
Self-constructing graph neural networks to model long-range pixel

dependencies for semantic segmentation of remote sensing images

Qinghui Liua,b , Michael Kampffmeyerb,a, Robert Jenssenb,a and Arnt-Børre Salberga

a Norwegian Computing Center, Dept. SAMBA, P.O. Box 114 Blindern, NO-0314 Oslo,
Norway
b Dept. Physics and Technology, UiT The Arctic University of Norway, NO-9037 Tromsø,
Norway

ARTICLE HISTORY

Compiled March 9, 2022

ABSTRACT
Capturing global contextual representations in remote sensing images by exploit-
ing long-range pixel-pixel dependencies has been shown to improve segmentation
performance. However, how to do this efficiently is an open question as current ap-
proaches of utilising attention schemes, or very deep models to increase the field of
view, increases complexity and memory consumption. Inspired by recent work on
graph neural networks, we propose the Self-Constructing Graph (SCG) module that
learns a long-range dependency graph directly from the image data and uses it to
capture global contextual information efficiently to improve semantic segmentation.
The SCG module provides a high degree of flexibility for constructing segmenta-
tion networks that seamlessly make use of the benefits of variants of graph neural
networks (GNN) and convolutional neural networks (CNN). Our SCG-GCN model,
a variant of SCG-Net built upon graph convolutional networks (GCN), performs
semantic segmentation in an end-to-end manner with competitive performance on
the publicly available ISPRS Potsdam and Vaihingen datasets, achieving a mean
F1-scores of 92.0% and 89.8%, respectively. We conclude that the SCG-Net is an
attractive architecture for semantic segmentation of remote sensing images since it
achieves competitive performance with much fewer parameters and lower computa-
tional cost compared to related models based on convolutional neural networks.

KEYWORDS
Remote Sensing, Self-Constructing Graph (SCG), Graph Neural Networks
(GNNs), Semantic Segmentation

1. Introduction

Semantic segmentation is one of the fundamental tasks in remote sensing and refers to
classifying each pixel in remote sensing images to a semantic category, e.g., buildings,
roads, rivers, etc. This is particularly challenging for very high resolution (VHR) aerial
images, which are the focus of this work and often contain diverse objects, highly
imbalanced classes, and intricate variations in aspect ratio and color textures (e.g.
roads, roofs, shadows of buildings, low plants and branches of trees).

CONTACT Qinghui Liu. Email: liu@nr.no

All the authors are associated with the Centre for Research-based Innovation Visual Intelligence:

http://visual-intelligence.no, funded by the Research Council of Norway and consortium partners. RJ,
MK and QL are with the UiT Machine Learning Group: http://machine-learning.uit.no.

The emergence of deep learning and convolutional neural networks (CNNs) has led
to significant improvements for remote sensing image semantic segmentation. Cur-
rently, most semantic segmentation models are inspired by the idea of fully convolu-
tional networks (FCNs) (Long, Shelhamer, and Darrell 2015) and U-Net (Ronneberger,
Fischer, and Brox 2015), which generally consist of an encoder-decoder architecture
where all layers are based on CNNs. U-Net introduces skip connections between the
encoder and decoder modules to make the spatial information to be gradually recov-
ered by fusing skipped connections with upsampling layers. Since then, the FCN and
encoder-decoder frameworks have been widely adapted and applied to remote sensing
domain (Paisitkriangkrai et al. 2015; Sherrah 2016; Lin et al. 2016; Marmanis et al.
2016; Audebert, Le Saux, and Lefèvre 2016; Audebert, Le Saux, and Lefèvre 2017;
Wang et al. 2017a; Mou and Zhu 2018; Kampffmeyer, Salberg, and Jenssen 2018;
Liu et al. 2019a,b, 2020a). In general, these models differ from each other in how
they capture global contextual information at multiple scales. Modeling the global
contextual representations aims to obtain richer local and non-local information of
complex-shaped and context-dependable objects by exploiting long-range context re-
lations based on spatial and contextual coherence or similarities. For instance, the car
is more likely found on the road than on the roof of a building. Capturing global con-
textual representations has shown to improve the segmentation performance on VHR
remote sensing images (Liu et al. 2020a), and also benefit a wide range of computer
vision problems (Hu et al. 2018; Zhang et al. 2018; Chen et al. 2019; Adelipour and
Ghassemian 2019).

However, how to efficiently capture long-range dependencies is still an open ques-
tion for semantic segmentation. CNNs are commonly limited by their efficiency and
ability to obtain long-range contextual information due to their local valid receptive
fields (Zhou et al. 2015). To address this issue, most existing pure deep CNNs based
architectures (Ronneberger, Fischer, and Brox 2015; Badrinarayanan, Kendall, and
Cipolla 2017; Zhao et al. 2016; Wang et al. 2017b; Peng et al. 2017; Chen et al.
2018; Liu et al. 2019a) normally rely on multi-scale and multi-stream CNN frame-
works to obtain richer contextual information and higher performance. This typically
requires more trainable parameters and computational resources, often resulting in
inefficient and unnecessarily complex models. Several other works have recently been
made to introduce self-attention mechanisms (Vaswani et al. 2017) into the convolu-
tional structures to model long-range interdependencies, such as the non-local (NL)
neural networks (Wang et al. 2018; Cao et al. 2019) and the Dual attention network
(DANet) (Fu et al. 2019) that applied self-attention globally over a whole feature map
to produce fully-connected pairwise relationships for non-local feature aggregation.
However, these self-attention based methods can only be embedded into pure CNN-
based models and have very large memory costs, which hinders their application to
VHR remote sensing data.

Recently, Graph Neural Networks (GNNs) have attracted a lot of attention and
have emerged as powerful models to capture global dependencies by leveraging an
interaction graph when such a graph is naturally available as a source of information
about the problem, such as social networks (Chiang et al. 2019; Huang et al. 2018),
bio-chemistry (Xu et al. 2019; Velickovic et al. 2019), and so on. Variants of GNNs
have also been increasingly explored in various image analysis tasks that include im-
age classification (Knyazev et al. 2019), few-shot and zero-shot learning (Garcia and
Bruna 2017; Kampffmeyer et al. 2019; Marino, Salakhutdinov, and Gupta 2016), and
have demonstrated very promising performance for various image-level reasoning tasks
while significantly reducing the computational cost (Knyazev et al. 2019). However,

2

SCG GNN

……

… …

ො𝐳

…

…

G : (V, E)

ො𝐳

𝑖 𝑗

…
…

…

𝐙(k)

𝑖

𝑗

𝑣𝑖

𝑣𝑗

𝜀𝑗𝑖 𝜀𝑖𝑗

𝑖

𝑗

𝑖

𝑗
𝒙𝑖 𝒙𝑗

CNN

Figure 1. Our SCG-Net uses a conventional CNN backbone to learn a 2D feature map of an input image. The

SCG module then learns to transform the 2D feature map into a latent graph structure G : (V,E), construct
the global context relations (εij ∈ E) and assign feature vectors (xi) to the vertices (vi ∈ V) of the graph.

The k-layer GNNs are then exploited to first update the node embedding along the edges of graph with (k − 1)

layers and finally predict the node labels, Z(k), by the k-th GNN, the set of node labels are then projected
back onto the original 2D plane to output the final segmentation results.

GNNs have not yet fully demonstrated their advantages and have been rarely deployed
in dense prediction tasks such as semantic segmentation due to lack of prior knowl-
edge graphs. Previous attempts (Liang et al. 2018; Wang et al. 2019; Landrieu and
Simonovsky 2018; Qi et al. 2017) either manually produce prior knowledge graphs,
or compute other forms of static graph structure based on raw input images, which
are neither flexible nor easily generalized to other image datasets. Specifically, Wang
et al. (2019) and Landrieu and Simonovsky (2018) encoded point clouds into k-nearest
neighbor (KNN) graphs or super-point graphs to estimate the global context relations.
In Qi et al. (2017), a directed graph is constructed based on the 2D position and the
depth information of pixels. Pixels close to each other in depth are connected, but
those that are close on a 2D grid but distant in depth are not connected with an edge.
Note that the prior works mentioned above have not utilized GNNs to infer the final
semantic predictions.

Most closely related to our work are the recent work of Li et al. (2020) and Ouyang
and Li (2021) that directly apply GNNs to the semantic segmentation problem. Li
et al. (2020) introduced a CNN-GCN framework combining CNN and graph convolu-
tional networks (GCN) (Kipf and Welling 2016a) to address multi-label aerial image
scene classification. The authors used the SLIC super-pixel algorithm (Achanta et al.
2012) to segment the input image and obtain non-overlapping regions as nodes of the
graph, and then construct the spatial relationship (adjacency graph) according to the
centroid pixel information of the region. Meanwhile, a series of feature maps are ex-
tracted by a pre-trained CNN and upsampled to the original input size. The authors
then take the maximum value of each feature map slice as the corresponding vertex
feature of the region according to the segmented region boundary, and finally use a
GCN to aggregate representations and perform classification. Similarly, in Ouyang
and Li (2021), a DSSN-GCN model combining a deep semantic segmentation network
(DSNN) and a GCN was proposed for remote sensing image semantic segmentation.
While the DSNN module is used to initialize the vertex features instead of a pre-
trained CNN, the nodes and adjacency graphs are still derived from the super-pixel
segmentation algorithm. Obviously, the above two works largely rely on the super-
pixel algorithm that is applied to the raw images to construct the spatial relationships
without considering high-level and long-range contextual interdependencies.

As a key solution to effectively exploit GNNs to model global representations
and long-range context dependencies in remote sensing, we propose a novel self-

3

constructing graph neural network (SCG-Net) model for pixel-level classification tasks
as shown in Fig. 1. Our SCG-Net model can explicitly employ various kinds of GNNs
to not only learn global context representations but also directly output the predic-
tions. More specifically, we introduce a novel Self-Constructing Graph module (SCG),
inspired by variational graph auto-encoders (VGAE) (Kipf and Welling 2016b) and
variational autoencoders (VAE) (Kingma and Welling 2013), to learn how a 2D feature
map can be transformed into a latent graph structure and how pixels can be assigned
to the vertices of the graph from the available training data. In a nutshell, we model
relations between pixels that are spatially similar in the CNN, while in the VAE-based
SCG module, we incorporate context information between patches that are similar in
feature space, but not necessarily spatially close.

Built upon the proposed SCG module, we further develop the end-to-end SCG-Net
model for semantic segmentation in VHR arial images. In our SCG-Net framework,
a standard CNN (e.g., the ResNet (He et al. 2016)) is utilized to extract high-level
feature maps, which are then used to construct the underlying contextual graph using
the SCG. A k-layer GNN is then exploited to not only learn the latent embedding, but
also to infer the final node-wise labels based on the global contextual graph generated
by the SCG module. The predicted node labels are finally projected back onto the
original 2D plane. Fig. 1 presents an overview of our method.

Compared to most previous work on graph reasoning for scene recognition
tasks (Liang et al. 2018; Wang et al. 2019; Landrieu and Simonovsky 2018; Qi et al.
2017), our SCG-Net effectively streamlines the semantic segmentation pipeline by
transforming the pixel-wise classification problem in a Euclidean domain into a node-
wise classification task in a structural domain, without relying on deep and multi-
scale feature fusion architectures. The proposed SCG framework provides flexibility
as it seamlessly combines CNNs with variants of GNNs (e.g. Gori, Monfardini, and
Scarselli 2005; Hammond, Vandergheynst, and Gribonval 2011; Bronstein et al. 2017;
Niepert, Ahmed, and Kutzkov 2016; Defferrard, Bresson, and Vandergheynst 2016;
Kipf and Welling 2016a; Hamilton, Ying, and Leskovec 2017; Xu et al. 2019) together
to solve semantic segmentation problems.

Our experiments demonstrate that the SCG-Net achieves very competitive accu-
racy with real-time performance on the representative ISPRS 2D semantic labeling
datasets (Rottensteiner et al. 2012). In summary, our contributions are:

(1) We propose a novel self-constructing graph (SCG) framework that can effectively
construct the global context relations (latent graph structure) without relying
on prior knowledge graphs. Modeling such a latent long-range dependencies for
semantic segmentation of VHR aerial images has not been fully explored yet to
the best of our knowledge.

(2) Built upon SCG module, we design a new flexible segmentation network (SCG-
Net) that can fully leverage the benefits of both CNNs and variants of GNNs
with improved computational efficiency for the pixel-wise classification pipeline
in the field of remote sensing.

(3) Our proposed SCG-GCN model achieves competitive performance on different
representative remote sensing datasets with much fewer parameters, faster train-
ing and lower computational cost.

(4) We validate the effectiveness of our SCG module through extensive ablation
studies, and also outline future research directions.

A preliminary version of this paper appeared in Liu et al. (2020c,b). Here, we extend
our work by (i) extending our method with several new variants such as Autoencoder

4

(AE) based SCG, Directed SCG, and various combinations with different GNNs, to
further boost the model’s flexibility; (ii) expanding the experiment section by includ-
ing more datasets with more variants of models, providing more training details and
presenting additional result comparisons and analysis; (iii) providing sound ablation
studies, qualitative analysis and in-depth discussions in terms of model’s effectiveness,
limitations and challenges for future work.

The paper is structured as follows. Section 2 introduces some preliminaries and
background. In Section 3, we present the methodology in details. Section 4 introduces
the datasets used in our work. Experimental procedure and evaluation of the proposed
method is performed in Section 5. And, finally in Section 6, we draw conclusions and
outline future research.

2. Preliminaries

Table 1. Commonly used notations in this paper.

Notations Descriptions

G A graph
V The set of nodes (vertices) in a graph
E The set of edges (pairs/links of nodes) in a graph
C The label set {1, 2, . . . , c}
Y The set of ground truth for all labeled nodes, composed by {yi}
vi The i-th node ∈ V

Nvi The set of nodes adjacent to vi
εij The link ∈ E of the node pair (vi, vj) directed from vi to vj

xi ∈ Rd The d-dimensional feature vector associated to vi
A ∈ Rn×n The adjacency matrix of a graph
D ∈ Rn×n The degree matrix of A with self-loop

Â ∈ Rn×n The normalized graph adjacency matrix
X ∈ Rn×d The feature matrix of a graph, composed by [xi]

Ẑ ∈ Rn×c The auxiliary predictions produced by SCG module

Z(k) ∈ Rn×c The predictions produced by GNN module
Z> ∈ Rc×n Transpose of matrix Z

I The identity matrix

θ(l) The learnable parameters of the l-th layer

Z(l) The hidden feature of the (l)-th layer, composed by [z
(l)
i]

ω(l) A learnable parameter or a fixed scalar at layer l

z
(l)
i The hidden feature vector of node vi at the l-th layer
n The number of nodes
d The dimension of a node feature vector
c The number of classes
k The last layer index
l The hidden layer index
yi The true label of node vi
δ (·) The activation function, such as ReLU
|·| The length of a set

Here we begin by presenting some relevant background of the most common GNN
models. The notations used in this paper are shown in Table 1. Unless particularly
specified, we use upright letters to denote sets and subsets, bold capital characters for
matrices, lowercase in italics for scalars and bold italics for vectors.

2.1. Graph neural networks

Consider a graph G = (V,E) that consists of a set V = {vi = (i,xi) : i = 1, 2, . . . , n}
of n vertices or nodes, where xi ∈ Rd denotes feature vectors for node vi, and an

5

associated set of edges E = {εij = (i, j, Aij) : i = 1, 2, . . . , n, j = 1, 2, . . . , n}, where
Aij represents the weight associated to the node pair (vi, vj) directed from vi to vj .
Here, we assume a set of labeled nodes {(vi, yi ∈ Y) : i = 1, 2, . . . ,m}, where Y
contains the ground truth for all the labeled nodes from a label set C = {1, 2, . . . , c},
and m = |Y| ≤ n. The goal of the node classification problem is to learn a mapping
f : V→ C such that the labels of unlabeled nodes can be predicted.

The graph, G, can be also represented by (A,X), where the adjacency matrix1

A ∈ Rn×n is composed of each link weight Aij ≥ 0 ∈ R, and the feature matrix
X = [x1,x2, ...,xn] contains each node embedding xi. Essentially, a GNN generalizes
the convolution operator to irregular domains, that is typically expressed as a ”neigh-
borhood aggregation” or a ”message passing” scheme (Fey and Lenssen 2019) in graph
structures. GNN learns latent features, Z(l), by recursively aggregating the informa-
tion (features) from neighbouring nodes in the graph. The generalized Message-Passing
(MP) architecture can be defined as

Z(l) = MP(Â,Z(l−1);θ(l)), l = 1, 2, . . . , k , (1)

where Z(l−1) denotes the node features at the (l − 1)-th layer and Z(0) = X, θ(l) are
the trainable parameters of the l-th layer, Z(l) is the latent embedding space computed
after (l) layers and MP(·) denotes the message-passing function. Note that A is often
re-normalized in a particular way to a normalized matrix Â based on the specific GNN
variant (Kipf and Welling 2016a; Xu et al. 2019).

The most common GNNs follow the message-passing strategy that can be general-
ized as Eq. 1. There are many kinds of implementations of the propagation function.
In this work, we mainly exploit two representative GNN variants, namely the spectral-
based method - Graph Convolutional Network (GCN) (Kipf and Welling 2016a), and
the spatial-based method - Graph Isomorphism Network (GIN) (Xu et al. 2019).

2.1.1. Graph convolutional network

The GCN (Kipf and Welling 2016a) was presented as the first-order approximation of
the spectral GNN (Hammond, Vandergheynst, and Gribonval 2011), that implements
a message-passing function by a combination of linear transformations over one-hop
neighbourhoods and non-linearities. It is defined as

Z(l) = δ
(
ÂZ(l−1)θ(l)

)
, (2)

where δ denotes the non-linearity function (e.g. ReLU), Â is the normalized version
of A with self-loops2 given as

Â = D−
1

2 (A + I)D
1

2 , (3)

1The adjacency matrix A is a square matrix used to represent a finite graph. The elements of the matrix

indicate whether pairs of vertices are connected or not. Note that we assume G is a weighted graph instead of
binary one in this paper.
2A self-loop denotes an edge that connects a node to itself. Note that only nodes that have self-loops will

include their own features in the aggregate of the features of neighbor nodes.

6

where D is the degree matrix3 that is defined as Dii =
∑

j(A + I)ij , and I is the

identity matrix. By re-normalizating the adjacency matrix (as Eq. 3) with the node
degree matrix D, both the vanishing or exploding gradient problem and the numerical
instabilities caused by the sensitivity to the scale of each input feature when training
such networks can be avoided (Kampffmeyer 2018).

2.1.2. Graph isomorphism network

Unlike the spectral-based GNN, GIN (Xu et al. 2019) was proposed as a spatial-based
method that updates the node embedding based on the spatial relations of vertices.
More specifically, the GIN’s message-passing function can be defined as

z
(l)
i = MLP(l)

(1 + ω(l)
)
z

(l−1)
i +

∑
j∈Nvi

z
(l−1)
j

 , (4)

where z
(l)
i ∈ Z(l) is the feature vector of node vi at the l-th layer, Nvi represents a set

of nodes adjacent to vi, MLP(l) denotes the multi-layer-perception (MLP) at layer l,
and ω(l) is a learnable parameter or a fixed scalar at layer l. Eq. 4 can be converted
to a dense/matrix representation as

Z(l) = δ
((
ω(l)I + (I + A)

)
Z(l−1)θ(l)

)
. (5)

Comparing Eq. 5 to Eq. 2, the major difference between the GIN and the GCN is
that the normalized adjacency matrix Â is replaced by

(
ω(l)I + (I + A)

)
. We can

therefore consider the GIN as a special version of the GCN that takes the raw adjacency
matrix with a learnable or fixed-scaled diagonal matrix rather than using a Laplacian
normalized one for message propagation.

In the following sections, we will use Z(k) = GNN(A,X) to denote an arbitrary GNN
module (e.g., GCN or GIN in this paper) implementing k steps of message passing
based on some adjacency matrix A and input node features X, where k is commonly
in the range 1 to 6 due to GNN’s over-smoothing limitation that would make node
representations converge to indistinguishable vectors as the number of layers increases
(Zhou et al. 2020).

3. The SCG-Net

We first describe the proposed Self-Constructing Graph (SCG) framework and its
variants. We then present our design choices and provide detailed information about
the end-to-end model SCG-Net for semantic segmentation of remote sensing images.

3The degree matrix is a diagonal matrix which contains the degree of each node—that is, the number of edges
attached to each node (Chung, Lu, and Vu 2003).

7

𝑣𝑖

ℎ

𝑤 𝑑

𝑣𝑗

2D features
(ℎ × 𝑤 × 𝑑)

DEC

SCG: self-constructing graph module

𝑍, 𝑋

Latent graph
G: (A, X)

ො𝐳 𝛾

ℒkl ℒdl

𝐴, 𝑋

ENC
F

𝑣𝑖

𝑣𝑗

Z, X A, X

Figure 2. The illustration diagram of the SCG model. Overall, it is composed of 2 key modules, i.e., the ENC

module that transforms the 2D features, F ∈ Rh×w×d, to a latent embedding space, Z ∈ Rn×c, and, the DEC

module that generate the graph representations G : (A,X)⇔ (V,E) by decoding the learned latent embeddings
from ENC. Note that SCG model also introduce two regularization functions, i.e., Lkl is the Kullback–Leibler

divergence loss and Ldl is the diagonal log loss, and two auxiliary terms, i.e., γ is the adaptive factor, Ẑ is the

auxiliary predictions.

3.1. The framework of SCG

We propose the SCG model that aims to learn the latent graph representation for
capturing the global context information across the scene image directly from 2D
feature maps without relying on prior knowledge. Overall, the framework of SCG
contains two key modules, i.e the encoding (ENC) module that transforms the input
2D features, F ∈ Rh×w×d, to a latent embedding space, Z ∈ Rn×c, and the decoding
(DEC) module that generates the graph representations G : (V,E) ⇔ (A,X) by
measuring the similarities between nodes from the learned latent embeddings from the
ENC module (see Figure 2). Additionally, to further improve the learning process, the
SCG module introduces two regularization terms, i.e the Kullback-Leibler divergence
term (Lkl) and the diagonal log penalty (Ldl), and two adaptive enhancement methods,
i.e the adaptive enhancement factor (γ) with the auxiliary embeddings (Ẑ) to refine
the final predictions. Hence, the generalized SCG function can be defined as(

G,Lkl,Ldl, Ẑ, γ
)

= SCG (F) . (6)

3.1.1. Encoding module

In the encoding (ENC) module, we first apply an optional parameter-free pooling
operation ρ(F) (e.g. adaptive average pooling in our case) to reduce the spatial di-
mensions of F from (h×w) to (h′×w′), and then reshape it to obtain X ∈ Rn×d as the
vertex feature matrix containing n (n = h′w′) nodes. This optional pooling operation
is used to reduce the time complexity and computational cost of matrix multiplication
involved in the following modules when the size of the input image is very large and
there are some strict computational constraints. Otherwise, it is not needed in general.

Inspired by the variational autoencoder framework (VAE) (Kingma and Welling
2013), the ENC module learns a mean matrix M ∈ Rn×c and a standard deviation
matrix Σ ∈ Rn×c of a Gaussian using two single-layer convolutional networks

M = φµ (ρ (F) ;θµ) , (7)

log(Σ) = φs (ρ (F) ;θs) , (8)

8

where c denotes the number of classes, φµ and φs represent the convolution layers
with 3 × 3 filter θµ and 1 × 1 filter θs respectively, and combine a reshape operator
to reshape the outputs from Rh′×w′×c → Rn×c. Since CNNs implicitly learn to extract
pixel-coordinate information and encode it in the feature maps (Islam, Jia, and Bruce
2020), the latent embeddings (M and Σ) are able to encode both contextual and
spatial information. Note that the output of the model for the standard deviation is
log(Σ) to ensure stable training and positive values for Σ.

Based on the generated mean and standard deviation of the conditional distribution
Z ∼ N (M,Σ), we draw latent variables, and optimize our parameters via gradient
descent and backpropagation. We thus make use of reparameterization (Kingma and
Welling 2013) to obtain the latent variables as Z = M + Σ �Υ where � denotes
element-wise product, Υ ∈ Rn×c is an auxiliary noise variable and initialized from
a standard normal distribution (Υ ∼ N (0, I)). This reparameterization is useful to
ensure that our sampling process is deterministic and differentiable, and helps the
encoder converge to the optimal gradients w.r.t parameters θµ and θs. Meanwhile,
a centered isotropic multivariate Gaussian prior distribution is used to regularize the
latent variables during training, by minimizing a Kullback-Leibler (KL) divergence
loss (Kingma and Welling 2013) that is given as

Lkl = −KL [N (M,Σ) ‖N (0, I)] = − 1

2nc

n∑
i=1

c∑
j=1

(
1 + log

(
Σ 2
ij

)
−M2

ij − Σ 2
ij

)
, (9)

where Σij and Mij denote the element i, j of matrix Σ and M respectively. This reg-
ularization term penalizes the model if the encoder outputs representations Z (also
called approximated variational posterior distributions) that are different than those
from a standard normal distribution (our prior distribution). This encourages a ro-
bust latent variable space, where representations of similar semantic classes remain
sufficiently close together (e.g., tree-images with even very different shapes, sizes, and
textures could be encoded by very similar representations to each other, rather than
that different trees have very different embeddings.).

Here, we also introduce a auxiliary embedding term Ẑ that is defined as

Ẑ = M� (1− log(Σ)) , (10)

which can be used to refine the final prediction of the network after information has
been propagated along the learned graph. Intuitively, the auxiliary term Ẑ can be
viewed as a standard normal distribution space transformed from the latent space
by M � Σ−1. For computational simplicity and stabilization, we replace Σ−1 with
(1− log(Σ)), and log(Σ) is constrained to be smaller than 1 during the training.

3.1.2. Decoding module

In the decoding (DEC) block, the graph adjacency matrix A is generated by an inner
product between latent embeddings as A = ReLU

(
ZZ>

)
. Note, A is not binary in our

case but weighA weighted graph is a graph where each edge/link has a specific numer-
ical value (a weight) associated with it. In our case, the weight Aij = ReLU(z>i zj), is
a positive real number that represents the weight associated to the edge of the node
pair (vi, vj). and undirected. Thus, Aij = Aji > 0 indicates the presence of an edge
associated with the learned weight (Aij) between node i and j. Essentially, the DEC-

9

block measures the similarity between patches (feature vectors of nodes) to build the
graph that connects similar node representations together, such that the similar scene
regions exchange information. And intuitively, we consider Aii shall be > 0 and close
to 1. We therefore introduce a diagonal log regularization term defined as

Ldl = − γ

n2

n∑
i=1

log
(
|Aii|[0,1] + ε

)
, (11)

where the index [0,1] denotes that Aii is clamped to [0, 1], ε is a small positive infinites-

imal scalar (e.g, ε = 10−7) and γ is the adaptive factor computed as

γ =

√
1 +

n∑n
i=1Aii + ε

.

In order to preserve local information and stabilize training, we introduce an adap-
tive enhancement approach applied to both the adjacency matrix and the auxiliary
embeddings. The enhanced A is designed as A = A + γ diag(A), and the enhanced
auxiliary term Ẑ is updated as γẐ.

3.2. Variants of SCG

3.2.1. Auto-encoder based SCG

We also introduce an auto-encoder based SCG module (SCGae) as an alternative to a
variational auto-encoder based structure to learn the latent embedding Z. The ENC
module can thus learn Z as follows

Z = φµ (ρ (F) ;θµ) . (12)

Then the overall formula of SCGae simplifies to

(G,Lkl,Z, γ) = SCGae(F) . (13)

Note that there is no need to compute the mean matrix (M), the deviation matrix
(Σ), the auxiliary term (Ẑ), and the Kullback-Leibler divergence loss (Lkl), as for the
VAE approach. However, the DEC part of SCGae is kept unchanged. Meanwhile, in
order to be consistent with the VAE method, we just make use of Z as the auxiliary
term to refine the final prediction of our model.

3.2.2. Directed graph-based SCG

The standard SCG framework can only generate un-directed graphs (symmetric adja-
cency matrix) by the inner product operation. Here we propose a SCG variant SCGdir

that is able to produce directed4 graph structures. To do so, we first normalize the

4In this work, Aij and Aji represent the weights associated the edges (εij and εji) between the
node pair (vi, vj) directed from vi to vj and from vj to vi respectively. For the un-directed graph,

Aij is always equal to Aji, while for the directed graph, Aij is in general not equal to Aji.

10

latent embeddings by the standard softmax operation as

Z̄ij =
eZij∑c
k=1 e

Zik
i = 1, 2, . . . , n j = 1, 2, . . . , c . (14)

Then the directed adjacency matrix can be defined as A = ReLU
(
Z̄Z>

)
. Note that

Aij 6= Aji > 0 indicates the presence of directed edges associated with two different
weights between node i and j. Intuitively, we assume that the directed graph can
represent richer interactions between objects.

3.3. SCG-Net architecture

Built upon SCG and GNNs with the incorporation of backbone CNNs, we propose a
new end-to-end method (SCG-Net) that streamlines semantic segmentation as a node
classification problem. Fig. 1 shows the illustration of the proposed SCG-Net model
for semantic segmentation of remote sensing images. The model architecture details
are shown in Table 2.

Table 2. The general end-to-end SCG-Net Model Details with one
sample of input image size of h0 × w0 × 3.

Layers Outputs Sizes

Backbone-CNN F h× w × 1024

SCG (A,X, Ẑ, γ) (n× n), (n× 1024), (n× c),R≥1

GNN1 (Â, Z(1)) n× d
GNN2 (Â, Z(2)) n× c

Sum(opt) (γẐ + Z(2)) n× c
Projection Ỹ h0 × w0 × c

3.3.1. CNN backbone

A conventional CNN backbone, e.g, the pretrained ResNet50 (He et al. 2016) in this
work, is employed to extract the high-level representations. Following our previous
work (Liu et al. 2020a), we only utilize the first three bottleneck layers of pretrained
ResNet50 and remove the last bottleneck layer and the fully connected layers to reduce
the number of parameters to train. We assume that the size of the input image is
h0 × w0 × 3 (with 3 color channels), the output size of our CNN backbone is thus
h× w × 1024 (h,w = h0

16 ,
w0

16).

3.3.2. SCG and GNN decoder

We combine our proposed SCG module (e.g, the standard SCG, or other variants
including SCGae and SCGdir) with a 1-layer GNN (either GCN or GIN in this work)
as the decoder. We utilize ReLU activation and batch normalization for the GNN
layer. Guided by our empirical observation, we set n = h × w and d = 128 in this
work, and c = 6 is equal to the number of classes in the datasets.

3.3.3. Prediction and projection

The final prediction (Z(2)) is produced by the second layer GNN (either GCN or
GIN) without activation and normalization. There is also an optional element-wise

11

sum operation for the auxiliary term (γẐ) to refine the final results. To project the
representations back to the 2D space , we first reshape the predictions (n × c −→
h × w × c), and then conduct up-sampling with bilinear interpolation to obtain the
final segmentation maps with original spatial resolution size (h0 × w0 × c).

3.3.4. Variants of SCG-Net models

Table 3 shows some variants of the SCG-Net model that were investigated in this
work. Note that we utilize the same backbone CNN (customized ResNet50) for all
these models. Our proposed SCG-Net framework can be easily extended and tailored
to various deep CNNs and GNN-like networks with flexible configurations w.r.t the
depth (e.g. the number of layers), width (e.g. the size of inputs) and density (e.g. the
number of nodes and hidden features) for different problems.

Table 3. Variants of SCG-Net Models with different settings for

evaluations in this paper. Note that the superscripts 1,2 indicate the

1st and 2nd GNN layers and the subscript ns means no sum of the
auxiliary term.

SCG-Net Variants SCG Layer GNN1 GNN2 Sum(opt)

SCG-GCN SCG GCN GCN 3
SCG-GIN SCG GIN GIN 3
SCG-GCN-GIN SCG GCN GIN 3
SCGae-GCN SCGae GCN GCN 3
SCGdir-GCN SCGdir GCN GCN 3
SCGdir-GCN-GIN SCGdir GCN GIN 3
SCG-GCN ns SCG GCN GCN 7

4. Benchmark datasets

We evaluate our proposed methods on two public benchmark datasets, namely the
ISPRS 2D semantic labeling contest datasets (Rottensteiner et al. 2012). The ISPRS
datasets are comprised of aerial images over two cities in Germany: Potsdam5 and
Vaihingen6. They have been labelled with six common land cover classes: impervious
surfaces, buildings, low vegetation, trees, cars and clutter.

The Potsdam dataset consists of 38 tiles of size 6000 × 6000 pixels with a ground
resolution of 5cm, where 14 of these are used as hold-out test images. The tiles consist
of Red-Green-Blue-Infrared (RGB-IR) four-channel images. While both the digital
surface model (DSM) and normalized DSM (nDSM) data are also included in the
dataset, we only use RGB images in this paper in order to fairly compare with other
work.

The Vaihingen dataset contains 33 tiles of varying size (on average approximately
2100 × 2100 pixels) with a ground resolution of 9cm, of which 17 tiles are used as
hold-out test images. The tiles are composed of Infrared-Red-Green (IRRG) 3-channel
images. Though DSMs and nDSMs data are also available for all images in the dataset,
we only focus on the 3-channel IRRG data in this paper to fairly compare with other
work.

5http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
6http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html

12

5. Experiments and results

In this section, we investigate our proposed methods and networks on the Potsdam and
Vaihingen (Section 5.3) datasets. We first present the training and evaluation details,
and then report both qualitative and quantitative results for the multi-class semantic
labeling task.

5.1. Training details

Following our previous work (Liu, Salberg, and Jenssen 2018), we train the models
using Adam (Kingma and Ba 2014) with AMSGrad (Reddi, Kale, and Kumar 2018)
as the optimizer with weight decay 2 × 10−5 applied to all learnable parameters ex-
cept biases and batch-norm parameters, and polynomial learning rate (LR) decay
(1 − cur iter

max iter)0.9 with the maximum iterations of 108. The learning rate of the bias

parameters is 2 × LR. We use initial LRs of 8.5×10−5
√

2
and utilized a step-wise LR

schedule method that reduces the LR by a factor of 0.85 every 15 epochs. Based on
our training observations to achieve fast and stable convergence, we apply a dice loss
function (Milletari, Navab, and Ahmadi 2016) defined as

Ldice = 1− 1

|Y|
∑
i∈Y

2
∑

j∈C yij ỹij∑
j∈C yij +

∑
j∈C ỹij

, (15)

where Y contains all the labeled nodes, C denotes the label set, and ỹij is the prediction
of the ij-th node with its ground-truth label to be yij .

Together with the two regularization terms Lkl and Ldl as defined in Eq. 9 and
Eq. 11, respectively, the final cost function of our model is defined as

L = Ldice + Lkl + Ldl . (16)

We train and validate the networks for both the Potsdam and Vaihingen datasets
with 4000 randomly sampled patches of size 448× 448 as input and using a batch size
of 4. The training data is sampled uniformly and randomly shuffled for each epoch. We
conduct all experiments in this paper using PyTorch (Paszke et al. 2017) on a single
computer with one NVIDIA 1080Ti GPU.

5.2. Augmentation and evaluation methods

We randomly flip or mirror images for data augmentation (with probability 0.5). The
albumentations library (Buslaev et al. 2020) for data augmentation is utilized in this
work. Please note that all training images are normalized to [0.0, 1.0] after data aug-
mentation. We apply test time augmentation (TTA) via flipping and mirroring (Liu
et al. 2019a). And also we use sliding windows (with 448 × 448 size at a 100-pixel
stride) on a test image and stitch the results together by averaging the predictions of
the over-lapping TTA regions to form the output. The performance is measured by
both the F1-score, and the mean Intersection over Union (IoU).

13

Table 4. Comparisons between our method with other published methods on the hold-out RGB test images

of Potsdam dataset.

Models OA Surface Building Low-veg Tree Car mF1

HED+SEG.H-Sc1 (Marmanis et al. 2016) 0.851 0.850 0.967 0.842 0.686 0.858 0.846
RGB+I-ensemble (Kampffmeyer, Salberg, and Jenssen 2018) 0.900 0.870 0.936 0.822 0.845 0.892 0.873
Hallucination (Kampffmeyer, Salberg, and Jenssen 2018) 0.901 0.873 0.938 0.821 0.848 0.882 0.872
SegNet (Audebert, Le Saux, and Lefèvre 2017) 0.897 0.930 0.929 0.850 0.851 0.951 0.902
DST 2 (Sherrah 2016) 0.903 0.925 0.964 0.867 0.880 0.947 0.917
FuseNet+OSM (Audebert, Le Saux, and Lefèvre 2017) 0.923 0.953 0.959 0.863 0.851 0.968 0.918
DDCM-R50 (Liu et al. 2019a) 0.908 0.929 0.969 0.877 0.894 0.949 0.923
SCG-GCN 0.903 0.924 0.952 0.873 0.893 0.960 0.920

5.3. Test results

Following previous work (Kampffmeyer, Salberg, and Jenssen 2018; Liu et al. 2019a)
for fair evaluation and comparison, the labeled part of the Potsdam dataset is split
into a training set (19 images), a validation set (2 images of 4 10 and 7 10), and a
local test set (3 images of areas 5 11, 6 9 and 7 11). The Vaihingen dataset is similarly
divided into training (10 images), validation (2 images of areas 7 and 9) and local test
set (4 images of areas 5, 15, 21 and 30). While the hold-out test sets contain 14 images
(areas: 2 13, 2 14, 3 13, 3 14, 4 13, 4 14, 4 15, 5 13, 5 14, 5 15, 6 13, 6 14, 6 15 and
7 13) and 17 images (areas: 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35 and
38) for the Potsdam and Vaihingen datasets, respectively.

Table 5. Comparisons between our method with other published methods on the hold-out IRRG test images
of Vaihingen Dataset.

Models OA Surface Building Low-veg Tree Car mF1

ADL 3 (Paisitkriangkrai et al. 2015) 0.880 0.895 0.932 0.823 0.882 0.633 0.833
DNN HCRF (Liu et al. 2019b) 0.878 0.901 0.932 0.814 0.872 0.720 0.848
DST 2 (Sherrah 2016) 0.891 0.905 0.937 0.834 0.892 0.726 0.859
UOA (Lin et al. 2016) 0.876 0.898 0.921 0.804 0.882 0.820 0.865
ONE 7 (Audebert, Le Saux, and Lefèvre 2016) 0.898 0.910 0.945 0.844 0.899 0.778 0.875
DLR 9 (Marmanis et al. 2016) 0.903 0.924 0.952 0.839 0.899 0.812 0.885
GSN (Wang et al. 2017a) 0.903 0.922 0.951 0.837 0.899 0.824 0.887
RWSNet (Jiang et al. 2020) 0.899 0.916 0.947 0.840 0.893 0.860 0.891
DDCM-R50 (Liu et al. 2019a) 0.904 0.927 0.953 0.833 0.894 0.883 0.898
SCG-GCN 0.904 0.924 0.948 0.839 0.897 0.880 0.898

5.3.1. Comparison with other work

We compare our results to other related published work on the ISPRS Potsdam RGB
dataset and Vaihingen IRRG dataset. These results are shown in Table 4 and 5 re-
spectively. Our single model achieves an overall F1-score (92.0%) on the Potsdam
RGB dataset, which is comparable to state-of-the-art (0.3% point lower compared to
the best model DDCM-R50 (Liu et al. 2019a), but 0.2% ∼ 6.0% higher than the re-
maining models). The performance gap between our model with DDCM-R50 may be
explained by the fact that DDCM-R50 utilized multi-scale (both low-resolution and
high-resolution) feature maps for fusion and prediction to achieve the best test results,
while our model only used single-level (the last low-resolution) features for prediction.
Further research is required to improve the SCG-Net’s performance through the ad-
dition of multi-scale architectures in the future. Similarly, our model trained on the
Vaihingen IRRG images, also obtained very competitive performance with 89.8% F1-
score, which is around +1.1% higher than GSN (Wang et al. 2017a) and the same as
the best model DDCM-R50. Fig. 5 and 6 show the qualitative comparisons of the land
cover segmentation results from our model and the ground truths on the test set.

14

5.3.2. Comparison of computational efficiency

We also compared our methods to some popular architectures on the local Potsdam
RGB test set (Liu, Salberg, and Jenssen 2018) in terms of parameter size, computa-
tional cost (FLOPs), inference time on both CPU and GPU, and mIoU evaluated on
the full reference ground truths of the dataset. Table 6 details the quantitative results
of our SCG-Net against others. Compared to PSPNet (Zhao et al. 2016) and Seg-
Net (Badrinarayanan, Kendall, and Cipolla 2017), our model consumes about 10x and
13x less FLOPs with 5x and 4.6x fewer parameters and 21x and 42x faster inference
speed on CPU, but achieves 2.1% and 2.9% higher mIoU respectively. In addition,
compared with the best model DDCM-R50, our model has about 12% fewer parame-
ters with around 40% faster inference speed on GPU, and achieves better performance
on our local Potsdam test set.

Table 6. Quantitative Comparison of parameters size, FLOPs (measured on input image size of 3×256×256),

Inference time on CPU and GPU separately, and mIoU on Potsdam RGB dataset.

Models Backbones
Parameters

(Million)

FLOPs

(Giga)

Inference time

(ms - CPU/GPU)
mIoU∗

U-Net (Ronneberger, Fischer, and Brox 2015) VGG16 31.04 15.25 1460 / 6.37 0.715
FCN8s (Long, Shelhamer, and Darrell 2015) VGG16 134.30 73.46 6353 / 20.68 0.728
SegNet (Badrinarayanan, Kendall, and Cipolla 2017) VGG19 39.79 60.88 5757 / 15.47 0.781
GCN (Peng et al. 2017) ResNet50 23.84 5.61 593 / 11.93 0.774
PSPNet (Zhao et al. 2016) ResNet50 46.59 44.40 2881 / 81.08 0.789
DUC (Wang et al. 2017b) ResNet50 30.59 32.26 2086 / 68.24 0.793
DDCM-R50 (Liu et al. 2019a) ResNet50† 9.99 4.86 238 / 10.23 0.808

SCG-GCN ResNet50† 8.74 4.47 161 / 6.08 0.810

† denotes only the first three bottleneck layers of ResNet50 were used in the model.

5.4. Analysis and ablations

In our analysis and ablation studies, we explore how the graph size and other compo-
nents of our framework such as the adaptive auxiliary term and regularization terms
affect the training and final performance. We also analyze the learned node graphs and
point out some limitations of our model. For the study we choose the SCG-GCN model
with ResNet50 backbone and train and evaluate it on the Vaihingen IRRG dataset.

5.4.1. Effect of the adaptive auxiliary and regularization terms

We evaluated the effectiveness of the proposed adaptive auxiliary term and the reg-
ularization. The test performance is presented in Table 7. Generally, without using
adaptive auxiliary terms (γẐ) and regularization (Lkl + Ldl), the number of training
steps required to reach convergence is increased by over 4 time as shown in Fig 3,
and, when regularization is used alone, the training converges faster, but the test
performance is significantly decreased on small objects (i.e, cars −2.0%) and overall
(−0.8%). Similarly, when only applying the auxiliary term, the convergence speed is
even faster than the default setting (0.6x training steps) while the test results also
became worse both on big objects like buildings (−0.7%) and overall classes (−0.7%).
Fig. 3 illustrates the training performance of the first 18 training epochs with different
settings. Note, both the auxiliary term and the regularization loss can stabilize the
training process and speed up the convergence. However, when the auxiliary term or
the regularization loss is used alone, we observe some degradation in performance.
Note that the validation accuracy shown in the learning curve may have some bias
and will not perfectly estimate the performance of the model due to the fact that our

15

validation set is relatively small and contains only 2 images compared to the 17 images
in the test set.

Table 7. Test performance of different settings on Vaihingen test set.
γẐ Lkl + Ldl SCG OA ∆% Building ∆% Car ∆% mF1 ∆% Steps (K) ∆
7 7 3 0.899 -0.5 0.946 -0.2 -0.877 -0.3 0.893 -0.5 97 4.1x
7 3 3 0.899 -0.5 0.946 -0.2 0.860 -2.0 0.890 -0.8 46 1.9x
3 7 3 0.895 -0.9 0.941 -0.7 0.878 -0.2 0.891 -0.7 15 0.6x
3 3 7 0.887 -1.7 0.929 -1.9 0.829 -5.1 0.874 -2.4 120 5.0x
3 3 3 0.904 - 0.948 - 0.880 - 0.898 - 24 -

* Steps (K) denote training iterations with K=1000. Note that 1K steps = 1 epoch in this work.

Figure 3. Training performance of different settings. Here n/a denotes the training without using adaptive
auxiliary terms (γẐ) and regularization (Lkl + Ldl).

5.4.2. Effect of the graph size

We investigated the effect of node size and corresponding input image size on the
performance. Note that, our backbone-CNN outputs the last feature map with a down-
sample rate of 16 with respect to its input size (i.e., h0 × w0). The node size is thus
set to h0w0

162 accordingly, which could give us the best results based on our experiments.
Changing the input size when the node size remains unchanged (smaller or larger
than h0w0

162) will lead to a performance decline. Table 8 presents the details of the
evaluation results where four models are trained on various input and node settings.
Smaller graph size (nodes = 162) and input size (256× 256× 3) can lead to very fast
inference speed but also result in significantly worse accuracy on small objects such
as cars. Larger node size (nodes = 322or 482) considerably slows down the inference
speed without obtaining better performance (−0.4% in terms of mF1-score). Hence,
our model with node size of 282 achieves the best results on the Vaihingen dataset

16

with very fast inference speed (113 FPS on a GPU). Note that the node size has no
effect on the number of parameters of the model.

Table 8. Test performance of different input sizes and node sizes on Vaihingen test set.

Input Nodes GFLOPs FPS OA ∆% Building ∆% Car ∆% mF1 ∆%
256× 256× 3 162 4.37 178 0.903 -0.1 0.944 -0.4 0.858 -2.2 0.893 -0.5
512× 512× 3 322 17.5 91 0.901 -0.3 0.948 - 0.875 -0.5 0.894 -0.4
768× 768× 3 482 39.4 44 0.901 -0.3 0.946 -0.2 0.870 -1.0 0.893 -0.5
448× 448× 3 282 13.4 113 0.904 - 0.948 - 0.880 - 0.898 -

*FPS means frames per second on GPU (i.e., NVIDIA 1080Ti GPU in this work).

5.4.3. The learned graphs

We consider that the effectiveness and efficiency of our SCG-Net is mainly relying
on the proposed SCG module that is able to construct the underlying non-local con-
textual relations in an end-to-end learnable manner. We visualized the SCG modules
learned node graphs as 2D relation maps (see Figure 4). We highlight 6 representative
nodes/squares (labeled with 8, 86, 165, 210, 624 and 738 separately) marked with
6 circles on both the input image and the ground truth. There are 6 relation maps
from left to the right and top to bottom representing the learned relation graphs for
the six nodes respectively, where dark blue regions represent weak dependency to the
corresponding node, while light color blocks indicate strong relations to the target
node. The relation-map visualizes the learned top-9 weighted-relationships of the tar-
get node (circled square patch) w.r.t its global contextual nodes (light-colored patches
in the images), with gradient color palettes from light green to dark blue indicating
the transition from strong dependency to zero-dependency. We observe that the target
node has been able to interact with long-range neighbor nodes via the learned rela-
tion graph. In addition, when the SCG (the learned node graph) is discarded from
the model as shown in Table 7, the performance of the model is greatly reduced (e.g.
on Car −5.1% and mF1 −2.4%), and also the number of training steps dramatically
increases by 5 times. While the learned graphs by SCG can benefit semantic segmen-
tation tasks in terms of training process and performance, future studies are required
to enhance the interpretability of the learned dependencies.

Table 9. Comparisons of SCG-Net variants on the hold-out IRRG test images of Vaihingen

Dataset.

SCG-Net Variants OA Surface Building Low-veg Tree Car mF1

SCG-GIN 0.901 0.922 0.947 0.836 0.894 0.877 0.895
SCG-GCN-GIN 0.899 0.920 0.946 0.828 0.893 0.888 0.895
SCGae-GCN 0.897 0.919 0.942 0.827 0.892 0.880 0.892
SCGdir-GCN 0.902 0.923 0.947 0.833 0.895 0.881 0.896
SCGdir-GCN-GIN 0.900 0.920 0.946 0.832 0.895 0.886 0.896
SCG-GCN ns 0.899 0.919 0.946 0.834 0.892 0.860 0.890
SCG-GCN 0.904 0.924 0.948 0.839 0.897 0.880 0.898

5.4.4. SCG-Net variants

Additionally, we evaluated variants of the SCG-Net with different configuration set-
tings as shown in Table 3. All models except SCGae-GCN and SCG-GCN ns demon-
strated very close performance (∆ ∼ ±0.3% in terms of mF1-score) on the test set of
Vaihingen dataset as shown in Table 9, and we further observe that when GCN and
GIN are combined together in the framework, the models, such as SCG-GCN-GIN and

17

(b)(a)

(d)(c)

(f)(e)

(h)(g)

Figure 4. Visualization of the learned node graphs (282 nodes) onto 2D relation maps: (a) the input image,

(b) the ground truth, (c) the visualized relation maps of node-8, (d) node-86, (e) node-165, (f) node-210, (g)
node-624, (h) node-738. Dark blue regions represent weak dependency to the corresponding node, while light
color blocks indicate strong relations to the node. Note that we normalized the edge weights to [0.0, 1.0] and
only illustrated the top nine largest weights associated to the target node.

18

SCGdir-GCN-GIN, obtained considerably better results on the small object (i.e, cars
+0.6 ∼ 0.8%).

Buildings TreesLow-veg CluttersSurfacesCars

(b)(a)

(d)(c)

Figure 5. Segmentation results for the test image of Potsdam tile-3 14: (a) the test image, (b) the ground

truth, (c) the predictions of DDCM-R50, (d) the predictions of our SCG-GCN.

5.4.5. Limitations

The performance of GNNs is known to gradually decrease with increasing number of
GNN layers partly due to its over-smoothing issue, where repeatedly applying graph
convolutions eventually makes features of vertices indistinguishable. Our model there-
fore exploits only 2-layer GNNs as the decoder and final semantic prediction simulta-
neously. Despite its promising performance, stacking more GNN layers either in the
decoder or for the prediction significantly hurts the training and test performance of
our model. In addition, we observed that the segmentation performance on the bound-
aries of small and dense objects (e.g, cars) was not as good as the baseline DDCM

19

Buildings TreesLow-veg CluttersSurfacesCars

(b)(a)

(d)(c)

Figure 6. Segmentation results for the test image of Vaihingen tile-27: (a) the test image, (b) the ground
truth, (c) the predictions of DDCM-R50, (d) the predictions of our SCG-GCN.

20

model. The closely located small objects tend to be segmented as a whole big object
(see Figure 6). Future studies are required to further improve the model’s performance
on small objects.

6. Conclusions

We presented a novel self-constructing graph (SCG) framework, which makes use of
learnable latent variables to effectively construct the global context relations (latent
graph structure) directly from the input feature maps. SCG can be used to efficiently
model pixel-wise contextual dependencies at a local and global scale without relying on
manually built prior knowledge graphs. Built upon SCG and graph convolutional net-
works (GCN), our end-to-end SCG-GCN model achieves very competitive performance
on the publicly available ISPRS Potsdam and Vaihingen datasets, with much fewer
parameters, and at a lower computational cost compared to strong baseline models.
Our comprehensive ablation experiments on remote sensing images also demonstrate
that our methods are able to efficiently obtain long-range contextual information and
improve performance by fully leveraging the benefits of both CNNs and variants of
GNNs.

Acknowledgement(s)

The benchmark datasets were provided by the International Society for Photogram-
metry and Remote Sensing (ISPRS). This work was supported by the foundation of
the Research Council of Norway under Grant 272399 and Grant 309439.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the foundation of the Research Council of Norway under
Grant 272399 and Grant 309439.

References

Achanta, R., A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. 2012. “SLIC Super-
pixels Compared to State-of-the-Art Superpixel Methods.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 34 (11): 2274–2282.

Adelipour, Sadjad, and Hassan Ghassemian. 2019. “Building extraction from very high-
resolution synthetic aperture radar images based on statistical and structural in-
formation fusion.” International Journal of Remote Sensing 40 (18): 7113–7126.
https://doi.org/10.1080/01431161.2019.1601280.

21

Audebert, Nicolas, Bertrand Le Saux, and Sébastien Lefèvre. 2016. “Semantic segmentation
of earth observation data using multimodal and multi-scale deep networks.” In Asian Con-
ference on Computer Vision, 180–196. Springer.

Audebert, Nicolas, Bertrand Le Saux, and Sébastien Lefèvre. 2017. “Joint learning from earth
observation and openstreetmap data to get faster better semantic maps.” In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 67–75.

Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla. 2017. “SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation.” IEEE Trans. Pattern Anal.
Mach. Intell. 39 (12): 2481–2495.

Bronstein, Michael M, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
2017. “Geometric deep learning: going beyond euclidean data.” IEEE Signal Processing
Magazine 34 (4): 18–42.

Buslaev, Alexander, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail
Druzhinin, and Alexandr A. Kalinin. 2020. “Albumentations: Fast and Flexible Image Aug-
mentations.” Information 11 (2). https://www.mdpi.com/2078-2489/11/2/125.

Cao, Yue, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han Hu. 2019. “GCNet: Non-Local Net-
works Meet Squeeze-Excitation Networks and Beyond.” In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), 1971–1980.

Chen, Jie, Yarong Han, Li Wan, Xing Zhou, and Min Deng. 2019. “Geospa-
tial relation captioning for high-spatial-resolution images by using an attention-
based neural network.” International Journal of Remote Sensing 40 (16): 6482–6498.
https://doi.org/10.1080/01431161.2019.1594439.

Chen, Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
2018. “DeepLab: Semantic image segmentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs.” IEEE Trans. Pattern Anal. Mach. Intell. 40 (4): 834–848.

Chiang, Wei-Lin, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. 2019.
“Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional
Networks.” arXiv preprint arXiv:1905.07953 .

Chung, Fan, Linyuan Lu, and Van Vu. 2003. “Spectra of random graphs with given ex-
pected degrees.” Proceedings of the National Academy of Sciences 100 (11): 6313–6318.
https://www.pnas.org/content/100/11/6313.

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. 2016. “Convolutional neural
networks on graphs with fast localized spectral filtering.” In Advances in neural information
processing systems, 3844–3852.

Fey, Matthias, and Jan E. Lenssen. 2019. “Fast Graph Representation Learning with PyTorch
Geometric.” In ICLR Workshop on Representation Learning on Graphs and Manifolds, .

Fu, Jun, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu. 2019.
“Dual attention network for scene segmentation.” In 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 3146–3154.

Garcia, Victor, and Joan Bruna. 2017. “Few-shot learning with graph neural networks.” arXiv
preprint arXiv:1711.04043 .

Gori, Marco, Gabriele Monfardini, and Franco Scarselli. 2005. “A new model for learning
in graph domains.” In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., Vol. 2, 729–734. IEEE.

Hamilton, Will, Zhitao Ying, and Jure Leskovec. 2017. “Inductive representation learning on
large graphs.” In Advances in Neural Information Processing Systems, 1024–1034.

Hammond, David K, Pierre Vandergheynst, and Rémi Gribonval. 2011. “Wavelets on graphs
via spectral graph theory.” Applied and Computational Harmonic Analysis 30 (2): 129–150.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep residual learning for
image recognition.” In Proceedings of the IEEE conference on computer vision and pattern
recognition, 770–778.

Hu, Han, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. 2018. “Relation networks for
object detection.” In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 3588–3597.

22

Huang, Wenbing, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. “Adaptive sampling to-
wards fast graph representation learning.” In Advances in neural information processing
systems, 4558–4567.

Islam, Md. Amirul, Sen Jia, and Neil D. B. Bruce. 2020. “How much Position Information
Do Convolutional Neural Networks Encode?” In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net.
https://openreview.net/forum?id=rJeB36NKvB.

Jiang, Jie, Chengjin Lyu, Siying Liu, Y. He, and Xuetao Hao. 2020. “RWSNet: a semantic
segmentation network based on SegNet combined with random walk for remote sensing.”
International Journal of Remote Sensing 41: 487 – 505.

Kampffmeyer, Michael C. 2018. “Advancing Segmentation and Unsupervised Learning Within
the Field of Deep Learning.” PhD dissertation, UiT The Arctic University of Norway.
https://munin.uit.no/handle/10037/14264.

Kampffmeyer, Michael C., Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang, and Eric P
Xing. 2019. “Rethinking knowledge graph propagation for zero-shot learning.” In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 11487–11496.

Kampffmeyer, Michael C., Arnt-Børre Salberg, and Robert Jenssen. 2018. “Urban Land Cover
Classification With Missing Data Modalities Using Deep Convolutional Neural Networks.”
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (6):
1758–1768.

Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for Stochastic Optimization.”
CoRR abs/1412.6980. http://arxiv.org/abs/1412.6980.

Kingma, Diederik P, and Max Welling. 2013. “Auto-encoding variational bayes.” arXiv preprint
arXiv:1312.6114 .

Kipf, Thomas N, and Max Welling. 2016a. “Semi-supervised classification with graph convo-
lutional networks.” arXiv preprint arXiv:1609.02907 .

Kipf, Thomas N, and Max Welling. 2016b. “Variational graph auto-encoders.” arXiv preprint
arXiv:1611.07308 .

Knyazev, Boris, Xiao Lin, Mohamed R Amer, and Graham W Taylor. 2019. “Image Classifi-
cation with Hierarchical Multigraph Networks.” arXiv preprint arXiv:1907.09000 .

Landrieu, Loic, and Martin Simonovsky. 2018. “Large-scale point cloud semantic segmentation
with superpoint graphs.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 4558–4567.

Li, Yansheng, Ruixian Chen, Yongjun Zhang, and Hang Li. 2020. “A CNN-GCN Framework for
Multi-Label Aerial Image Scene Classification.” In IGARSS 2020 - 2020 IEEE International
Geoscience and Remote Sensing Symposium, 1353–1356.

Liang, Xiaodan, Zhiting Hu, Hao Zhang, Liang Lin, and Eric P Xing. 2018. “Symbolic graph
reasoning meets convolutions.” In Advances in Neural Information Processing Systems,
1853–1863.

Lin, Guosheng, Chunhua Shen, Anton Van Den Hengel, and Ian Reid. 2016. “Efficient piecewise
training of deep structured models for semantic segmentation.” In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 3194–3203.

Liu, Qinghui, Michael C. Kampffmeyer, Robert Jenssen, and Arnt-Børre Salberg. 2019a.
“Dense Dilated Convolutions Merging Network for Semantic Mapping of Remote Sensing
Images.” 2019 Joint Urban Remote Sensing Event (JURSE) .

Liu, Qinghui, Michael C. Kampffmeyer, Robert Jenssen, and Arnt-Børre Salberg. 2020a.
“Dense Dilated Convolutions’ Merging Network for Land Cover Classification.” IEEE Trans-
actions on Geoscience and Remote Sensing 58 (9): 6309–6320.

Liu, Qinghui, Michael C. Kampffmeyer, Robert Jenssen, and Arnt-Børre Salberg. 2020b.
“Multi-View Self-Constructing Graph Convolutional Networks With Adaptive Class Weight-
ing Loss for Semantic Segmentation.” In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 199–205.

Liu, Qinghui, Michael C. Kampffmeyer, Robert Jenssen, and Arnt-Børre Salberg. 2020c. “Self-
Constructing Graph Convolutional Networks for Semantic Labeling.” In Proceedings of

23

IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, .
Liu, Qinghui, Arnt-Børre Salberg, and Robert Jenssen. 2018. “A Comparison of Deep Learning

Architectures for Semantic Mapping of Very High Resolution Images.” In IGARSS 2018 -
2018 IEEE International Geoscience and Remote Sensing Symposium, July, 6943–6946.

Liu, Yansong, Sankaranarayanan Piramanayagam, Sildomar T Monteiro, and Eli Saber. 2019b.
“Semantic segmentation of multisensor remote sensing imagery with deep ConvNets and
higher-order conditional random fields.” Journal of Applied Remote Sensing 13 (1): 016501.

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. 2015. “Fully Convolutional Networks
for Semantic Segmentation.” In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 3431–3440.

Marino, Kenneth, Ruslan Salakhutdinov, and Abhinav Gupta. 2016. “The more you know:
Using knowledge graphs for image classification.” arXiv preprint arXiv:1612.04844 .

Marmanis, Dimitrios, Konrad Schindler, Jan Dirk Wegner, Silvano Galliani, Mihai Datcu, and
Uwe Stilla. 2016. “Classification With an Edge: Improving Semantic Image Segmentation
with Boundary Detection.” CoRR abs/1612.01337. http://arxiv.org/abs/1612.01337.

Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. 2016. “V-net: Fully convolutional
neural networks for volumetric medical image segmentation.” In 2016 Fourth International
Conference on 3D Vision (3DV), 565–571. IEEE.

Mou, Lichao, and Xiao Xiang Zhu. 2018. “RiFCN: Recurrent Network in Fully Convolutional
Network for Semantic Segmentation of High Resolution Remote Sensing Images.” CoRR
abs/1805.02091. http://arxiv.org/abs/1805.02091.

Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov. 2016. “Learning convolutional
neural networks for graphs.” In International conference on machine learning, 2014–2023.

Ouyang, Song, and Yansheng Li. 2021. “Combining Deep Semantic Segmentation Network
and Graph Convolutional Neural Network for Semantic Segmentation of Remote Sensing
Imagery.” Remote Sensing 13 (1). https://www.mdpi.com/2072-4292/13/1/119.

Paisitkriangkrai, Sakrapee, Jamie Sherrah, Pranam Janney, Van-Den Hengel, et al. 2015. “Ef-
fective semantic pixel labelling with convolutional networks and conditional random fields.”
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, 36–43.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. “Automatic
differentiation in PyTorch.” In NIPS-W, .

Peng, Chao, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. 2017. “Large Kernel
Matters–Improve Semantic Segmentation by Global Convolutional Network.” arXiv preprint
arXiv:1703.02719 .

Qi, Xiaojuan, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. 2017. “3d graph
neural networks for rgbd semantic segmentation.” In Proceedings of the IEEE International
Conference on Computer Vision, 5199–5208.

Reddi, Sashank J, Satyen Kale, and Sanjiv Kumar. 2018. “On the convergence of Adam and
beyond.” arXiv preprint arXiv:1904.09237 .

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015. “U-Net: Convolutional networks
for biomedical image segmentation.” In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, 234–241. Springer.

Rottensteiner, Franz, Gunho Sohn, Jaewook Jung, Markus Gerke, Caroline Baillard, Sebastien
Benitez, and Uwe Breitkopf. 2012. “The ISPRS benchmark on urban object classification
and 3D building reconstruction.” ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences I-3 (2012), Nr. 1 1 (1): 293–298.

Sherrah, Jamie. 2016. “Fully Convolutional Networks for Dense Semantic Labelling of High-
Resolution Aerial Imagery.” CoRR abs/1606.02585. http://arxiv.org/abs/1606.02585.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 L ukasz Kaiser, and Illia Polosukhin. 2017. “Attention is All you Need.” In Advances in
Neural Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 5998–6008. Curran Associates,

24

Inc. http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.
Velickovic, Petar, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon

Hjelm. 2019. “Deep Graph Infomax.” In ICLR (Poster), .
Wang, Hongzhen, Ying Wang, Qian Zhang, Shiming Xiang, and Chunhong Pan. 2017a. “Gated

convolutional neural network for semantic segmentation in high-resolution images.” Remote
Sensing 9 (5): 446.

Wang, Panqu, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison
Cottrell. 2017b. “Understanding convolution for semantic segmentation.” arXiv preprint
arXiv:1702.08502 .

Wang, Xiaolong, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. “Non-local neural
networks.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 7794–7803.

Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. 2019. “Dynamic graph cnn for learning on point clouds.” ACM Transactions on
Graphics (TOG) 38 (5): 146.

Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. “How Powerful are Graph
Neural Networks?” In International Conference on Learning Representations, .

Zhang, Hang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
and Amit Agrawal. 2018. “Context encoding for semantic segmentation.” In Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, 7151–7160.

Zhao, Hengshuang, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. 2016. “Pyramid
scene parsing network.” arXiv preprint arXiv:1612.01105 .

Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. 2015. “Ob-
ject detectors emerge in deep scene cnns.” IEEE International Conference on Learning
Representation (ICLR) .

Zhou, Kaixiong, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. 2020. “Towards
Deeper Graph Neural Networks with Differentiable Group Normalization.” arXiv preprint
arXiv:2006.06972 .

25

