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1 Introduction

Substantial effort has recently been placed on developing seasonal weather forecasting
systems by the meteorological community (Johnson et al., 2019; MacLachlan et al., 2015).
Given the ambitious scope of forecasting with accuracy at such long lead-times, it is clear
that there will have to be concerted coordination between the numerical modeling and
statistical post-processing communities. To aid in this development, the Copernicus Cli-
mate Data Store (CDS) allows meteorological organizations to upload the output of their
seasonal forecasting systems to a centralized location and in a roughly consistent format.
In addition, hindcasts are supplied, which allow for the correction of systematic model er-
ror (i.e. bias, variance and quantile correction). When assessing statistical post-processing
techniques, these hindcasts also form the basis for out of sample performance validation.

Individual users of CDS can then download this output and use it to research their own
seasonal forecasting methodology, as well as issue their own seasonal forecasts. The data
hosted on the CDS are immense, and there can understandably be a delay in retrieving all
hindcasts for a given meteorological quantity of interest from CDS. Furthermore, the raw
format and occasional quirks of much of this output can require substantial additional
effort on the part of a researcher in order to organize the data store for research purposes.
Our goal has been to provide a single centralized dataset on which the majority of these
steps have already been performed for monthly-mean forecasts for three important met-
eorological quantities, namely two meter temperature, total precipitation and ten meter
wind speed.

Given the existence of multiple NWP seasonal systems, it is natural for researchers to con-
sider multi-model post-processing methodologies. Furthermore, on the seasonal time-
scale, it is important to allow researchers to ask joint questions across multiple meteor-
ological quantities, spatial areas and/or multiple time horizons. Ideally, these topics can
be addressed in a probabilistic manner. Therefore, postprocessing methodologies must in
some manner either retain the dependence structure present in the underlying raw model
output, or layer a model for joint distributions on top of a univariate pooling methodo-
logy. In order to be useful, a benchmark dataset must therefore allow for both approaches
to be entertained.

Seasonal NWP output is subject to persistent bias and variance issues that render model
output essentially unusable if not corrected for, which obviates the need for statistical
post processing. A host of post processing methodologies for seasonal NWP output have
been proposed, see e.g. Hemri et al. (2020) for a comprehensive review of different tech-
niques. Our objective with the proposed dataset is to perform a reasonable baseline post-
processing on which more sophisticated methods can be developed. This approach not
only renders the model output useful for downstream modeling, but also can serve as a
benchmark post-processing methodology in its own right with which more sophisticated
approaches can be compared quickly.

We use a straightforward mean and variance correction system, as the approach is parsi-
monious and yet still serves as a realistic baseline methodology. In particular, it retains
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much of the multivariate structure of the ensemble system, which regression based ap-
proaches such as MOS would destroy. Furthermore in the context of surface temperature,
Hemri et al. (2020) shows conclusively that local EMOS type methods performed poorly,
partially due to a lack of substantial training data. The fact that our methodologies re-
tain the key dependencies in the underlying ensemble is also useful in that it e.g. allows
for joint analyses to be conducted without the need to elicit context-specific multivariate
MOS distributions, or conduct the explicit joint postprocessing techniques outlined in
Hemri et al. (2020).

The structure of this report is as follows. In Section 2 we discuss post processing method-
ologies for monthly mean values of seasonal forecasting systems. In Section 3 we discuss
the data that are retrieved from CDS and subsequently post-processed. Section 4 then
outlines the structure of the dataset. Section 5 concludes.

2 Methods

In this section we outline the statistical postprocessing of seasonal NWP output for monthly
mean values. Our methodology is based on anomaly standardization. This reduces the
output of an NWP monthly mean to a “standardized anomaly”, which can then be re-
scaled and mean-adjusted for any chosen observational /reanalysis reference dataset. In
our examples, we chose the ERA5 data as the relevant reference data.

Let M be a collection of NWP models which issue forecasts over a set of locations S for
a collection of weather quantities X In the course of a year, each system has a collection
of initialization times 7 and Jj; ensemble members, which vary according to the model
M € M and a collection of years ) over which the model has been run. We focus on
monthly mean values and each system supplies forecasts for L months ahead for each
initialization date (In our case L = 5). Thus x5y, is the jth ensemble member of model
m for weather quantity z € X at location s € S for initialization time ¢ € 7 and lead-
month ! = {0,...,L}.

It is well established that on a seasonal timescale the raw output x4, is rarely useful
on its own due to systematic model bias. Thus, we will always post-process this model
output. From the output z,,,4,1; we construct several summary statistics which are each
specific to the system, initialization and lead-time in question. These are

* Climatology

1 Im
Tmstl = W Z Z Tmsytlj
m

yey j=1

e Variance

J,
1 ud _
O—r2nstl = |y’J 1 E § (xmsytlj - xmstl)z
m

yey j=1

* Raw Anomaly

fi‘msytlj = Tmsytlj — Tmstl

i
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¢ Standardized Anomaly
- _ = / 2
Tmsytl = xmsytlj/ O nstl®

The collection of standardized anomalies can then be used to issue a probabilistic fore-
cast based on the multi-model system output. Furthermore, as opposed to regression-
based MOS methods, the dependence structure in the raw ensemble output is carried
over to the standardized anomalies. This means that probabilistic inquiries on two separ-
ate quantities in X, separate lead times, or spatial areas in S can be addressed even after
standardization.

The process above yields a ) Jy; member ensemble of monthly mean forecasts. From
this ensemble, any number of summary quantities can be derived such as the mean level,
the deciles of the distribution for each combination of sytl, i.e. on a location, forecast year,
forecast time and lead time basis, for each variable in question. By also retaining which
system a given standardized anomaly came from, it is possible to assess the contribution
of each NWP model to the overall performance of the multi-model system and address
the effect of ensemble size on performance.

The anomaly standardization procedure allows the model output to then be used rel-
ative to any observational product of interest. One obvious choice to which the output
can be compared is the ERAS reanalysis data, which are also accessible via CDS and on
the same grid. In this case, comparing standardized anomalies of the ERA5 data to the
standardized anomalies of the NWP output is equivalent to doing so on the rescaled
level. Therefore, to allow for rapid validation of any proposed method, we supply the
ERADJ data in a leave-one-year-out standardized anomaly format.

In particular consider the reference observation Y, for location s € S year y € ) and
month n. In a leave-one-year-out context, these data are not observed and thus must be
excluded from calculation of climatologies and standard deviations. Thus, we define the
leave-year-out climatology and standard deviation as

— 1
}/sny = }/sum
V=1 wEY wH#Y
1 _
O'gny = ‘y‘ _9 Z (}/;wn - }/;nwy)Q
weY wH#y

We then supply the leave-year-out standardized anomaly as

1/sny = (Y:eny - sty)/ Ugny'

This enables various methodologies to be quickly compared relative to an established
reanalysis dataset. In particular, the first “forecast” to which any methodology is com-
pared is often the climatology. We note that in our framework, the climatology forecast is
equivalent to a forecast of 0, and thus Yy, is also the leave-year-out error of the climato-
logy forecast, which enables skill scores to be rapidly calculated.
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3 Input Data and Derived Products

Our dataset uses the output from five “core” systems hosted on the CDS, namely the
ECMWEF, UKMO, Meteo France, CMCC and DWD forecasting systems. These systems
report their raw, subdaily output on slightly different grids, but CDS natively converts
all output for the globe to the 1° regular grid for monthly mean values. We use these
converted datasets as our basis for development. We use the full global data, thus 65160
grid points and include month lead times 1 through 3 in our dataset, as these lead times
are often of primary interest'.

CDS Forecasts began being issued in January 2017, and for each forecast month hindcasts
for the period 1993-2016 are also supplied. Typically, hindcasts for a given initialization
month are first published alongside (or one month before) the associated forecast. In ad-
dition, ensemble sizes for the issued forecasts are typically larger than those supplied in
the hindcast period. Furthermore, models are under constant development and thus each
system is often updated several times (with only the hindcast period reissued). The dy-
namic nature of this data store is simultaneously realistic (in that it represents the reality
of working with constantly evolving forecast products) and problematic from the per-
spective of conducting research on a consistent dataset.

We therefore only consider the hindcast period 1993-2016, which leads to a consistent en-
semble size?. Furthermore, for a particular initialization month, we use the model num-
ber that was in use for that month in 2021.> Thus for the systems UKMO and Meteo
France, this implies that different initialization months may have different system num-
bers associated with them. However, for all years in the period 1993-2016 the same set of
model numbers are used for each initialization month. We feel this gives the benchmark
dataset a desirable degree of consistency, while also representing the dynamic nature of
the underlying forecasting framework that we are researching, in that periodic model
changes are part of the forecasting environment.

In addition to these forecast data, we have collected the ERA5 reanalysis data on the
same grid and for the associated period. Both the systems and reanalysis data are then
converted into standardized anomalies as discussed in Section 2. We consider three sur-
face variables in our dataset, namely two meter temperature, total precipitation and ten
meter wind speed.

1. All data are downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store

2. The model output for January 1993 is missing for the UKMO model and is supplied as missing values in
our dataset

3. In particular, for ECMWF this is system 5 throughout. For UKMO this is system 15 for January and
February and system 600 for the remaining months. For Meteo France this is system 7 for January through
June and system 8 for July through December. For DWD and CMCC this is system 21 and 35, respectively,
for all months
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4 Dataset structure

Our dataset is a single netcdf file containing six arrays*. Each array is named to indicate
which meteorological variable it is associated with (2m_temperature, total_precipitation,
10m_windspeed) and whether it is model output (nwp) or reanalysis data (era). Thus,

the array 2m_temperature_nwp contains the standardized anomalies for the NWP out-

put for two meter temperature and 10m_windspeed_era contains the array of leave year

out standardized anomalies for the ERA5 data.

The nwp arrays all have six dimensions, namely lon, lat, forecast_year, forecast_month,
lead_month, global_ensemble_number. An auxiliary variable, system, maps the global
ensemble number to each of the five systems. The era arrays have five dimensions, which
are the same as the nwp arrays, but excluding the global ensemble number dimension. We
have structured the era arrays to align directly with the structure of the nwp arrays. This
means that a given month of reanalysis data is repeated three times in this array. This is
done to reduce what can otherwise be a rather tedious bookkeeping exercise to align a
forecast year, forecast month, lead time triple with the associated observation year and
month pair. This does imply that the era arrays are three times as large as is strictly neces-
sary. However, as the netcdf file is compressed, the actual increase in size is substantially
less and the convenience of this structure makes this, in our opinion, worth the extra size.

5 Conclusions

We have outlined a dataset whose primary purpose is to accelerate research into the stat-
istical postprocessing of seasonal weather forecasts. The motivation for this dataset was
our experience working with the CDS data store in its raw format. A substantial amount
of time was spent simply organizing and processing these data, leaving less room for the
investigation of methodologies.

Design choices for this dataset were therefore made primarily with speed in mind. It
should now be possible for other researchers to almost immediately begin investigating
new methodologies and ascertain the cross validated skill of these methods, both relative
to the basic climatology forecast (which is conveniently 0 in our data for all quantities)
and relative to a straightforward anomaly standardization approach. While considerable
effort was spent to structure the dataset to allow for rapid investigations, we otherwise
wanted to give the researcher as much flexibility as possible. We therefore chose to have
a fully global dataset, to include a number of lead times and three important variables.
Most importantly, we left the ensemble nature of the underlying systems intact, enabling
a variety of analyses to be entertained.

At this stage, it should be relatively straightforward to perform a large number of inter-

4. Please note that this report is currently under submission at a journal specializing in the dissemination
of scientific datasets. The intention is for the dataset to then be published and hosted via this journal. Indi-
viduals interested in receiving the dataset before this process has been completed are welcome to contact the
first author directly
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esting analyses. Since the system to which each global ensemble member is associated has
been retained, a natural investigation would be the relative contribution to skill of each
forecasting system. Questions related to the forecasting skill of compound events across
different meteorological quantities, geographic areas or lead times can also be considered.
Furthermore, these data would be amenable to the investigation of more involved ma-
chine learning approaches to post processing.
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