
values in the range [0, 1] but that case goes beyond the scope of the current
paper.

In the original work by Främling [9], textual explanations were generated by
quantifying CI and CU values according to intervals such as very important =
[0.9, 1] for CI and very good = [0.9, 1] for CU. In this paper, CIU explanations
are provided by bar plot explanations for simplifying comparisons with LIME
and Shapley values. The only subjective parameter in that case is the choice
of what CU value is considered ‘neutral’. We call that parameter neutral.CU
here and it provides a ‘baseline’ for influence-based explanations using CIU. In
Section 4, CU = 0 corresponds to red, CU = 0.5 is ‘neutral’ and corresponds to
yellow, and CU = 1 corresponds to dark green, as illustrated by the colours of
Cmin, Cmax and neutral.CU in Figure 2.

In order to make the difference between the concepts ‘influence’, ‘importance’
and ‘utility’ more explicit, we here provide a definition of contextual influence.
Such a ‘contextual influence’ concept makes it possible to compare directly with
the influence value φ of LIME and Shapley values, which is the reason why we use
the symbol φ in Equation 4. However, using ‘influence’ makes explanations less
expressive and less understandable than when using CI and CU, as illustrated
in Section 4. We begin by defining contextual influence according to:

Cinfluencej(
#»

C, {i}) = CIj(
#»

C, {i})× CUj(
#»

C, {i}) (3)

Since Cinfluence is relative, it can be freely scaled into any desired range
[rmin, rmax]. Such a ‘scaled contextual influence’ can be defined as follows:

φ = (rmax− rmin)× CI × (CU − neutral.CU) (4)

where ‘j(
#»

C, {i})’ has been omitted from all three terms φ, CI, and CU
for easier readability. For comparison with Shapley values and LIME, we use
[rmin, rmax] = [−1, 1] in Section 4. Setting neutral.CU = 0.5 also makes it
possible to restrict φ values to only negative, zero or positive, as for Shapley
values and LIME.



Comparison of CIU with LIME and Shapley Values 9

A formal study of the relationship between CU, CI and φ is out of the scope
for the current paper. Other aspects of CIU that are not in the scope of this paper
is how Cmin and Cmax are estimated. The sampling method used in this paper
is described in [13]. Främling also introduced so-called intermediate concepts
in [8, 9], which use the fact that CI and CU can be estimated for any joint
combination of input features, i.e. the set {i} in Equations 1 and 2 can contain
any number of inputs, from one to all inputs. However, LIME and Shapley
values do not have any intermediate concepts so it is not possible to perform a
comparison with them, which is the main reason for not including intermediate
concepts in this paper.

CIU’s ground truth could be summarized as follows: Estimate how much
the output can change when modifying the values of one or more input features,
on a scale of 0-100% (Contextual Importance). Provide an estimate of how fa-
vorable the current value(s) are towards a high-utility output value, as compared
to all possible values for the studied input features on a scale 0-100% (Contex-
tual Utility). The fidelity of CIU towards its ground truth depends only on how
accurately Cmin and Cmax values can be estimated.

The CIU experiments in this paper have been executed using the ciu R-
package, version 0.1.0 [13] and using the latest version at https://github.com/
KaryFramling/ciu for ‘influence’ plots.

4 Experiments

The data sets to be used for assessing the different methods have been selected so
that discrete and continuous values are used as inputs and that both classification
and regression tasks are taken into consideration. The results of the methods are
evaluated mainly using two assessment criteria (AC ):

AC1 Is the explanation rational and in line with the output value? For a high-
utility output value, the total influence of features is expected to be highly
positive, and vice versa for a low-utility output value.

AC2 Does the explanation correspond to the actual observed behaviour of the
model?

4.1 Classification with continuous inputs

The Iris data set has been chosen for this category mainly because the limits
between the different classes require highly non-linear models for correctly esti-
mating the probability of the three classes for each studied instance. Figure 3
shows CIU, Shapley values and LIME explanations generated for instance num-
ber 100 with a random forest model for the Iris data set. Any instance from the
data set could be used but for Iris flowers the classes ‘versicolor’ and ‘virginica’
are usually the most interesting ones because they are more similar to each other
than to ‘setosa’. Instance number 100 is a ‘versicolor’.

CIU with influence and Shapley values give almost identical results here. The
output value is ‘one’ for the versicolor output and ‘zero’ for the two other classes,
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Output: versicolor (1) Output: setosa (0) Output: virginica (0)

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Sepal.Width (2.8)

Sepal.Length (5.7)
Petal.Width (1.3)

Petal.Length (4.1)

CI
0.00

0.25

0.50

0.75

1.00
CU

(a) CIU. Bar length shows CI, bar color shows CU according to palette on the right.

Output: versicolor (1) Output: setosa (0) Output: virginica (0)

−0.8 −0.4 0 0.4 0.8−0.8 −0.4 0 0.4 0.8−0.8 −0.4 0 0.4 0.8
Petal.Length (4.1)
Petal.Width (1.3)

Sepal.Length (5.7)
Sepal.Width (2.8)

φ

(b) CIU with influence. Positive influence is shown in blue, negative in red.

Output: versicolor (1) Output: setosa (0) Output: virginica (0)

−0.1 0.0 0.1 0.2 0.3 −0.1 0.0 0.1 0.2 0.3 −0.1 0.0 0.1 0.2 0.3

Petal.Length=4.1
Petal.Width=1.3

Sepal.Length=5.7
Sepal.Width=2.8

φ

(c) Shapley values. Positive influence is shown in blue, negative in red.

Output: versicolor (1) Output: setosa (0) Output: virginica (0)

−0.1 0.0 0.1 0.2 −0.1 0.0 0.1 0.2 −0.1 0.0 0.1 0.2

1.60 < Petal.Length <= 4.35
0.3 < Petal.Width <= 1.3

5.1 < Sepal.Length <= 5.8
Sepal.Width <= 2.8

φ

(d) LIME. Positive influence is shown in blue, negative in red.

Fig. 3: Explanations with four methods for instance #100 of Iris data set. Bar
length shows CI/φ value. CU value determines bar color in CIU plot. In influence
plots, negative influence is shown in red and positive influence is shown in blue.
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Fig. 4: Output values as a function of ‘Petal Length’ for the three Iris classes.

which is well represented also in the explanations so AC1 is fulfilled for CIU and
Shapley values. LIME results differ significantly from CIU and Shapley values
for the setosa class, where Petal Width has a significant positive influence that
is not in line with the output value ‘zero’. LIME results also tend to change from
one run to the other. Therefore, LIME fails against AC1 for setosa explanation.
It is also interesting to note that the ‘Explanation fit’ indicated by LIME is very
low, i.e. < 0.1 for all three classes. Regarding AC2, Figure 4 shows the ‘CIU
ground truth’ for the Petal Length feature. CIU values can be deduced directly
from the figure and therefore fulfill AC2. Both Shapley values and LIME can
also be considered to fulfill AC2 for Petal Length.

4.2 Regression with continuous inputs

The Boston Housing data has one continuous-valued output and only continuous-
valued inputs. It is a regression task for which a Gradient Boosting Machine
model is used here. Figure 5 shows CIU, Shapley values and LIME results for
instance #370 of the data set. CIU and Shapley values again obtain quite similar
results. Instance #370 has almost the highest possible value (49), which signifies
that most input features should have a positive influence (but it could be any
other instance too). The influence is here positive for most features with all
methods, even though a little bit less so for LIME than for the others. Therefore,
all methods satisfy AC1.

Regarding AC2, Figure 6 shows the ‘CIU ground truth’ for three input fea-
tures. Again, CIU values can be deduced directly from these figures and therefore
fulfill AC2, which is true also for Shapley values. For LIME, however, the dummy
variable ‘Charles River’ (chas) is indicated as the most important one, which is
a clear error. For the lstat feature, LIME only puts it third. For the rm feature,
LIME gives a high positive influence (after chas), even though it is clear that 6.7
is only an average value for instance #370. Finally, LIME shows strong negative
influence for the criminality rate (crim), even though the value 5.7 is actually
good. Hence, LIME fails to satisfy AC2.
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(b) CIU with influence.
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Actual prediction: 49.71
Average prediction: 22.53

(c) Shapley values.

3.677 < crim
19.1 < ptratio <= 20.2

330 < tax <= 666
0.624 < nox

black <= 375
94.1 < age
zn <= 12.5

9.69 < indus <= 18.10
5 < rad

dis <= 2.10
6.62 < rm
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0.75 < chas

0 5 10 15
φ

Explanation fit: 0.63

(d) LIME.

Fig. 5: Explanations for instance #370 of Boston Housing data set. Bar length
shows CI/φ value. CU value determines bar color in CIU plot. In influence plots,
negative influence is shown in red and positive influence is shown in blue.
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Fig. 6: Boston Housing output value as a function of input value for features
‘lstat’, ‘rm’ and ‘crim’.



Comparison of CIU with LIME and Shapley Values 13

4.3 Classification with mixed discrete and continuous inputs

Output: yes (0.606)
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(a) CIU.

Output: yes (0.606)

−0.2 0 0.2 0.4
gender (male)
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sibsp (0)
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(b) CIU with influence.

class: yes

0.0 0.2 0.4
gender=male
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fare=72
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embarked=Cherbourg
class=1st

age=8

φ

(c) Shapley values

class: yes

−0.4 −0.2 0.0 0.2
gender = male

sibsp <= 2
parch <= 2.25

class = 1st
20.11 < fare

embarked = Cherbourg
age <= 22

φ

(d) LIME.

Fig. 7: Bar chart explanations for example person on Titanic. Only explanations
for ‘survives’ have been included. Bar length shows CI/φ value. CU value deter-
mines bar color in CIU plot. In influence plots, negative influence is shown in
red and positive influence is shown in blue.

The Titanic data set is a frequently used benchmark for machine learning
methods. It has two output classes, i.e. survives or not. There are both discrete
and continuous-valued input features, which makes it interesting also for this
paper. A random forest model was used. The studied instance is an 8-year old
boy. The corresponding feature values are shown by the red dots in Figure 8.
With output probabilities of 0.61 for survives and 0.39 for doesn’t survive, it
could be expected that there’s dominantly positive influence for survives and
dominantly negative influence for doesn’t survive. This is indeed the case for
CIU, whereas Shapley values has almost only positive influence for survives and
therefore almost only negative influence for doesn’t survive. It can therefore be
questioned whether Shapley values satisfies AC1 here. When studying the effect
of input feature values on the probability for survives, it seems like the influence
of age is by far over-estimated by Shapley values in this case, which signifies
that the Shapley values explanation does not correspond to the true behaviour
of the model. Therefore Shapley values does not satisfy AC2 in this case.

The LIME explanation again differs from the two others, where ‘male’ is in-
dicated as the input feature that clearly has the greatest influence. LIME results
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change slightly at every run and sometimes ‘parch’ gets a negative influence,
which is in line with the results of the other methods.
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Fig. 8: Probability of survival for selected person in Titanic as a function of
selected inputs.

5 Conclusion

As seen from the results in this paper, CIU provides a new alternative to LIME
and Shapley values. The results confirm results of earlier research that LIME
explanations tend to be less rational and provide a poor fidelity with the un-
derlying model [2, 3]. CIU and Shapley values provide quite similar results for
two of the studied use cases, which can be considered to be a comforting result
for both methods. However, the ‘ground truth’ of Shapley values and CIU differ
significantly and further empirical and theoretical studies regarding these differ-
ences and their effects would be important for the XAI community as a whole.
The core conclusions of the paper are the following:

1. By considering ‘importance’ and ‘utility’ as different parts of an explanation,
CIU can provide more versatile explanations than LIME and Shapley values.

2. Both ‘importance’ and ‘utility’ are absolute values in the range [0, 1], whereas
‘influence’ is a relative value that only expresses how influent different input
features are compared to each other.
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3. CIU is not a black box itself because CI and CU values can be ‘read out’ by
humans from input-output graphs at least for one input feature.

4. CIU does not need access to the training data. CIU can be applied to any
model f , no matter if f has been produced by machine learning or not.

CIU is intuitively a more light-weight method than Shapley values because
it only modifies the values of one input feature at a time, therefore requiring a
smaller number of samples. However, the number of samples remains a compro-
mise with the estimation accuracy, which makes it difficult to properly compare
calculation overhead between the methods. Furthermore, calculation speed also
depends on how the method has been implemented, not only on the method
itself. Therefore, such a study is left as a topic of future work.
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