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Abstract

Personalization is becoming an important aspect of many predictive applications.

We introduce a penalized regression method which inherently implements personal-

ization. Personalized angle (PAN) regression constructs regression coefficients that

are specific to the covariate vector for which one is producing a prediction, thus per-

sonalizing the regression model itself. This is achieved by penalizing the normalized

prediction for a given covariate vector. The method therefore penalizes the normalized

regression coefficients, or the angles of the regression coefficients in a hyperspherical

parametrization, introducing a new angle-based class of penalties. PAN hence com-

bines two novel concepts: penalizing the normalized coefficients and personalization.

For an orthogonal design matrix, we show that the PAN estimator is the solution to

a low-dimensional eigenvector equation. Based on the hyperspherical parametrization,

we construct an efficient algorithm to calculate the PAN estimator. We propose a para-

metric bootstrap procedure for selecting the tuning parameter, and simulations show

that PAN regression can outperform ordinary least squares, ridge regression and other

penalized regression methods in terms of prediction error. Finally, we demonstrate the

method in a medical application.

Keywords: Angular estimation; Cosine similarity; Hyperspherical coordinates; Penalized

regression; Personalization; Personalized predictions; Shrinkage.
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1 Introduction

The ambition to perform personalization when predicting is becoming an important aspect

of many applications: medicine (Cheng et al., 2012; Carrión et al., 2016), fraud detection

(Alowais and Soon, 2012), marketing (Tang et al., 2013), item recommendation (Rafailidis

et al., 2014), nutrition (Zeevi et al., 2015) and education (Reber et al., 2018). Personal-

ized medicine or precision medicine, for instance, utilizes the genomic information, proteins,

or the environment of a patient to predict individualized treatment decisions (Zhang and

Nebert, 2017; Kosorok and Laber, 2019). Other examples include personalized marketing

(e.g. delivering individualized product prices or messages to specific costumers) and person-

alized education (e.g. tailoring learning materials and questions to each individual student

to increase interest). We believe that these applications also call for statistical prediction

methods targeting the individual on a methodological level, meaning that the estimated model

itself may vary with each prediction one wishes to make. The aim is to minimize the predic-

tion error for each individual covariate vector, instead of minimizing the average prediction

error. We propose a form of penalized regression which inherently features this personalized

approach to prediction.

Penalized regression is a class of methods useful for prediction, particularly for high-

dimensional or multicollinear data. The standard methods, e.g. ridge regression, lasso and

elastic net (Hoerl and Kennard, 1970; Tibshirani, 1996; Zou and Hastie, 2005) penalize some

norm, or norm combination, of the regression coefficients. The norms measure some length

of the regression coefficient vector, where the simplest example is the L2 norm which equals

the Euclidean length. A p-dimensional vector can, however, always be parametrized (using

hyperspherical coordinates) in terms of the Euclidean length and a normalized direction

vector, corresponding to p−1 angles. In this paper, we introduce a new type of penalty based

on penalizing the normalized coefficient vector, or the angles of the regression coefficients,

instead of the length. Note that this is not related to least angle regression, despite the name

similarity. The hyperspherical coordinates generalize polar coordinates to p dimensions and

are commonly used in physics, e.g. to solve three- and four-particle problems and Laplace’s

equation (Öhrn and Linderberg, 1983; Cohl, 2011). There has been an increased interest in

the statistical distribution of angles in high dimension (Cho, 2009; Cai et al., 2013) and the

use of the hyperspherical parametrization in statistics and machine learning (Pourahmadi

and Wang, 2015; Liu et al., 2017). Related fields include directional statistics (regression

models for circular and spherical outcomes, see e.g. Mardia, 1972) and compositional data
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(Scealy and Welsh, 2011).

In model selection, Claeskens and Hjort (2003) introduced the concept of addressing

the aim of the statistical analysis with the focused information criterion. Focused model

selection defines an a priori quantity-of-interest that guides the selection of a statistical

model, instead of considering overall goodness-of-fit measures (Claeskens and Hjort, 2008).

For different aims, different models will be optimal. Frameworks such as targeted learning

also introduce a notion of a pre-defined target parameter representing the scientific question

(Van der Laan and Rose, 2011). Within the focused approach, Hellton and Hjort (2018) used

a specific prediction as the aim, framing the resulting model as personalized. They proposed

to vary the tuning parameter in ridge regression with the covariate vector, x0, for which one

wishes to make a prediction. This personalized tuning parameter could be estimated via a

two-stage plug-in procedure, or by adaptive validation (Huang et al., 2019).

Currently, the term personalization is often understood in applied fields as standard

regression models, where covariates account for the differences between individuals. But

personalization of the regression model can be implemented in different ways. Hastie and

Tibshirani (1993) proposed to estimate sample-specific linear regression coefficients that

can change smoothly with the value of other variables, which they referred to as “effect

modifiers”, and Visweswaran et al. (2010) proposed a Bayesian algorithm for instance-specific

Markov blanket models. More recently, Lengerich et al. (2019) proposed to estimate sample-

specific models by regularizing a low-rank latent representation of the model parameters.

Further, Jabbari et al. (2018) proposed to estimate instance-specific Bayesian Networks.

In this paper, we combine the two concepts – penalizing the normalized coefficients and

personalization – to achieve a guided penalization of the regression coefficients. We incor-

porate the personalization in the penalty structure itself implementing it inherently in the

method. Hence the method requires no additional covariates, describing the heterogeneity,

to produce personalized regression coefficients and predictions. With this we introduce a

new class of regression penalties based on the angle parameters, which can be exploited in

other methodological contexts.

The remainder of the paper is organized as follows: In Section 2 we present the per-

sonalized angle penalty and show how it penalizes the angle parameter in a hyperspherical

parametrization of linear regression. In Section 3, an algorithm for calculating the resulting

estimator is given. Section 4 presents a simulation study comparing the proposed method to

OLS, ridge and lasso regression, and in Section 5, we illustrate it in a medical application.

Concluding remarks are discussed in Section 6, and all proofs are given in the Appendix.
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2 Personalized angle regression

2.1 Definition

Suppose we have observed data {yi, xi}, i = 1, . . . , n, consisting of p-dimensional covariate

vectors, xi ∈ Rp, and univariate continuous outcomes, yi ∈ R, and consider the linear

regression model

yi = xTi β + εi i = 1, . . . , n,

where β ∈ Rp is a p-dimensional vector of regression coefficients and εi ∈ Rn is an identically

and independently distributed noise term with zero mean, E(εi) = 0, and variance, Var(εi) =

σ2. The prediction of a new outcome y0 given the covariate vector x0 is then given by

µ0 = E(y0 | x0) = xT0 β.

We further denote the vector of outcomes by Y = [y1, . . . , yn]T and the n× p design matrix

by X with xTi as each row. The outcome vector and the design matrix are assumed to be

centered.

In a personalized prediction context, the primary aim is to achieve optimal predictive

ability. We propose to penalize the prediction given a specific covariate vector, x0. This

personalizes the regression model and improves the prediction error (ignoring the estimation

error) by leveraging the heterogeneity in the covariates. The covariate vector x0 represents

an instance for which we wish to produce a prediction, e.g. a patient in the personalized

medicine context. Importantly, personalizing the regression model requires the regression

coefficients to be recalculated for each new prediction. The penalty we introduce is based

on the normalized inner product between x0 and β, or the normalized prediction and has an

angle-based interpretation in hyperspherical coordinates. The resulting regression estimates

will also be optimal for the specific x0. We therefore term the method Personalized Angle

(PAN) regression.

Definition 1 (Cartesian coordinates). The Personalized Angle (PAN) estimator for a spe-

cific covariate vector x0 6= 0, β̂x0(λ) = [β̂x0,1(λ), · · · β̂x0,p(λ)]T is defined as

β̂x0(λ) = arg min
β

{
n∑
i=1

(
yi − xTi β

)2
+

λ

xT0 x0

βTx0x
T
0 β

βTβ

}
, (1)

where λ ∈ R is a tuning parameter.
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Let the normalized unit-vectors of β and x0 be denoted by γβ = β/‖β‖ and γx0 = x0/‖x0‖,
respectively. We refer to γβ as the normalized regression coefficients and γx0 as the normalized

covariate vector. The PAN penalty, JPAN(β), is then equal to the squared L2 norm of the

normalized prediction, γTx0γβ, for a given x0

JPAN(β) =
1

xT0 x0

βTx0x
T
0 β

βTβ
=

(xT0 β)2

‖x0‖2‖β‖2
= ‖γTx0γβ‖

2,

where ‖ · ‖ denotes the L2 norm. The normalized prediction is also related to the cosine

similarity, a concept in the machine learning literature (Salton and McGill, 1983; Romesburg,

1984). The normalized prediction equals the cosine similarity between β and x0

CosSim(β, x0) =
xT0 β

‖x0‖‖β‖
.

Thus the PAN penalty is also given by the squared cosine similarity: JPAN(β) = CosSim2(β, x0).

Since the penalty JPAN(β) shrinks the prediction of the outcome given x0 towards zero, it

will introduce a bias while also lowering the variance. There will then be an optimal trade-off

which will improve the mean squared prediction error for x0 only. In the parameter space,

the prediction of zero given x0 corresponds to a hyperplane with x0 as its normal vector,

denoted by H0:

H0 = {β ∈ Rp : xT0 β = 0},

with dimension, dim(H0) = p− 1. The penalty in Equation (1) therefore shrinks the regres-

sion estimator towards the hyperplane H0. As the tuning parameter λ increases, the part of

the estimator orthogonal to H0 decreases. As λ→∞, the prediction becomes zero and the

estimator converges to the projection of the OLS estimator β̃ onto the hyperplane H0.

Remark 1 (Negative tuning parameter). An important but counter-intuitive aspect of the

PAN penalty is that the tuning parameter may be negative. This stands in stark contrast to

other penalized regression methods where the tuning parameter is required to be positive.

PAN regression allows for a negative tuning parameter because the penalty in Equation (1)

is bounded between 0 and 1. The boundedness ensures that the objective function does not

explode if the tuning parameter is negative. A negative tuning parameter corresponds to

shifting the prediction away from zero, and essentially “expanding” rather than shrinking the

prediction. Changing to a hyperspherical coordinate system gives further intuition regarding

this novel feature and will be explored in Section 2.2.

Remark 2 (High-dimensionality). The shrinkage induced by penalizing the normalized pre-

diction, γTx0γβ, will be particularly effective in higher dimensions. Cai et al. (2013) established
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Figure 1: An example of heterogeneous covariates and regression coefficients (β = [1, 1]T )

where a differentiated shrinkage improves the overall prediction error. Observations corre-

sponding to outcomes around zero will benefit in terms of a lower mean squared error from

a stronger penalization, while observations corresponding to outcomes far from zero will

benefit from a weaker penalization. The left panel shows the two covariates, while the right

panel plots the outcome against the linear combination xTi β.

the folklore that “all high-dimensional random vectors are almost always nearly orthogonal

to each other”. They proved that the angle between two random vectors will converge to 90◦

as the dimension increases, p→∞, demonstrating that the random vectors will be asymp-

totically orthogonal. For increasing dimensions, the normalized prediction will therefore be

more closely distributed around 0 and hence have a greater benefit from a shrinkage towards

zero.

Example 1. Figure 1 shows a situation where the personalization of PAN regression is bene-

ficial for improving the prediction error. The left panel shows the two dimensional covariates

(p = 2) with four distinct clusters centered at (1,1), (1,-1), (-1,1) and (-1,-1). The right

panel shows the outcome Y plotted against the linear combination xTi β for the regression

coefficients β = [1, 1]T .

When shrinking towards zero, the predictions close to zero achieve the lowest mean

squared error for a larger shrinkage, while predictions far from zero achieve the lowest mean
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squared error for a smaller (or zero) shrinkage (Gruber, 1998). In the situation shown in

Figure 1, the lower right and upper left clusters will have outcomes close to zero (as the re-

gression coefficients and covariate vectors are orthogonal). These two clusters will therefore

benefit, in terms of a lower prediction error, from more penalization and a stronger shrink-

age towards zero. The upper right and the lower left clusters, on the other hand, will have

outcomes further away from zero, and will benefit from a weaker penalization. A personalized

prediction method will tailor the penalization according to this covariate vector information.

It will be able to exploit the heterogeneity and shrink some clusters more and others less.

2.2 Angular interpretation

Geometrically, any p-dimensional vector x = [x1, . . . , xp]
T can be described by a length r and

p− 1 angles, α1, . . . , αp−1, defined relative to the unit vectors. The standard hyperspherical

parametrization, generalizing polar coordinates to Rp, is given by

x1 = r cosα1,

x2 = r sinα1 cosα2,

...

xp−1 = r sinα1 sinα2 · · · sinαp−2 cosαp−1,

xp = r sinα1 sinα2 · · · sinαp−2 sinαp−1,

where r ≥ 0 and the angles fulfill 0 ≤ αj ≤ π for j = 1, 2, . . . , p − 2 and −π < αp−1 ≤ π.

Using hyperspherical coordinates, we can reparametrize the regression coefficient vector as

β = rβ γβ, (2)

by its length rβ = ‖β‖ and a direction vector, the normalized coefficient vector

γβ = β/‖β‖ = [cos(αβ,1), . . . , sin(αβ,1) · · · sin(αβ,p−2) sin(αβ,p−1)]
T .

For simplicity, we first consider only two dimensions, p = 2. We can then transform the

standard linear regression model (using the definition of the dot product) into a nonlinear

regression problem with the parameters rβ and αβ

yi = xTi β + εi = rβrxi cos(αxi − αβ) + εi, i = 1, . . . , n. (3)

Here rxi and αxi are the length and the angle of the ith covariate vector, respectively. As

there is only one angle parameter in two dimensions, we omit the index j = 1. The regression
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parameters could then be found by estimating rβ as an amplitude and αβ as a phase shift

in Equation (3). This reparametrization supplies an alternative estimation approach for the

linear regression problem. A related setting was, for instance, explored by Welsh (1985).

If p > 2, the estimator of the transformed model can be found by minimizing the following

residual sum-of-squares

(r̃β, α̃β,1, . . . , α̃β,p−1) = arg min
rβ ,αβ

{
n∑
i=1

[
yi − rβrxi

(
cos(αβ,p−1 − αxi,p−1)

p−2∏
j=1

sinαβ,j sinαxi,j

+

p−2∑
j=2

cosαβ,j cosαxi,j

p−2∏
k=1

sinαβ,k sinαxi,k
)]2}

, (4)

which naturally yields the ordinary least squares (OLS) estimator β̃ = (XTX)−1XTY trans-

formed to hyperspherical coordinates

r̃β =
√
β̃2
p + β̃2

p−1 + · · ·+ β̃2
2 + β̃2

1 ,

α̃β,j = arccos
β̃j√

β̃2
p + β̃2

p−1 + · · ·+ β̃2
j

, j = 1, . . . , p− 2,

α̃β,p−1 =


arccos β̃p−1√

β̃2
p+β̃

2
p−1

β̃p ≥ 0,

2π − arccos β̃p−1√
β̃2
p+β̃

2
p−1

β̃p < 0.

2.2.1 Penalizing the length

Ridge regression (Hoerl and Kennard, 1970) adds a squared L2 penalty to the residual

sum-of-squares in Equation (4), which corresponds to the squared length of the regression

coefficient vector in hyperspherical coordinates

Jridge(β) =

p∑
j=1

β2
j = ‖β‖22 = r2β.

Ridge regression thus tries to shrink the length of the OLS regression coefficients towards the

origin. The ridge estimator has the explicit solution β̃(λ) = (XTX + λIp)
−1XTY , where Ip

is the p-dimensional identity matrix and the tuning parameter λ controls the penalization.

Zero penalization corresponds to the OLS estimator, β̃(0) = β̃.
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Figure 2: The penalty function of PAN in Equation (5) as a function of the angle parameter,

αβ ∈ (−π, π]. The angle of the covariate vector x0 equals αx0 = π/4. The penalty associated

with a positive tuning parameter is shown by the solid line, while the flipped penalty function

induced by a negative tuning parameter is shown by the dashed line.

2.2.2 Penalizing the angle

In two dimensions, p = 2, the PAN penalty reduces to a squared cosine penalty for the angle

parameter αβ

JPAN(β) =
1

xT0 x0

βTx0x
T
0 β

βTβ
= cos2 (αβ − αx0) = 1− cos2

(
αβ −

(
αx0 ±

π

2

))
, (5)

where we omit the index j = 1 for simplicity. The penalty hence corresponds to a ridge-type

penalty for the angle parameter, and it therefore enforced the shrinkage by rotating the OLS

estimator. The angle αx0 is determined by x0, the covariate vector for which we wish to make

a prediction. Figure 2 shows the penalty as a function of the angle parameter αβ on the

interval (−π, π]. The penalty given a positive tuning parameter is shown by the solid line,

while the penalty for a negative tuning parameter is shown by the dashed line. This form of

the penalty demonstrates how the tuning parameter may be negative, as the cosine function

is bounded between 0 and 1 regardless of the sign of the penalty parameter. Changing the

sign of the tuning parameter from positive to negative simply flips the cosine function. This

moves the minimum of the penalty function to a different parameter value, π
2

away from the
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Figure 3: Illustration of the shrinkage induced by the PAN penalty for p = 2. The penalty

rotates the OLS estimator β̃ towards H0 (dashed line) when the tuning parameter λ is

positive, and away from H0 when it is negative.

old minimum.

Figure 3 illustrates the OLS estimator, β̃, parametrized by its length r̃β and the angle

α̃β in the parameter space. The covariate vector, x0, given by the angle αx0 , is visualized by

laying the covariate space on top of the parameter space. The zero prediction for x0 is then

used as an angular origin to shrink towards. The prediction equals zero when the regression

coefficients, β, fulfills the equation xT0 β = 0, i.e. the vectors β and x0 are orthogonal. In

two dimensions, this corresponds to the angle of β being equal to αβ = αx0 ± π
2
, visualized

by the dashed line in Figure 3. Hence, when λ increases, the estimated angle rotates away

from α̃β and towards H0, the line orthogonal to x0, as illustrated in Figure 3. The estimated

angle, α̂β, is rotated towards the closest of the two angles αx0 ± π
2
, shrinking the prediction

towards zero. For a negative tuning parameter value, on the other hand, the estimated angle

is rotated away from H0 and towards x0, as illustrated in Figure 3.

With the PAN penalty in Equation (5), the penalized residual sum-of-squares regularizing
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the angle parameter is for p = 2 given by

(r̂β,x0(λ), α̂β,x0(λ)) = arg min
rβ ,αβ

{
n∑
i=1

[
yi − rβrxi cos(αβ − αxi)

]2
+ λ cos2 (αβ − αx0)

}
,

where αβ ∈ (−π, π], rβ ≥ 0 and λ ∈ R. For an orthonormal design matrix, XTX = I2, the

normal equations give explicit solutions for the parameter estimators

tan 2α̂β,x0(λ) =
r̃2β sin 2α̃β + λ sin 2

(
αx0 ± π

2

)
r̃2β cos 2α̃β + λ cos 2

(
αx0 ± π

2

) , r̂β,x0(λ) = r̃β cos(α̃β − α̂β,x0(λ)). (6)

The derivation of the result is found in the Appendix. Equation (6) demonstrates that for

λ = 0 the estimated angle and length are equal to the angle and length of the OLS estimator.

As λ→∞, the estimated angle converges to either α̂β,x0(λ)→ αx0 + π
2
, if α̃β ∈ [αx0 , αx0 +π],

or to α̂β,x0(λ) → αx0 − π
2
, if α̃β ∈ [αx0 − π, αx0 ], becoming exactly orthogonal to x0. The

estimated angle and length will hence shrink the prediction given x0 towards zero.

In the orthonormal design case, the prediction ŷ0 given x0 is determined in hyperspherical

coordinates by the estimated length and the double tangent expression in Equation (6) as

ŷ0 = xT0 β̂x0(λ) = r0r̃β cos(αx0 − α̃β)︸ ︷︷ ︸
OLS prediction

(
1

2
+

1

2

r̃2β − λ√
(r̃2β + λ)2 − 4λr̃2β cos2(αx0 − α̃β)

)
︸ ︷︷ ︸

Shrinkage factor

,

where r0r̃β cos(αx0 − α̃β) = xT0 β̃ is the OLS prediction. The PAN prediction hence equals

the OLS prediction multiplied by a shrinkage factor. When λ increases, the shrinkage factor

decreases and as λ → ∞, the factor converges to zero. Importantly, the shrinkage factor

depends on the angle of the specific covariate vector x0, such that the shrinkage will vary

for different x0 when λ is fixed. The shrinkage term thus explicitly expresses the feature of

personalization inherent in the PAN penalty.

Definition 2 (Hyperspherical coordinates). The Personalized Angle (PAN) estimator in hy-

perspherical coordinates r̂β,x0 , α̂β,x0,1, . . . , α̂β,x0,p−1 for a specific covariate vector x0 parametrized
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by r0 and αx0,1, . . . , αx0,p−1 is defined as

(r̂β,x0 , α̂β,x0,1, . . . , α̂β,x0,p−1) = arg min
rβ ,αβ,1,...

{
n∑
i=1

(
yi − rβrxi

(
cos(αβ,p−1 − αxi,p−1)

p−2∏
j=1

sinαβ,j sinαxi,j +

p−2∑
j=2

cosαβ,j cosαxi,j

p−2∏
k=1

sinαβ,k sinαxi,k
))2

+λ
(

cos(αβ,p−1 − αx0,p−1)
p−2∏
j=1

sinαβ,j sinαx0,j +

p−2∑
j=2

cosαβ,j cosαx0,j

p−2∏
k=1

sinαβ,k sinαx0,k

)2}
,

where rxi and αxi,j for j = 1, . . . , p− 1 are the length and angles of the covariate vectors xi

for i = 1, . . . , n and λ ∈ R is a tuning parameter.

The hyperspherical parametrization has a computational advantage when optimizing

numerically as it easily avoids dividing by zero. From Definitions 1 and 2, the PAN estimator

can be described by its length and direction vector, using the hyperspherical parametrization

β̂x0(λ) = r̂(λ)γ̂(λ),

which are summarized in the following lemma. We suppress in following the subscripts of x0

and β for notational convenience.

Lemma 1. The direction vector of the PAN estimator, γ̂(λ), fulfills the equation

γ̂(λ)TAγ̂(λ)

(γ̂(λ)TXTXγ̂(λ))2
XTXγ̂(λ)− λ(γ̂(λ)TBγ̂(λ))γ̂(λ) =

1

γ̂(λ)TXTXγ̂(λ)
Aγ̂(λ)− λBγ̂(λ),

where A = XTXβ̃β̃TXTX and B = x0x
T
0 /‖x0‖2, while the length of the PAN estimator,

r̂(λ), is given by the direction vector as

r̂(λ) =
β̃TXTXγ̂(λ)

γ̂(λ)TXTXγ̂(λ)
.

The proof of Lemma 1 is given in the Appendix.

2.3 Orthonormal design case

Insight regarding the behavior of the PAN penalty in both Cartesian and hyperspherical

coordinates is gained by considering the case of the orthonormal design matrix, XTX = Ip.

The PAN estimator and prediction are then given explicitly.
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Lemma 2. Assuming an orthonormal design matrix, XTX = Ip, the length of the PAN

estimator is given by

r̂(λ) = β̃T γ̂(λ) =

(
1

2
+

1

2
c(λ)

) 1
2

‖β̃‖,

while the direction vector of the PAN estimator equals the first normalized eigenvector of the

following p× p matrix of rank 2

M0 := β̃β̃T − λ

‖x0‖2
x0x

T
0 .

The direction vector is given by

γ̂(λ) =

(
1

2
+

1

2
c(λ)

) 1
2 β̃

‖β̃‖
−
(

1

2
− 1

2
c(λ)

) 1
2 ‖β̃‖2x0 − (xT0 β̃)β̃

‖β̃‖
√
‖β̃‖2‖x0‖2 − (xT0 β̃)2

,

and depends on the tuning parameter, λ, through

c(λ) =
‖β̃‖2(‖β̃‖2 + λ)− 2λ(xT0 β̃)2/‖x0‖2

‖β̃‖2
√

(‖β̃‖2 + λ)2 − 4λ(xT0 β̃)2/‖x0‖2
. (7)

The PAN estimator is then given by

β̂x0(λ) = r̂(λ)γ̂(λ) =
1

2
(1 + c(λ)) β̃ − 1

2

(
1− c2(λ)

) 1
2
‖β̃‖2x0 − (xT0 β̃)β̃√
‖β̃‖2‖x0‖2 − (xT0 β̃)2

.

The proof of Lemma 2 is found in the Appendix. For λ = 0, the constant in Equation

(7) is c(0) = 1, such that the PAN estimator equals the OLS estimator. In the limit,

limλ→∞ c(λ) = 1− 2(xT0 β̃)
2

‖β̃‖2‖x0‖2
, such that the length and direction vector converge to

lim
λ→∞

r̂(λ) =

(
1− (xT0 β̃)2

‖β̃‖2‖x0‖2

) 1
2

‖β̃‖,

lim
λ→∞

γ̂(λ) =
‖x0‖√

‖β̃‖2‖x0‖2 − (xT0 β̃)2

(
β̃ − xT0 β̃

xT0 x0
x0

)
.

The direction vector is then equal to the normalized projection of β̃ onto H0. From Lemma

(2), it is seen that the PAN estimator depends on the tuning parameter, λ, through the

direction vector.
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Corollary 1. Assuming an orthonormal design matrix, the PAN prediction of the outcome

ŷ0 given the covariate vector x0 is given by

ŷ0 = xT0 β̂x0(λ) = xT0 β̃ η(λ;x0),

where xT0 β̃ is the OLS prediction and η(λ;x0) is a shrinkage factor varying with x0

η(λ;x0) =
1

2
+

1

2

1− λ′√
(1 + λ′)2 − 4λ′CosSim2(x0, β̃)

, λ′ = λ/‖β̃‖2, (8)

through CosSim(x0, β̃), the cosine similarity between x0 and the OLS estimator β̃.

The proof of Corollary 1 is found in the Appendix. In the limit, λ→∞, the prediction

converges to xT0 β̂(λ)→ xT0 β̃ [1/2− 1/2] = 0, while for λ→ −∞, the prediction converges to

xT0 β̂(λ)→ xT0 β̃ [1/2 + 1/2] = xT0 β̃, the OLS prediction. In the latter case where λ decreases

from 0, the prediction will first increase or expand. At a certain value of λ, however, the

length of the regression vector will cancel out the effect of the rotation in the direction vector,

such that the prediction will start to decrease and in the end converge to the OLS prediction.

Figure 4 shows how the shrinkage factor η(λ;x0) of the PAN prediction in Equation (8)

varies with the cosine similarity between x0 and β̃ when the lengths of x0 and β̃ are fixed

to unit length, ‖x0‖ = ‖β̃‖ = 1. The shrinkage factors are shown for different values of the

PAN tuning parameter. The factor for a positive tuning parameter is the smallest, giving the

strongest shrinkage, for the cosine similarity values closest to zero and increases to 1 when

the cosine similarity approaches 1 and -1. The shrinkage becomes stronger with an increasing

tuning parameter, but it inverts if the parameter becomes negative. Then the “expansion”

factor is strongest for the smallest cosine similarities in absolute value. The ridge shrinkage,

in comparison, does not vary with x0 and is constant across the cosine similarity.

2.4 Prediction error

The main aim of personalizing a prediction is to lower the prediction error for each given

covariate vector, x0, instead of minimizing the average prediction error (Hellton and Hjort,

2018; Huang et al., 2019). The predictive performance of the regression methods can be

evaluated by the mean squared error (MSE) of the prediction for covariate vector x0 under

the linear model

MSE(x0, β, λ) = E
[
(xT0 β̂(λ)− xT0 β)2 | X

]
,
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Figure 4: The shrinkage factor of the PAN prediction, η(λ;x0), as a function of the cosine

similarity between x0 and β̃ for different tuning parameter values. The length of β̃ and x0

are fixed to ‖β̃‖ = ‖x0‖ = 1. When x0 changes, the shrinkage factor would also change.

The shrinkage factor of ridge regression, in comparison, would be constant across the cosine

similarity.

related to the prediction error as E
[
(xT0 β̂(λ)− y0)2 | X

]
= MSE(x0, β, λ) + σ2. For a given

x0, we will compare the predictions in terms of the MSE to omit the intrinsic error σ2. Later,

the average MSE on a test set is used to evaluate the overall prediction performance. We

first present a lemma demonstrating the behavior of the optimal λ in terms of minimum

MSE. We scale the design matrix by n to ensure the asymptotic convergence of the OLS

estimator.

Lemma 3. Under a scaled orthogonal design matrix, XTX = nIp, the derivative of the mean

squared error with respect to λ evaluated at 0 is given by

∂MSE(x0, β, λ)

∂λ

∣∣∣∣
λ=0

= − 1

n2
C1

(
1− 4

(xT0 β)2

‖x0‖2‖β‖2
)

+O

(
1

n3

)
,

with the positive constant C1 = 2σ2 ‖x0‖2
‖β‖2

(
1 − (xT0 β)

2

‖x0‖2‖β‖2
)
> 0 for σ > 0, x0, β 6= 0 and
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|xT0 β| 6= ‖x0‖‖β‖.

The proof of Lemma 3 can be found in the Appendix. As the value λ = 0 corresponds to

OLS regression, Lemma 3 reveals when the PAN penalty improves the mean squared error

of the prediction, compared to OLS.

Theorem 1. Assume a scaled orthogonal design matrix, XTX = nIp, and σ > 0, x0, β 6= 0

and |xT0 β| 6= ‖x0‖‖β‖. Then if |xT0 β| < 1
2
‖x0‖‖β‖, there exists a λ > 0, and if |xT0 β| >

1
2
‖x0‖‖β‖, there exists a λ < 0, for which the mean squared error asymptotically as n→∞

satisfies the inequality

MSE(x0, β, λ) < MSE(x0, β, 0) = MSEOLS(x0, β).

When |xT0 β| = 1
2
‖x0‖‖β‖, the minimum of the mean squared error is asymptotically obtained

for λ = 0.

The proof of Lemma 3 and Theorem 1 can be found in the Appendix. Theorem 1

demonstrates that unless |CosSim(x0, β)| = 0.5, there always exists a λ 6= 0 for which the

MSE of PAN is smaller than the MSE of OLS. The challenge in practice is to estimate this

optimal value from data. Theorem 1 also shows that the sign of the optimal value for λ is

dependent on whether the absolute value of xT0 β is smaller or larger than 1
2
‖x0‖‖β‖. This

again corresponds to the absolute value of the cosine similarity between x0 and β being

smaller or larger than 0.5. For small cosine similarities, the optimal PAN tuning parameter

is hence positive, while for large cosine similarities the optimal value will be negative.

Remark 3. Lemma 3 further reveals that the benefit of estimating a common PAN tuning

parameter for all observations will depend on the dimension. For instance, if the covariates

are assumed to be standard normally distributed in p dimensions, x0 ∼ N(0, Ip), for a

fixed, arbitrary, β, the cosine similarity between x0 and β, z = xT0 β/(‖x0‖‖β‖), follows the

distribution

fp(z) =
1√
π

Γ(p
2
)

Γ(p−1
2

)

(
1− z2

) p−3
2 , for − 1 < z < 1,

where Γ(·) is the gamma function (see Cho, 2009). The proportion of covariate vectors with

a cosine similarity between -1/2 and 1/2, i.e. the covariate vectors that will benefit from

a positive PAN parameter, will greatly increase with the dimension p. For p = 2 and 3,

this proportion is 1/3 and 1/2, respectively. Hence, in dimensions two and three, a third

or a half of the observations will benefit from a positive tuning parameter value, while the

rest will in fact benefit from a negative value. Therefore if we select one common tuning
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parameter, either positive or negative, it will be unsuitable for a substantial proportion of

the possible covariate vectors. But importantly, the proportion benefiting from a positive

tuning parameter will increase rapidly with p, e.g. to 74.7% for p = 6, 95.1% for p = 15

and 99.6% for p = 30. The selection of a common (positive) tuning parameter value will

therefore be more beneficial for the prediction error in higher dimensions.

3 Algorithm

In this section, we propose a näıve algorithm to efficiently calculate an approximation of

the PAN estimator for a general design matrix. The algorithm is given as an alternative to

numerical optimization of the objective function in Definition 1, and it is based on iteratively

solving an eigen-equation and updating the PAN solution, along a path of tuning parameters.

Let the three quadratic forms in Lemma 1 be denoted by c1(γ) = γTXTXγ, c2(γ) = γTAγ

and c3(γ) = γTBγ, where A = XTXβ̃β̃TXTX and B = x0x
T
0 /‖x0‖2. By rearranging the

terms in Lemma 1, the PAN direction vector γ̂ has to fulfill the equation[
c1(γ̂)A− c2(γ̂)XTX − λBc22(γ̂)

]︸ ︷︷ ︸
M(γ̂)

γ̂ = −λc22(γ̂)c23(γ̂) γ̂, (9)

where M(γ) is a matrix. If the constants c1(γ) and c2(γ) are fixed to an initial value of the

direction vector, γ0, we can fix the matrix M(γ) to be M(γ0) = M∗. Then Equation (9)

becomes an eigen-equation, M∗γ∗ = θγ∗, which can be explicitly solved. The PAN direction

vector can then be approximated by the first normalized eigenvector, γ∗1 of the matrix M∗.

For λ = 0, the direction vector γ̂ equals the normalized OLS estimator. If we slowly increase

the tuning parameter from λ = 0, we can initialize the approximations of the constants by

the OLS estimator, and then iteratively update the direction vector and the quadratic forms

along a path of tuning parameters. This way we can construct an algorithm to efficiently

calculate an approximate PAN estimator for a sequence of tuning parameters. The sequence

starts from λ = 0 and stops at a positive or negative value λstop using a step size ∆λ > 0.

As the normalized eigenvector is not uniquely defined up to a constant ±1, the sign is de-

termined by ensuring that the PAN length is positive, before updating the direction vector.

The algorithm for the PAN estimator along the path of tuning parameters is given as follows

17



Algorithm 1: Näıve algorithm for approximate Personalized Angle Regression

Input : Data matrix X, OLS estimate β̃ and covariate vector x0.

Step size ∆λ > 0 and stop value λstop ∈ R.

Output: Approximation of PAN estimate β̂∗x0(λk) for a path of tuning parameters.

Initialize γ0 = β̃, λ0 = 0 and k = 0.

Define the matrices A = XTXβ̃β̃TXTX and B = x0x
T
0 /‖x0‖2, and the constants

c1(γ) = γTXTXγ and c2(γ) = γTAγ.

while |λk| < |λstop| do

Increment: k = k + 1.

Increment: λk = λk−1 + sgn(λstop)∆λ.

Calculate the first normalized eigenvector, v1, of the matrix

M(γk−1) = c1(γk−1)A− c2(γk−1)XTX − λkc21(γk−1)B.

if β̃TXTXv1 ≥ 0, then
update the direction vector: γk = v1,

else
change the sign of the eigenvector and update: γk = −v1.

end

Calculate and update the length: rk = β̃TXTXγk
γTk X

TXγ̂k
.

Output rkγk
end

The stop value of the tuning parameter may be either positive or negative. In the

following simulations and data example, the analyses will first use a positive stop value and

then repeat the full algorithm with a negative stop value to cover the full range of tuning

parameters. An implementation of the algorithm is found in the R package panreg, available

at http://github.com/khellton/panreg.

4 Simulations

In this section, we present a simulation study comparing PAN regression to OLS, ridge, lasso

and elastic net regression. For all settings, we simulated 200 data sets consisting of n = 50
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observations from a linear model with p = 6, 15 and 30:

yi = xTi β + εi, i = 1, . . . , 50,

where the noise is normally distributed εi ∼ N(0, σ2) with σ = 1. An independent test

set with ntest = 1000 observations was predicted for each simulation. To select the tuning

parameter of the PAN penalty, we used the parametric bootstrap procedure described in

Section 4.1. For all instances, the number of bootstrap samples was set to B = 2000. For

lasso, elastic net and ridge regression, the tuning parameters were chosen by cross-validation.

There were two simulation setups, where the first used an orthonormal design matrix and

the second setup used a correlated design matrix with three levels of correlation. In the

first setup with an orthonormal design, the explicit solution of the PAN estimator given in

Lemma 2 was used, while in the second simulation setup, Algorithm 1 was used to calculate

the PAN estimator.

4.1 Selecting the tuning parameter

We propose to select the tuning parameter in PAN regression by the following procedure

based on parametric bootstrap (Efron and Tibshirani, 1994):

1. Use the OLS estimates β̃ and σ̃2 as plug-in estimates to simulate r = 1, . . . , B bootstrap

samples of n observations Y (r) = [y
(r)
1 , . . . , y

(r)
n ]T from

y
(r)
i = xTi β̃ + εi, εi ∼ N(0, σ̃2), i = 1, . . . , n,

to produce the rth bootstrap sample OLS estimate β̃(r) for r = 1, . . . , B.

2. Over a suitable grid of λ, hold the tuning parameter value fixed:

• find the prediction xTi β̂
(r)
xi (λ) for each bootstrap sample r and vector xi,

• calculate the mean squared prediction error given by the squared bias, corrected

for the variance of the bias, and the variance, over all i and r:

MSE =
(

Bias(xTi β̂
(r)
xi

(λ), xTi β̃)2 − Var Bias
)
+

+ Var(xTi β̂
(r)
xi

(λ)),

where Var Bias = Var
(
xTi β̂

(r)
xi (λ)− xTi β̃(r)

)
and (·)+ = max{·, 0}.

3. Select the tuning parameter value, λ̂, with the smallest mean squared error over the

grid of λ.
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The same procedure was used by Hellton and Hjort (2018) to estimate the personalized

tuning parameter in ridge regression. We subtract the variance of the bias to correct for the

overestimation when squaring the bias directly (see Claeskens and Hjort, 2008, p. 150, for

further details).

4.2 Orthogonal design

In the first setup, the data matrix was simulated from a standard normal distribution and

transformed to be orthonormal, such that XTX = Ip. Table 1 shows the mean squared

error over the test set sample, 1
1000

∑1000
i=1 (xTi β̂−xTi β)2 averaged over 200 simulations, for the

OLS, lasso, elastic net, ridge and PAN regression estimator. The standard deviation of the

mean squared error over the 200 simulations is shown in parentheses. The simulations were

performed for four scenarios of increasing signal strengths with equal regression coefficients:

1) βj = 0.05,∀j, 2) βj = 0.1,∀j, 3) βj = 0.15,∀j and 4) βj = 0.2,∀j. The four values of βj

were chosen such that ridge regression would yield an improvement compared to OLS. The

PAN tuning parameter was found using the parametric bootstrap procedure from Section

4.1 with B = 2000.

The results of Table 1 show that for p = 6, PAN regression has a lower prediction

error than ridge regression for βj = 0.05 and 0.10, the smallest signal strengths, while ridge

regression is better for βj = 0.15 and 0.20. As the dimension increases to p = 15 and 30,

PAN regression performs increasingly better compared to ridge regression. For p = 30, PAN

gives a lower or equal prediction error than ridge regression for all signal strengths. This

suggests that the PAN tuning parameter may be difficult to set correctly if the dimension

is small. We see that when the covariates are uncorrelated PAN and ridge give a similar

performance. For all settings, both lasso and elastic net perform worse than ridge and PAN

regression due to the non-sparse regression coefficients. The standard deviations of the MSE

for PAN are similar to (or lower than) the standard deviations for ridge regression. This

demonstrates that the improvement in MSE for the PAN procedure is not achieved at the

expense of the stability. The lower standard deviations of the MSE for PAN, seen especially

for the higher dimensions, are due to the fixed tuning parameter grid.

4.3 Correlated design

In the second setup, the data matrix was simulated from a normal distribution with correlated

covariates where Σij = ρ|i−j|, i, j = 1, . . . , p, and ρ = 0.2, 0.5 and 0.8. The regression
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p = 6

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 0.133 (0.076) 0.125 (0.066) 0.124 (0.065) 0.123 (0.070)

Lasso (CV) 0.062 (0.061) 0.094 (0.044) 0.136 (0.055) 0.159 (0.066)

Elastic net (CV) 0.058 (0.055) 0.091 (0.045) 0.133 (0.051) 0.154 (0.067)

Ridge (CV) 0.031 (0.035) 0.057 (0.031) 0.088 (0.041) 0.103 (0.059)

PAN 0.029 (0.037) 0.055 (0.031) 0.090 (0.040) 0.109 (0.059)

p = 15

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 0.317 (0.109) 0.308 (0.114) 0.290 (0.117) 0.308 (0.108)

Lasso (CV) 0.095 (0.072) 0.189 (0.065) 0.302 (0.074) 0.380 (0.148)

Elastic net (CV) 0.087 (0.065) 0.183 (0.064) 0.292 (0.074) 0.363 (0.146)

Ridge (CV) 0.058 (0.05) 0.128 (0.048) 0.194 (0.071) 0.241 (0.104)

PAN 0.054 (0.045) 0.118 (0.043) 0.187 (0.061) 0.239 (0.093)

p = 30

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 0.606 (0.154) 0.610 (0.146) 0.614 (0.149) 0.605 (0.153)

Lasso (CV) 0.136 (0.085) 0.328 (0.064) 0.609 (0.093) 0.860 (0.309)

Elastic net (CV) 0.122 (0.066) 0.318 (0.055) 0.587 (0.103) 0.814 (0.320)

Ridge (CV) 0.101 (0.064) 0.248 (0.069) 0.370 (0.106) 0.436 (0.114)

PAN 0.095 (0.059) 0.231 (0.064) 0.351 (0.082) 0.439 (0.113)

Table 1: The average and the standard deviation (in parentheses) of the mean squared error

on the test set (ntest = 1000) over 200 simulations with n = 50 and σ = 1 in the training set.

The simulations were carried out for an orthogonal design with p = 6, 15, 30 variables and

four values of equal regression coefficients. The lowest prediction error across the methods

is shown in bold.
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p = 6

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 0.128 (0.077) 0.132 (0.077) 0.147 (0.089) 0.133 (0.085)

Lasso (CV) 0.053 (0.062) 0.082 (0.059) 0.128 (0.061) 0.170 (0.060)

Elastic net (CV) 0.051 (0.058) 0.082 (0.054) 0.124 (0.056) 0.168 (0.062)

Ridge (CV) 0.023 (0.030) 0.051 (0.03) 0.091 (0.041) 0.122 (0.058)

PAN 0.018 (0.023) 0.046 (0.031) 0.085 (0.044) 0.112 (0.052)

p = 15

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 0.426 (0.173) 0.445 (0.191) 0.430 (0.224) 0.420 (0.185)

Lasso (CV) 0.071 (0.075) 0.145 (0.086) 0.267 (0.126) 0.400 (0.096)

Elastic net (CV) 0.066 (0.074) 0.141 (0.089) 0.256 (0.100) 0.390 (0.081)

Ridge (CV) 0.042 (0.053) 0.115 (0.071) 0.217 (0.076) 0.325 (0.088)

PAN 0.036 (0.030) 0.096 (0.053) 0.170 (0.060) 0.247 (0.079)

p = 30

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 1.470 (0.546) 1.435 (0.475) 1.424 (0.595) 1.439 (0.505)

Lasso (CV) 0.140 (0.176) 0.282 (0.118) 0.597 (0.237) 0.925 (0.268)

Elastic net (CV) 0.118 (0.127) 0.265 (0.094) 0.552 (0.175) 0.893 (0.210)

Ridge (CV) 0.085 (0.157) 0.229 (0.113) 0.441 (0.166) 0.638 (0.177)

PAN 0.081 (0.083) 0.198 (0.055) 0.395 (0.108) 0.595 (0.130)

Table 2: The average and the standard deviation (in parentheses) of the mean squared

error on the test set (ntest = 1000) over 200 simulations with n = 50 and σ = 1 in the

training set. The simulations were carried out for correlated covariates with covariance

matrix Σij = 0.2|i−j|, for i, j = 1, . . . , p, with p = 6, 15, 30 variables and four values of equal

regression coefficients with alternating signs. The lowest prediction error across the methods

is shown in bold.
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p = 6

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 0.140 (0.098) 0.141 (0.077) 0.136 (0.072) 0.132 (0.078)

Lasso (CV) 0.061 (0.083) 0.075 (0.068) 0.099 (0.058) 0.137 (0.070)

Elastic net (CV) 0.058 (0.086) 0.068 (0.059) 0.092 (0.054) 0.131 (0.066)

Ridge (CV) 0.030 (0.058) 0.043 (0.039) 0.065 (0.033) 0.096 (0.038)

PAN 0.024 (0.055) 0.035 (0.034) 0.054 (0.024) 0.082 (0.032)

p = 15

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 0.423 (0.214) 0.428 (0.182) 0.431 (0.169) 0.394 (0.161)

Lasso (CV) 0.077 (0.115) 0.106 (0.088) 0.165 (0.066) 0.253 (0.083)

Elastic net (CV) 0.067 (0.097) 0.094 (0.066) 0.160 (0.065) 0.250 (0.079)

Ridge (CV) 0.045 (0.106) 0.075 (0.065) 0.133 (0.043) 0.220 (0.054)

PAN 0.036 (0.070) 0.061 (0.031) 0.107 (0.029) 0.163 (0.044)

p = 30

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 1.410 (0.595) 1.440 (0.545) 1.458 (0.536) 1.382 (0.491)

Lasso (CV) 0.122 (0.150) 0.208 (0.215) 0.342 (0.257) 0.556 (0.284)

Elastic net (CV) 0.096 (0.111) 0.170 (0.133) 0.324 (0.207) 0.511 (0.228)

Ridge (CV) 0.067 (0.100) 0.156 (0.193) 0.299 (0.256) 0.469 (0.205)

PAN 0.064 (0.070) 0.127 (0.070) 0.236 (0.122) 0.355 (0.104)

Table 3: The average and the standard deviation (in parentheses) of the mean squared

error on the test set (ntest = 1000) over 200 simulations with n = 50 and σ = 1 in the

training set. The simulations were carried out for correlated covariates with covariance

matrix Σij = 0.5|i−j|, for i, j = 1, . . . , p, with p = 6, 15, 30 variables and four values of equal

regression coefficients with alternating signs. The lowest prediction error across the methods

is shown in bold.
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p = 6

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 0.136 (0.085) 0.144 (0.089) 0.142 (0.079) 0.128 (0.080)

Lasso (CV) 0.053 (0.075) 0.067 (0.080) 0.083 (0.077) 0.097 (0.068)

Elastic net (CV) 0.050 (0.072) 0.061 (0.073) 0.075 (0.068) 0.093 (0.063)

Ridge (CV) 0.028 (0.049) 0.036 (0.053) 0.047 (0.047) 0.060 (0.036)

PAN 0.021 (0.044) 0.031 (0.050) 0.040 (0.042) 0.055 (0.034)

p = 15

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 0.440 (0.194) 0.415 (0.188) 0.432 (0.181) 0.407 (0.164)

Lasso (CV) 0.086 (0.131) 0.083 (0.100) 0.111 (0.126) 0.142 (0.098)

Elastic net (CV) 0.074 (0.119) 0.077 (0.090) 0.113 (0.128) 0.133 (0.084)

Ridge (CV) 0.047 (0.088) 0.054 (0.082) 0.090 (0.098) 0.113 (0.067)

PAN 0.031 (0.057) 0.042 (0.054) 0.066 (0.056) 0.086 (0.032)

p = 30

Method |βj| = 0.05 |βj| = 0.10 |βj| = 0.15 |βj| = 0.20

OLS 1.423 (0.461) 1.408 (0.569) 1.441 (0.516) 1.390 (0.479)

Lasso (CV) 0.091 (0.144) 0.121 (0.166) 0.168 (0.131) 0.228 (0.120)

Elastic net (CV) 0.066 (0.086) 0.100 (0.113) 0.165 (0.162) 0.212 (0.107)

Ridge (CV) 0.055 (0.135) 0.082 (0.133) 0.134 (0.152) 0.209 (0.139)

PAN 0.039 (0.051) 0.068 (0.071) 0.112 (0.071) 0.164 (0.073)

Table 4: The average and the standard deviation (in parentheses) of the mean squared

error on the test set (ntest = 1000) over 200 simulations with n = 50 and σ = 1 in the

training set. The simulations were carried out for correlated covariates with covariance

matrix Σij = 0.8|i−j|, for i, j = 1, . . . , p, with p = 6, 15, 30 variables and four values of equal

regression coefficients with alternating signs. The lowest prediction error across the methods

is shown in bold.
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coefficients have the same absolute values as in the previous setup, but with alternating

signs: 1) βj = 0.05 · (−1)j,∀j, 2) βj = 0.1 · (−1)j,∀j, 3) βj = 0.15 · (−1)j,∀j and 4)

βj = 0.2 · (−1)j, e.g. β = [−0.05, 0.05,−0.05, . . . ], for p = 6, 15 and 30. The PAN tuning

parameter was found using the parametric bootstrap procedure with B = 2000 on the same

tuning parameter grid used by Algorithm 1 to calculate the estimate. For ρ = 0.2 and 0.5,

the algorithm was first run with step size ∆λ = 1 and stopping values λstop = 100, 150, 400,

for p = 6, 15, 40 and then re-run with ∆λ = 1 and stopping value λstop = −20 for all p. For

ρ = 0.8, PAN required a higher tuning parameter value and the algorithm was, for all p, first

run with ∆λ = 15 and λstop = 1500 and then re-run with ∆λ = 1 and λstop = −20.

Table 2 shows the mean squared error for the test set averaged over 200 simulations for

the OLS, lasso, elastic net, ridge and PAN estimator, in the case of ρ = 0.2. The standard

deviations of the mean squared error over the 200 simulations are shown in parentheses. It is

seen that improvement in the prediction error of PAN increases as the dimension increases, as

was observed in the orthogonal case. Secondly, PAN performs better than ridge regression

for all the different signal strengths, in particular for higher dimensions. This is due to

the correlation between the covariates and that the regression coefficients are such that the

distribution of the inner products between the covariate vectors and the β vector is more

concentrated around zero than in the uncorrelated setup. Finally, lasso and elastic net again

perform worse than ridge and PAN regression due to the non-sparse regression coefficients.

Tables 3 and 4 display the mean squared error when ρ = 0.5 and ρ = 0.8, respectively.

The standard deviations of the MSE over the 200 simulations are shown in parentheses.

Tables 3 and 4 show that PAN performs better than the other methods for the correlated

setup and that the improvement increases with the correlation. The standard deviations of

the MSE for PAN are lower than the standard deviations for ridge regression and demonstrate

again that the improvement in prediction error is not associated with a loss of stability. The

lower standard deviation seen for PAN is due to the fixed tuning parameter grid.

5 Example: Prostate cancer data

We demonstrate PAN regression on a classical dataset previously used to illustrate penalized

regression methods (Tibshirani, 1996). The dataset examines the relation between prostate

specific antigen (PSA) and clinical measurements in 97 prostate cancer patients (Stamey

et al., 1989). We predicted the log PSA values based on the eight covariates; log tumor

volume (lcavol), log tumor weight (lweight), age (age), log of benign prostatic hyperplasia
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Table 5: The prediction and regression coefficients of OLS and PAN for the observations

with the four largest and smallest cosine similarities between x0 and β̃ in absolute value.

Observation 18 44 24 51 35 4 3 92

Cosine similarity -0.009 -0.012 0.031 -0.036 -0.704 -0.709 -0.724 0.742

OLS prediction -0.014 -0.016 0.040 -0.053 -1.208 -1.610 -1.764 1.364

PAN prediction -0.012 -0.013 0.036 -0.047 -1.203 -1.601 -1.711 1.232

OLS PAN coefficients

lcavol 0.576 0.576 0.576 0.576 0.576 0.594 0.583 0.594 0.584

lweight 0.231 0.231 0.231 0.231 0.232 0.226 0.235 0.213 0.242

age -0.137 -0.137 -0.137 -0.137 -0.137 -0.138 -0.150 -0.126 -0.135

lbph 0.122 0.121 0.121 0.121 0.120 0.116 0.119 0.120 0.105

svi 0.273 0.273 0.273 0.275 0.273 0.282 0.291 0.291 0.229

lcp -0.128 -0.128 -0.128 -0.130 -0.130 -0.152 -0.161 -0.169 -0.103

gleason 0.031 0.031 0.031 0.032 0.030 0.014 0.023 0.034 0.003

pgg45 0.109 0.109 0.108 0.107 0.111 0.119 0.123 0.117 0.138

amount (lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason

score (gleason) and percent of Gleason score 4 or 5 (ppg45). The PAN tuning parameter

was determined following the procedure described in Section 4.1 with B = 2000, while the

ridge tuning parameter was chosen by leave-one-out cross-validation. We assessed the out-

of-sample prediction error by dividing the data randomly in a training and test set with 1/3

and 2/3 of the observations, respectively.

To illustrate the personalized regression coefficients of PAN, Table 5 displays the OLS and

selected PAN regression coefficients for the full data set (n = 97) for the optimal value found

by the grid search in the bootstrap procedure. The PAN coefficients are calculated for the

patients with the four smallest and the four largest cosine similarities between x0 and β̃, in

absolute value. Table 5 shows that even though it is the observations with the smallest cosine

similarity that experience the largest shrinkage factor for the prediction (as seen in Figure

4), the observations with the highest cosine similarity will experience the largest change in

the regression coefficients, compared to the OLS coefficients. The personalized regression

coefficients of observation 51 barely change, while for observation 92, the parameter of svi

decreases from 0.273 to 0.229 and the parameter of pgg45 increases from 0.109 to 0.138.
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Table 6: The mean squared prediction error on a random test set (ntest = 65) for OLS,

PAN and ridge regression with tuning parameters.

Method OLS Ridge (λ = 7.53) PAN (λ = 2.95)

Test error 0.378 0.345 0.339

The prediction error of the independent test set (ntest = 65) is shown in Table 6. The

prediction performance of all three regression methods is very similar, but PAN regression

has a slightly better test error than ridge and OLS. The tuning parameters were set to 2.95

for PAN and 7.53 for ridge.

Table 7 shows the computation time and the accuracy of Algorithm 1 on the training and

test set when the step size ∆λ decreases (with the stop value fixed to λstop = 2.95). We see

that when the step size is halved, the number of values in the tuning parameter grid and the

computation time approximately doubles. To assess the accuracy, we calculate the average

squared difference between the predictions given by the smallest step size (∆λ = 0.0025)

and all other step sizes. We see that this average squared difference in the predictions is

very small and negligible compared to the test error in Table 6.

Table 7: Computation time and accuracy of Algorithm 1 for decreasing step size (∆λ) and

a fixed λstop = 2.95 for the training and test set. The length of the grid gives the number of

λ values considered. The squared difference between the predictions from the smallest step

size (∆λ = 0.0025) and all other step sizes is averaged over the datasets and the simulations.

Training set Test set

Step size (∆λ) Length of grid Time (s) Mean difference Mean difference

0.1000 30 0.52 3.3 · 10−7 4.4 · 10−7

0.0500 60 1.05 1.5 · 10−9 2.0 · 10−9

0.0250 119 2.02 3.3 · 10−10 4.6 · 10−10

0.0100 296 5.02 3.7 · 10−11 5.1 · 10−11

0.0050 591 10.12 4.1 · 10−12 5.7 · 10−12

0.0025 1181 19.78 – –
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6 Discussion

We have introduced a new regression penalty based on the normalized values, or angles,

of the regression parameters. The proposed penalty is inherently personalized and is con-

structed to produce individualized regression coefficients and predictions. The PAN penalty

has the advantage over other personalized prediction approaches (Hellton and Hjort, 2018;

Huang et al., 2019) that a single, common tuning parameter can be chosen overall based

on the training set. The PAN penalty can be defined in both Cartesian and hyperspheri-

cal coordinates. The Cartesian formulation (Definition 1) enables simple exact expressions

in the orthonormal case, while the hyperspherical formulation (Definition 2) yields a more

computationally efficient objective function.

The PAN penalty combines two novel aspects: personalization and shrinking normalized

or angular coefficients. Both these aspects should be explored further for their own merit.

One may include the personalization without normalizing the predictions, for instance with

the penalty: J(β) = βTKβ = ‖β‖2K with K = x0x
T
0 /‖x0‖2. This penalty is the same as the

square of the group lasso penalty (Yuan and Lin, 2006). In hyperspherical coordinates, it

is seen that this penalty is in fact a product of the non-personalized ridge penalty and the

PAN penalty:

J(β) = βTKβ = r2β · γTβKγβ = Jridge(β)JPAN(β),

suggesting that the penalty may be less suitable to exploit the personalization. Further,

one could also replace x0 or x0x
T
0 in the PAN penalty with a population mean or covariance

matrix to omit the personalization and construct a “population” version of the PAN penalty.

Due to the structure of the PAN penalty, the tuning parameter may be both positive

and negative, in stark contrast to other penalization methods. This introduces challenges

when selecting the tuning parameter value. Initial investigation revealed that (leave-one-out)

cross-validation was too unstable for PAN to work well. A more stable procedure based on

the parametric bootstrap approach (Section 4.1) was proposed as an alternative, yielding

good results in simulations. However, as this procedure depends on a plug-in estimate,

extensions to higher dimension require further work. Future work therefore includes to

explore improved cross-validation procedures for PAN or develop alternative procedures,

possibly marginal maximum likelihood or a Bayesian framework.

In a personalized framework, one aims to make inference regarding a single, specific

case which has been and may only be observed once. The advantage of personalization

therefore relies on the structure and, in particular, the heterogeneity of the data. Liu and
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Meng (2016) commented: “The costs of individualization often outweighed its benefits”, but

that highly heterogeneous data will benefit more from personalization than homogeneous

data. This highlights the opportunity of the Big Data era where data are becoming more

heterogeneous. Big Data are typically characterized by a large sample size aggregated from

multiple data sources and at different times, creating an intrinsic heterogeneity (Fan et al.,

2014). This heterogeneity can be exploited by personalized prediction methods.

Finally, PAN regression may also have a Bayesian formulation which may be beneficial, for

instance, for selecting the tuning parameter. Here the PAN penalty corresponds to a Bayesian

prior following the generalized von Mises distribution (Gatto and Jammalamadaka, 2007).

Future work includes developing improved algorithms for calculating the PAN estimator and

to explore the wider class of angle-based penalties, i.e. the penalty corresponding to the lasso

or L1 norm in the angle space. Further, the PAN penalty or other personalized penalties

should be extended to logistic regression and generalized linear models, and to more complex

methods requiring regularization, such as smoothing spline regression or graphical lasso.
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A Appendix

Derivation of Equation (6)

Assuming an orthonormal design matrix, XTX = I2, the normal equations following from

the residual sum-of-squares are given as follows (omitting the index j = 1 from the notation

of the angle parameters)

rβ sin(αβ)
n∑
i=1

yix1i − rβ cos(αβ)
n∑
i=1

yix2i + λ cos
(
αβ − αx0,1 +

π

2

)
sin(αβ − αx0 +

π

2
) = 0,

− cos(αβ)
n∑
i=1

yix1i − sin(αβ)
n∑
i=1

yix2i + rβ = 0,
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which yields when solving for αβ, the estimated angle

tan 2α̂β,x0(λ) =
2
∑n

i=1 yix1i
∑n

i=1 yix2i − λ sin 2αx0

(
∑n

i=1 yix1i)
2 − (

∑n
i=1 yix2i)

2 − λ cos 2αx0
.

As

sin 2α̃β =
2
∑
yix1i

∑
yix2i

(
∑
yix1i)

2 + (
∑
yix2i)

2 , cos 2α̃β =
(
∑
yix1i)

2 − (
∑
yix2i)

2

(
∑
yix1i)

2 + (
∑
yix2i)

2 ,

the regression coefficient angle can be expressed as

tan 2α̂β,x0(λ) =
r̃2β sin 2α̃β − λ sin 2αx0
r2
β̃

cos 2α̃β − λ cos 2αx0
=
r̃2β sin 2α̃β + λ sin 2

(
αx0 ± π

2

)
r̃2β cos 2α̃β + λ cos 2

(
αx0 ± π

2

) ,
whereas the regression coefficient length is given by

r̂β,x0(λ) = cos α̂β,x0(λ)
n∑
i=1

yix1i+sin α̂β,x0(λ)
n∑
i=1

yix2i = r̃β(cos α̃β cos α̂β,x0(λ)+sin α̃β sin α̂β,x0(λ)).

A.1 Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. Suppose X is an n×p matrix of full rank. The gradient of the penalized

residual sum-of-squares (penRSS) in Equation (1) is given by

∂penRSS

∂β
= −2XTY + 2XTXβ + 2

λ

‖x0‖2
x0x

T
0

βTβ
β − 2

λ

‖x0‖2
(xT0 β)2

(βTβ)2
β. (10)

We suppress in the following the subscripts of x0 and β and the dependence on λ for nota-

tional convenience. By setting the gradient to 0 and multiplying by βT from the left

0 = −β̂TXTY + β̂TXTXβ̂ +
λ

‖x0‖2
(xT0 β̂)2

β̂T β̂
− λ

‖x0‖2
(xT0 β̂)2

(β̂T β̂)2
β̂T β̂.

the last terms cancel. Using the hyperspherical parametrization of Equation (2), β̂ = r̂γ̂,

the length of the PAN estimator is given by

β̂TXTXβ̂ = β̂TXTY,

r̂2γ̂TXTXγ̂ = r̂γ̂TXTXβ̃,

r̂ =
γ̂TXTXβ̃

γ̂TXTXγ̂
, (11)

where β̃ = (XTX)−1XTY is the OLS estimator.
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Again, we set the gradient in (10) to 0, rearrange terms and multiply by r to get

XTXβ̂ − λ

‖x0‖2
(xT0 β̂)2

(β̂T β̂)2
β̂ = XTY − λ

‖x0‖2
x0x

T
0

β̂T β̂
β̂,

r̂2XTXγ̂ − λ

‖x0‖2
r̂3
γ̂Tx0x

T
0 γ̂

r̂2
γ̂ = r̂XTY − λ

‖x0‖2
r̂2
x0x

T
0

r̂2
γ̂,

r̂2XTXγ̂ − λr̂(γ̂TBγ̂)γ̂ = r̂XTY − λBγ̂,

defining the matrix B = x0x
T
0 /‖x0‖2. By inserting the expression of r̂ in (11) and defining

the matrix A = XTXβ̃β̃TXTX, the direction vector of the PAN estimator has to fulfill the

equation
γ̂TAγ̂

(γ̂TXTXγ̂)2
XTXγ̂ − λ(γ̂TBγ̂)γ̂ =

1

γ̂TXTXγ̂
Aγ̂ − λBγ̂,

where γ̂TAγ̂, γ̂TBγ̂ and γ̂TXTXγ̂ are scalar quadratic forms.

Proof of Lemma 2. Assume an orthonormal design matrix XTX = Ip. Then the denomi-

nator of Equation (11) equals one, γ̂T γ̂ = 1, as the direction vector is normalized, and the

PAN length is therefore given by

r̂ = β̃T γ̂.

Thus the estimated PAN direction vector has to fulfill the simplified equation

(γ̂TM0γ̂) γ̂ = M0γ̂,

where the matrix M0 is given by

M0 := β̃β̃T − λx0xT0 /‖x0‖2.

As the quadratic form γ̂TM0γ̂ is a scalar, the direction vector γ̂ must be equal to a normalized

eigenvector of M0.

For linearly independent β̃ and x0, and λ 6= 0, the rank of M0 is 2. The range of M0 is

spanned by the orthonormal vectors

u1 =
β̃

‖β̃‖
, u2 =

‖β̃‖2x0 − (xT0 β̃)β̃

‖β̃‖
√
‖β̃‖2‖x0‖2 − (xT0 β̃)2

. (12)

Hence the normalized eigenvectors of M0 are equal to (u1, u2)η where η are the normalized

eigenvectors of the 2× 2 matrix, M̃0, for any p:

M̃0 =

 ‖β̃‖2 − λ (xT0 β̃)
2

‖β̃‖2‖x0‖2
−λ xT0 β̃

‖x0‖2‖β̃‖

√
‖x0‖2 − (xT0 β̃)

2

‖β̃‖2

−λ xT0 β̃

‖β̃‖‖x0‖2

√
‖x0‖2 − (xT0 β̃)

2

‖β̃‖2 − λ
‖x0‖2

(
‖x0‖2 − (xT0 β̃)

2

‖β̃‖2

)
 .
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The two eigenvectors with positive and negative sign give four stationary points for the

penalized RSS in Equation (1). For the choice of basis in Equation (12), the global minimum

is given by the first eigenvector of M̃0 with a positive first entry. For a matrix,

[
a −c
−c b

]
, c >

0, this eigenvector is given as

η1 =

(1

2
+

a− b
2
√

(a− b)2 + 4c2

) 1
2

,−

(
1

2
− a− b

2
√

(a− b)2 + 4c2

) 1
2

T ,
such that the direction vector is

γ̂(λ) =

(
1

2
+

1

2
c(λ)

) 1
2

u1−
(

1

2
− 1

2
c(λ)

) 1
2

u2, c(λ) =
‖β̃‖2(‖β̃‖2 + λ)− 2λ(xT0 β̃)2/‖x0‖2

‖β̃‖2
√

(‖β̃‖2 + λ)2 − 4λ(xT0 β̃)2/‖x0‖2
.

As the vector u2 is orthogonal to β̃, the length of the PAN estimator is

r̂(λ) = β̃T γ̂(λ) =

(
1

2
+

1

2
c(λ)

) 1
2

‖β̃‖.

A.2 Proof of Corollary 1

Proof of Corollary 1. The prediction for x0 is given by

ŷ0 = xT0 β̂x0(λ) = r̂(λ)xT0 γ̂(λ) =
1

2
[1 + c(λ)]xT0 β̃ −

1

2

[
1− c2(λ)

] 1
2

√
‖β̃‖2‖x0‖2 − (xT0 β̃)2,

where the last term simplifies to

1

2

[
1− c2(λ)

] 1
2

√
‖β̃‖2‖x0‖2 − (xT0 β̃)2 = xT0 β̃

λ(‖β̃‖2 − (xT0 β̃)2/‖x0‖2)

‖β̃‖2
√

(‖β̃‖2 + λ)2 − 4λ(xT0 β̃)2/‖x0‖2
.

Hence

xT0 β̂x0(λ) =xT0 β̃

1

2
+

1

2

‖β̃‖2(‖β̃‖2 + λ)− 2λ(xT0 β̃)2/‖x0‖2

‖β̃‖2
√

(‖β̃‖2 + λ)2 − 4λ(xT0 β̃)2/‖x0‖2


− xT0 β̃λ(‖β̃‖2 − (xT0 β̃)2/‖x0‖2)

‖β̃‖2
√

(‖β̃‖2 + λ)2 − 4λ(xT0 β̃)2/‖x0‖2
,

=xT0 β̃

1

2
+

1

2

‖β̃‖2 − λ√
(‖β̃‖2 + λ)2 − 4λ(xT0 β̃)2/‖x0‖2

 .
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A.3 Proof of Lemma 3 and Theorem 1

Proof of Lemma 3. Assume a scaled orthogonal design, XTX = nIp, such that the PAN

prediction, denoted by µ̂0(λ) = xT0 β̂(λ), is given by

µ̂0(λ) = xT0 β̃

1

2
+

1

2

‖β̃‖2 − (λ/n)√
(‖β̃‖2 + (λ/n))2 − 4(λ/n)(xT0 β̃)2/‖x0‖2

 ,
with a scaling of the tuning parameter. The derivative of the mean squared error (MSE) of

the prediction µ̂0(λ) is bounded in a neighborhood of 0, such that

∂MSE(x0, β, λ)

∂λ

∣∣∣∣
λ=0

= E

[
2(µ̂0(λ)− µ0)

∂µ̂0(λ)

∂λ

∣∣∣∣
λ=0

| X
]
,

where the derivative of the prediction is given by

∂µ̂0(λ)

∂λ
= −

xT0 β̃
(
‖x0‖2‖β̃‖2 − (xT0 β̃)2

)(
(λ/n) + ‖β̃‖2

)
n‖x0‖2

[
(‖β̃‖2 + (λ/n))2 − 4(λ/n)(xT0 β̃)2/‖x0‖2

]3/2 .
The derivative of the MSE evaluated at λ = 0 is given by

∂MSE(x0, β, λ)

∂λ

∣∣∣∣
λ=0

= − 2

n
E
[
f(β̃)

]
,

where

f(β̃) =
(
xT0 β̃ − xT0 β

) xT0 β̃(‖x0‖2‖β̃‖2 − (xT0 β̃)2)

‖x0‖2‖β̃‖4
. (13)

Under the scaled orthogonal design, XTX = nIp, the variance of the OLS estimator is

Var(β̃) = σ2

n
Ip. Then the OLS estimator converges in distribution as

√
n(β̃−β)

d→ N (0, σ2Ip),

(see e.g. Sen et al., 2010, Theorem 10.2.2 for further details). The expectation of the second-

order Taylor expansion of a function of the estimator will then be given by

E
[
f(β̃)

]
= f(β) +

1

2

σ2

n
tr
(
H(f(β))

)
+O

(
1

n2

)
,

where H is the Hessian. The trace of the Hessian, tr
(
H(f(β))

)
, will further equal the

Laplacian of the function evaluated at β. As the Laplacian of (13) evaluated at β is

∇2f(β) = −
2
(
(‖x0‖2‖β‖2 − 4(xT0 β)2)(‖x0‖2‖β‖2 − (xT0 β)2)

)
‖x0‖2‖β‖6

,
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the expectation is given by

E
[
f(β̃)

]
=
σ2

n

(‖x0‖2‖β‖2 − 4(xT0 β)2)(‖x0‖2‖β‖2 − (xT0 β)2)

‖x0‖2‖β‖6
+O

(
1

n2

)
.

The derivative of the MSE at the value λ = 0 is hence given by

∂MSE(x0, β, λ)

∂λ

∣∣∣∣
λ=0

= − 1

n2
C1

(
1− 4

(xT0 β)2

‖x0‖2‖β‖2
)

+O

(
1

n3

)
, (14)

where C1 = 2σ2 ‖x0‖2
‖β‖2

(
1 − (xT0 β)

2

‖x0‖2‖β‖2

)
> 0 is a positive constant for σ > 0, x0, β 6= 0 and

|xT0 β| 6= ‖x0‖‖β‖.

Proof of Theorem 1. For σ > 0, x0, β 6= 0 and |xT0 β| 6= ‖x0‖‖β‖, as the constant C1 in (14)

is always positive, the limit of the derivative will satisfy asymptotically

lim
n→∞

n2 ∂MSE(x0, β, λ)

∂λ

∣∣∣∣
λ=0

< 0, if |xT0 β| < 1
2
‖x0‖‖β‖,

> 0, if |xT0 β| > 1
2
‖x0‖‖β‖,
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Huang, S.-T., Y. Düren, K. H. Hellton, and J. Lederer (2019). Tuning parameter calibration

for prediction in personalized medicine. arXiv:1909.10635 .

Jabbari, F., S. Visweswaran, and G. F. Cooper (2018). Instance-specific Bayesian network

structure learning. In International Conference on Probabilistic Graphical Models, pp.

169–180. PMLR.

Kosorok, M. R. and E. B. Laber (2019). Precision medicine. Annual Review of Statistics

and Its Application 6, 263–286.

35



Lengerich, B., B. Aragam, and E. P. Xing (2019). Learning sample-specific models with

low-rank personalized regression. arXiv:1910.06939 .

Liu, K. and X.-L. Meng (2016). There is individualized treatment. Why not individualized

inference? Annual Review of Statistics and Its Application 3, 79–111.

Liu, W., Y.-M. Zhang, X. Li, Z. Yu, B. Dai, T. Zhao, and L. Song (2017). Deep hyperspherical

learning. In Advances in Neural Information Processing Systems, pp. 3950–3960.

Mardia, K. V. (1972). Statistics of directional data. New York City, NY: Academic press.
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