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1 Introduction
Point process methodology is applied in diverse scientific fields to model and predict
earthquakes (Eberhard et al., 2012), crime rates (Mohler et al., 2011), urban development
(Pourtaheri and Vahidi-Asl, 2011), plant and cellular systems (Waller et al., 2011), and
animal colonies (Edelman, 2012), to name but a few examples. In prediction settings,
model validation methods are needed to assess the predictive performance of compet-
ing models. Such methods may further provide goodness-of-fit diagnostics to identify
potential shortcomings in either the fitted model or the underlying scientific hypothesis.
Previously proposed model validation methods for point processes include the work of
Baddeley et al. (2005) and Zhuang (2006), who define a pixel-based residual diagnostic
framework similar to that commonly applied to Poisson log-linear regression, pattern
transformation methods as reviewed in Clements et al. (2011), and diagnostics based on
summary statistics such as the K-function (Baddeley et al., 2011).

There is a variety of applications such as earthquake rate forecasting (Schorlemmer et al.,
2018) or distribution of species where spatial point process models are used as probabil-
istic forecasts for spatial point patterns, and forecast validation techniques are required.
Forecast validation differs from model fitting in that it requires a predictive distribution
being issued unknowing the observation, whereas in model fitting it is typically assessed
how good a parametric model can explain known observations. Probabilistic forecasts are
commonly evaluated by means of scoring rules. A scoring rule comprises the information
contained in a predictive distribution F and the target observation y into a single num-
ber, the score S(y, F ). A unified theory of scoring rules has been established in the two
papers Gneiting et al. (2007); Gneiting and Raftery (2007). They argue that scoring rules
ought to be proper, i.e. the expected score should get optimal when the true distribution
of the observation is predicted.

In the theory of spatial point processes, the use of scoring rules has so far been limited
to the logarithmic score, which is the negative log-likelihood of the predictive model at
the observation, Slog(y, f) := log(f(y)) where f is the predictive density, see Daley and
Vere-Jones (2004). This is perhaps due to the complexity of the observation space, which
makes it challenging to construct proper scoring rules for point processes that are useful
in practice.

Motivated by the lack of scoring rules in the point process literature, we introduce a
new class of proper scoring rules by combining well-known summary statistics for point
processes with the continuous ranked probability score (CRPS). Unlike the logarithmic
score, these scores can be approximated by Monte-Carlo methods, and do not require
knowledge of the exact density function of the process. This is a substantial advantage
in the context of spatial point processes, as for many common models, densities are only
known up to untractable normalizing constants.

Our scores rely on summary statistics such as the intensity function or Ripley’sK-function
that are well-known to practicioners in the field. This makes the scores easily inter-
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pretable in the sense that a better score indicates that the summary statistic at hand is
in good agreement between the predictive distribution and a given observation. Import-
antly, different summary statistics can be used in order to target different properties of
the point process, such as homogeneity or clustering. We demonstrate the favourable
performance of these scoring rules in a simulation study.

The construction of the scores is based on a simple proposition stating essentially that
proper scores remain proper under measurable mappings. We believe this proposition to
be useful beyond point processes, as it can generally be used to construct proper scoring
rules when the observation space is complicated, simply by mapping the observation
space into a simpler space, where proper scores do exist.

Proper scoring rules necessarily provide less information than many diagnostic tools,
since they reduce observation and predictive distribution to just a single number. On the
other hand, this can often be an advantage, as they make it easy for decision-makers to
discriminate between competing models that have potentially very different character-
istics. Generally, no parametric assumptions are posed on the predictive distributions.
Propriety prevents hedgeing and encourages forecasters to report their true beliefs and
thus ensures that decision-theoretic principles are obeyed.

There are many diagnostic tools for the validation of point process models available in
the literature (see overviews from the perspective of earthquake modeling can be found
in Bray and Schoenberg (2013); Gordon et al. (2015). In the following we briefly discuss
some of these tools, and explain why we believe that proper scoring rules are a valuable
addition to this tool set.

Residual plots were introduced in Baddeley et al. (2005) and are powerful for detecting
misspecifications of fitted point process models. Several residuals can be defined which
typically have mean 0 when the fitted model is correct. Systematic deviations from 0
therefore indicate miscalibration, and a range of diagnostic plots based on residuals can
be considered. While these can unveil systematic model errors, it is often difficult to com-
pare different models based on these plots. According to their diagnostic nature, they do
not provide an objective measure allowing directly to infer which of several models is
calibrated best.

Other commonly applied evaluation tools are various information criteria (e.g. AIC and
BIC). These are closely related to the logarithmic score, but apply an additional penalty
to the number of parameters used by the models. Therefore, they suffer from similar lim-
itations as the logarithmic score and cannot be computed for some point process models.
Dawid (1984) argues that, in a standard Bayesian setting where the predictive distribu-
tion is known up to several parameters, the distribution of which is updated whenever a
new observation becomes available, the BIC and the logarithmic score are asymptotically
equivalent, in the sense that their quotient converges to 1 as the number of observations
goes to∞. We refer to (Gneiting and Raftery, 2007, Section 7) for more details. Generally,
penalizing the number of parameters is uncommon in the context of forecast validation,
as the number of parameters might depend on how the competing models are paramet-
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rized which might lead to ambiguities. In this setting, overfitting by choosing models
with too many parameters is automatically punished, since models are fitted in-sample
and then compared to out-of-sample observations.

There are, moreover, several tests whether an observed point pattern is likely to be a ran-
dom draw of an issued predictive distribution. These tests mostly originating from earth-
quake forecasting, see Schorlemmer et al. (2018) and references therein. They measure
the agreement between a forecast and an observation set, outputting simulation-based
p-values, that can indicate a significant disagreement. They do, however, not allow for
model comparison, as a higher p-value cannot be directly interpreted as better perform-
ance. Some comparative tests and metrics also exist (e.g. Clements et al. (2011) and Bad-
deley et al. (2011)), some based on residual scores from Baddeley et al. (2005); however,
these do not focus on specific properties of interest on point process model performance
(e.g spatial distribution or clustering). They also do not provide an objective score by
which more than two models may be ranked.

This article is organized as follows. Section 2 contains the theoretical background, includ-
ing a brief introduction to proper scoring rules and spatial point processes. In Section 3
we derive proper scoring rules for point processes based on summary statistics. Section 4
provides simulation studies analyzing the performance of the introduced scores. In Sec-
tion 5 we apply the summary statistic scores to an example data set. Section 6 concludes.

2 Proper scoring rules and point processes
Scoring rules assess the accuracy of probabilistic forecasts by assigning a numerical pen-
alty to each forecast-observation pair. Given a measurable observation space O and a set
P of probability measures on O, a scoring rule is a mapping

S : O ×P → R := R ∪ {∞}, (2.1)

such that the mapping y 7→ S(y, F ) is integrable with respect to the measure G for every
F,G ∈ P . We generally assume scoring rules to be negatively oriented, interpreting the
score as a penalty, such that smaller scores indicate better predictions.

A scoring rule is proper relative to P if

EGS(Y,G) ≤ EGS(Y, F ) for all F,G ∈ P , (2.2)

that is, if the expected score for a random observation Y with distribution G is optimized
if the true distribution is issued as the forecast, F . The scoring rule is strictly proper relative
to the class P if (2.2) holds, with equality only if F = G. Forecast evaluation based on
proper scoring rules encourages an honest forecast and prevents hedging to how the
forecast is evaluated. That is, the perceived performance cannot be improved by a willful
divergence of the forecast from the true distribution; see e.g. the discussion in Section 1
of Gneiting (2011).

Competing forecasting methods can be compared by evaluating their mean scores over
an out-of-sample test set, and the method with the smallest mean score is preferred. For
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a small set of forecast-observation pairs, the mean score is commonly associated with a
large uncertainty, see Thorarinsdottir and Schuhen (2018). Formal tests of the null hy-
pothesis of equal predictive performance can also be employed, such as the Diebold-
Mariano test (Diebold and Mariano, 1995) or permutation tests (Good, 2013).

We consider scoring rules for spatial point processes on Rd with d = 2, 3, ..., with a
bounded observation window W ⊂ Rd. The observation space O is the space of count-
able subsets of W , which we will denote by W∪. A spatial point process X is a random
variable taking values in W∪ with almost surely finitely many points. We use F,G, ... to
denote distributions of point processes. Lowercase bold letters denote non-random point
patterns, and in particular y is used to denote the observation. The definition (2.2) relies
on the construct of a random observation, which we will denote Y. For some function f ,
the notation EF [f(X)] is used to denote the expectation of f(X) when X is distributed
according to F . For a comprehensive overview on spatial point processes, we refer to
Daley and Vere-Jones (2007); Møller and Waagepetersen (2003).

Summary statistics of point processes are powerful tools for exploratory data analysis
and model selection. We introduce two important examples.

Example 2.1 (Intensity function). The intensity function λ : W → R of a point process model
F is defined by the property ∫

B
λ(w) dw = EF [n(X ∩B)],

for all measurable sets B ⊂ W . Here, n(X ∩ B) denotes the number of points of X that fall into
the set B.

The intensity measures the spatial distribution of points in the sense that a high intens-
ity highlights areas where more points are expected. Whereas Poisson point processes
are fully defined by their intensity, the intensity contains no information about interac-
tion of points, i.e. whether the points repel each other or tend to cluster. This interaction
behaviour is analyzed by Ripley’s K-function, see Baddeley et al. (2000).

Example 2.2 (Ripley’sK-function). For a point processF with intensity λ,Ripley’sK-function
is defined as

K(r) =
1

|W |
EF

[ ∑
x1,x2∈X,
x1 6=x2

1{‖x1 − x2‖ < r}
λ(x1)λ(x2)

]
,

for r > 0.

Roughly speaking, K(r) indicates clustering at distances up to r. The K-function of a
Poisson process is K(r) = 2πd/2

Γ(d/2)dr
d. If, for a point process model, K(r) is larger than this

value for small r, the model has more expected point pairs with distance less than r than
a Poisson model, and the process exhibits clustering. Other examps of popular summary
statistics include the F -, G-, and J-functions as well as the second order intensity. For
more details we refer to Møller and Waagepetersen (2003, Chapter 4).
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Bearing the two examples above in mind, we make the following definition. Note that in
both examples the summary statistic is function-valued, taking values from a space R.
For the intensity function, we haveR = W and for the K-function, we haveR = (0,∞).

Definition 2.1. Consider a class of predictive distributions P on W∪ and a measurable space
R. A summary statistic is a mapping T : P × R → R. We sometimes denote TF (r) instead of
T (F, r). A summary statistic estimator is a mapping T̂ : W∪ ×R → R.

In particular, we assume estimators for summary statistics to be based on a single point
pattern, which is the case for all standard estimators for the summary statistics mentioned
above.

Not all summary statistics are well-defined for all point process models. For example,
the K-function is only well-defined for second order reweighted stationary processes,
see Baddeley et al. (2000). In view of Definition 2.1, let us remark that throughout this
paper we assume all mappings between measurable spaces to be measurable. Products of
measurable spaces are equipped with the product σ-algebra. For mappings φ : P ×M→
M′, whereM,M′ are measurable spaces and P is the space of predictive distributions,
we assume that φ(F, ·) :M→M′ is measurable for all F ∈ P.

3 Proper scoring rules based on summary statistics
When dealing with forecasts taking values in a complex observation space O, we can
more effectively validate and compare models by focusing on a certain property of in-
terest. This approach is not new; in the context of multivariate forecasts, the Dawid-
Sebastiani score (Dawid and Sebastiani, 1999) that focuses on mean and covariance of
a multivariate forecast, and the variogram score (Scheuerer and Hamill, 2015) focuses on
how the spatial autocorrelation of a spatial prediction decays with distance. We adapt
this principle and show how it can be applied to validate point process forecasts.

In point process forecasts, researchers often focus on the number and spatial distribution
of points or clustering behavior of the process. We can use summary statistics for such
specific properties to construct proper scoring rules sensitive to the same property. This
approach has several advantages. It is easily applicable and does not impose any condi-
tions on the predictive distribution. Thus, it can be used to directly compare predictive
performance of any collection of point process models. Secondly, the derived scoring
rules are always proper, and therefore allow for easy comparison of predictive perfo-
mance following decision-theoretic principles.

We now provide several results that can be used to construct proper scoring rules from
summary statistics. We denote in the following by P an arbitrary but fixed class of pre-
dictive distributions, and speak of propriety rather than propriety relative to P.

Proposition 3.1. Let r ∈ R be fixed. Assume that T̂ is an unbiased estimator for T in the sense
that EF [T̂ (Y, r)] = T (F, r) for all F ∈ P . Then the scoring rule

ST (y, F, r) := (T̂ (y, r)− T (F, r))2
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is proper.

Proof. This follows directly from the fact that for any random variable Y , the function
c 7→ E[(Y − c)2] gets minimal in c = E[Y ].

The score ST is usually not strictly proper as we may have T (F, r) = T (G, r) for distribu-
tions F 6= G, see e.g. Baddeley and Silverman (1984).

In this proposition, both T̂ and T get evaluated at a specific point r ∈ R, whereas in
practice we will be more interested in an overall fit across all points. To this end, we can
use the following result, which is an immediate consequence of Tonelli’s theorem.

Proposition 3.2. Let A ⊂ R be measurable. If S(y, F, r) is a non-negative proper scoring rule
for all r ∈ A, then

SA(y, F ) :=

∫
A
S(y, F, r)dr (3.1)

is a proper scoring rule.

Note that non-negativity is not required in the case that the integral in (3.1) exists (pos-
sibly taking the value +∞) for all y and F. These two propositions readily allow the
construction of proper scoring rules based on summary statistics when their estimators
are unbiased.

Example 3.1. F-function: The F- or empty-space-function is defined for stationary point pro-
cesses as the distribution function of the distance from the origin to the nearest point in X. It has
the following unbiased estimator:

F̂(y, r) :=
∑
x∈Ir

1{d(x,y) ≤ r}
#Ir

,

where I is any finite regular grid of points, Ir := I ∩W◦r, and W◦r = {w ∈ W : b(w, r) ⊂
W}, see (Møller and Waagepetersen, 2003, section 4.3). We obtain a scoring rule of predictive
distribution F based on the empty-space-function by

SF (y, F ) :=

∫ R

0
(F̂(y, r)−FF (r))2 dr,

where R is an upper limit that should be chosen to be small relative to the diameter of W . By
Propositions 3.1 and 3.2, this scoring rule is proper with respect to the class P of all stationary
point process models.

Proposition 3.1 is quite intuitive, as it compares the estimator T̂ to the true value TF
under the predictive distribution. It comes with two serious restrictions, though. The first
is that for many summary statistics, such as for example the K-function and the intensity
function, the standard estimators are not unbiased, see Møller and Waagepetersen (2003,
Chapter 4). Secondly, even if an unbiased estimator exists, closed form expressions for a
given summary statistic TF are usually only available for selected point process models.

Both of these weaknesses can be overcome by replacing TF by T̂ (F ), the pushforward
probability measure of F under the estimator T̂ .
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Proposition 3.3. Let r ∈ R be fixed. Denote by T̂ (F, r) the pushforward distribution of F
under T̂ (·, r). Consider a non-negative scoring rule S on R that is proper relative to T̂ (P) :=

{T̂ (F, r) , F ∈ P, r ∈ R}. Then, the scoring rule

S
T̂

(y, F, r) := S(T̂ (y, r), T̂ (F, r))

is proper.

Proof. This is a direct consequence of the change-of-variables formula.

Note that S
T̂

is usually not strictly proper, even if S is, since we might have T̂ (F, r) =

T̂ (G, r) for distributions F 6= G. The key for making this result useful is the choice of the
proper scoring rule S on the real line. Note that we recover Proposition 3.1 if we choose
S to be the mean square error, S(y, F ) = (y − EF [X])2. However, a preferable choice
is the continuous ranked probability score (CRPS) as it is strictly proper with respect
to all distributions with finite first moment, see Gneiting and Raftery (2007). Moreover,
choosing the CRPS allows to approximate S

T̂
without requiring detailed knowledge of

the pushforward measure T̂ (F ). The CRPS, introduced in X, is defined by the formula

CRPS(y, F ) := EF [|y −X|]− 1

2
EF [|X ′ −X|],

where in the second summand X and X ′ are independent random variables distributed
according to F . When applying Proposition 3.3 with the CRPS, we obtain by the change-
of-variables formula, supressing r for brevity,

S
T̂

(y, F ) = E
T̂ (F )

[|T̂ (y)−X|]− 1

2
E
T̂ (F )

[|X ′ −X|]

= EF [|T̂ (y)− T̂ (X)|]− 1

2
EF [|T̂ (X′)− T̂ (X)|],

where in the last line, X′ and X are independent point processes with distribution F . This
expression can easily be approximated by Monte-Carlo sampling from the point process
distribution F . Therefore, we obtain a scoring rule that is proper and can be computed
for any point process distribution by sampling.

Another, somewhat surprising, advantage of this approach is that by using T̂ (F ) rather
than TF , the score often can discriminate better between distributions. The reason is that
for different predictive models F1 and F2 we may have TF1 = TF2 but T̂ (F1) 6= T̂ (F2).

In this case, since the CRPS is strictly proper, the true distribution will be preferred. This
effect can be observed in our simulation study in the next section, where we apply the
scoring rule based on theK-function estimator to different Poisson models. These models
have identical theoretical K-functions, but, nevertheless, the score gets minimized when
the correct model is predicted, since K̂ follows different distributions under the different
models.

We sum up the main result of this section in the following corollary of Propositions 3.2
and 3.3.
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Corollary 3.1 (summary statistic score). Consider an estimator for a summary statistic T̂ that
is integrable with respect to F ⊗ dr for all F in P . The scoring rule defined by

S
T̂

(y, F ) := EF

[ ∫
R
|T̂ (y, r)− T̂ (X, r)| dr

]
− 1

2
EF

[ ∫
R
|T̂ (X′, r)− T̂ (X, r)| dr

]
is proper.

An advantage of this score are the weak assumptions that are required, namely just the
integrability of T̂ , which is satisfied for most point process models and summary stat-
istic estimates. Note that T̂ can be any real- or function-valued mapping satisfying these
conditions, and no connection to an underlying summary statistic T is required. As a
consequence, the constructed proper scoring rule can be considered even for predictive
distributions for which the underlying summary statistic T does not exist. An example
is the scoring rule S

K̂
considered in Example 3.3 below, which may be computed (and

remains proper) even for point processes that are not second order intensity reweighted
stationary, which is a necessary condition for the K-function to exist. In such a scenario,
the score will nevertheless be sensitive to misspecification of the clustering behaviour,
since K̂ is.

The following statistics will be used to show the efficacy of our approach for point process
model evaluation.

Example 3.2 (Intensity score). The intensity function λ of a point process is typically estimated
by kernel estimators. These estimators are generally biased, making it impossible to apply Proposi-
tion 3.1. For a kernel k (i.e. a density onW ) and a bandwidth b > 0, the kernel intensity estimator
is based on the rescaled kernel kb(w) := b−2k(w/b). It is defined as

λ̂(y, w) =
∑
y∈y

kb(w − y)/cW,b(y),

where cW,b are edge correction factors defined as cW,b(y) =
∫
W kb(w − y) dw. By Corollary 3.1,

the intensity score defined as

S
λ̂
(y, F ) :=EF

[ ∫
W
|λ̂(y, w)− λ̂(X, w)| dw

]
− 1

2
EF

[ ∫
W
|λ̂(X′, w)− λ̂(X, w)|dw

]
constitutes a proper scoring rule.

Since this score targets the intensity function, it assesses, roughly speaking, whether the
predictive distribution has the correct spatial distribution and number of points, but neg-
lects point interactions. Let us stress again that, unlike the logarithmic score, this scoring
rule can be computed for any point process model, in particular also for models defined
by a density with an untractable normalizing constant. On the other hand, if we are more
interested whether a predictive model reflects point interaction correctly, we can score it
using an estimator for the K-function.

Example 3.3. [Ripley’s K-function] The standard estimator for Ripley’s K-function is defined
as

K̂(y, r) :=
∑

y1 6=y2∈y

1{|y1 − y2| < r}
λ̂(y1)λ̂(y2)|W ∩Wy1−y2 |

,
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where Wy1−y2 denotes the shifted set W + y1 − y2, and λ̂ is a kernel estimator for the intensity.
Thus, we obtain the proper K-function score

S
K̂

(y, F ) :=

∫ R

0
EF [|K̂(y, r)− K̂(X, r)|] dr − 1

2

∫ R

0
EF [|K̂(X′, r)− K̂(X, r)|]dr,

where R is an upper limit that should be chosen small relative to the diameter of W .

As K̂ is sensitive to point interaction, this scoring rule specifically targets correct rep-
resentation of point interaction in the predictive model. On the other hand, it will be
relatively insensitive to misspecification of the intensity function, and for example, be
inadequate for differentiating between different Poisson processes, which have the same
K-function.

4 Simulation study
In order to demonstrate the usefulness of our scores, we present a simulation study where
we consider five different point process models. Their characteristics are summarized in
Figure 1, which also shows an example realization of each model. The spatial window
considered is W = [0, 10] × [0, 10]. The first two models are homogeneous Poisson pro-
cesses with 50 and 60 expected points in the considered area, respectively. Model 3 is
an inhomogeneous Poisson process with 50 expected points, and with an intensity that
increases linearly in the distance from the lower left corner of the window. Model 4 is a
homogeneous Strauss process, i.e. the points repel each other and the typical point pat-
tern is more regular than for the homogeneous Poisson process. The Strauss process is
defined by its density

f(x) = cβn(x)γsR(x),

where c is a normalizing constant, β > 0, R > 0, and γ ∈ (0, 1) are parameters, n(x)

denotes the number of points in x and sR(x) is the number of pairs of points in the pattern
x with distance less than R. The value R is the range of interaction between points, and
γ determines the strength of the interaction, with smaller γ leading to stronger inhibition
between close points. We choose γ = 0.5 and R = 1. By letting β = 1.15, we obtain an
expected number of points of approximately 50, the same as for models 1 and 3.

As fifth model we consider an inhomogeneous Thomas process, which is constructed
by generate an (invisible) Poisson process of parent points, and then letting each parent
generating a random number of offsprings that are spatially distributed according to
a Gaussian kernel centered at the parent point. We choose an inhomogeneous parent
process, with the same intensity as model 3, divided by 2. The number of offsprings per
parent is Poisson distributed with mean 2 and the standard deviation for the Gaussian
kernel is set to 0.5. By these choices, the Thomas process has an intensity similar to model
3, and the number of expected points in the observation window is again approximately
50.

We consider each of the models both as true distribution G and as predictive distribution
F , for a total of 25 combinations of true and predictive distributions (see Figure 1). For
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Name Model Intensity Point interaction E[n(X)]

hP homogeneous Poisson ∼ c none 50
hP+ homogeneous Poisson ∼ 6

5c none 60
ihP inhomogeneous Poisson ∼

√
x2 + y2 none 50

Str homogeneous Strauss ∼ c inhibition ≈ 50

ihT inhomogeneous Thomas ∼
√
x2 + y2 clustering ≈ 50

Figure 1. Example plots and characteristics of the considered models. The considered spatial win-
dow is [0, 10]× [0, 10], i.e. for the inhomogeneous processes, the intensity increases with distance
from the lower left corner.

each combination we computeEG[S
T̂

(Y, F )] by simulating 100 i.i.d. copies of Y ∼ G and
averaging S

T̂
(Y, F ). For the computation of S

T̂
(Y, F ) the expectations are approximated

by simulating 100 i.i.d. copies of X ∼ F . As summary statistic estimator T̂ we consider
both the kernel estimator λ̂ and the K-function estimator K̂. The computations are carried
out using the R-package spatstat (Baddeley et al., 2015). For the kernel density estim-
ator an isotropic Gaussian kernel is used with standard deviation 1.25 and bandwidth 1,
which are the default values of the spatstat function density.ppp.

The results are presented in Figure 2. For both scoring rules the expected score is min-
imized under all distributions when the true model is predicted. Not surprisingly, the
scores are sensitive to the underlying summary statistic. For example the score S

λ̂
has

difficulties to differentiate between the homogeneous Poisson model hP and the Strauss
model which have the same intensity, but can clearly differentiate between homogeneous
and inhomogeneous models.

On the other hand, the score S
K̂

is capable of detecting mismatches in the point interac-
tion between predictive and true distribution, and can in particular differentiate between
the Strauss and the hP model. It is therefore important to be aware of which property of
the process is targeted by the scoring rule, and, in practice, to use multiple scoring rules
to assess predictive skill. Figure 1 shows the results of permutation tests assessing the
significance of the difference of the mean scores. The differences between the K-function
scores for the different Poisson models is not significant at a 5% level, and especially the
difference between the two homogeneous models hP and hP+ is not reliably picked up.
However, given that these models have the same theoretical K-function, it is still note-
worthy that the mean score of S

K̂
is minimized when the true distribution is predicted

(see Figure 2). This is due to the fact that the distribution of K̂ still varies between these
models, which is detected by the CRPS. At the same time, the score S

λ̂
reliably tells the

Poisson models apart. In addition, by basing inference on both scoring rules, the true

Validation of point process predictions with proper scoring rules 13
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Figure 2. The mean scores EG[Sλ̂(Y, F )] (left hand side) and EG[SK̂(Y, F )] (right hand side) for
each combination of the 5 considered models. The x-axis shows the true distribution G of the
data, and the score for the correct distribution is additionally marked by a star.

Sλ̂(Y, F )

F : hP hP+ ihP Str ihT

G

hP - <0.1 <0.1 8.0 <0.1
hP+ <0.1 - <0.1 <0.1 <0.1
ihP <0.1 <0.1 - <0.1 8.4
Str 15.1 <0.1 <0.1 - <0.1
ihT <0.1 <0.1 4.4 <0.1 -

SK̂(Y, F )

F : hP hP+ ihP Str ihT

G

hP - 38.3 17.6 <0.1 <0.1
hP+ 38.9 - 16.7 <0.1 <0.1
ihP 8.2 6.2 - <0.1 0.5
Str <0.1 <0.1 <0.1 - <0.1
ihT <0.1 <0.1 0.7 <0.1 -

Table 1. p-values in % of a permutation test assessing the significance of the difference between
the score of predictive distribution F and the score of the true distribution G. Values above 5% (in
bold) indicate nonsignificance, and the corresponding score cannot reliably distinguish between
F and G.

model can easily and clearly be identified in all cases. This is quite remarkable, since the
models are chosen to challenge validation tools and are in particular often difficult to
tell apart by eye, see Figure 1. Finally, let us note that the logarithmic score could only
be computed for the first three models, as the densities for the Strauss and the Thomas
process have intractable normalizing constants.

We next address the question how the intensity score compares to the logarithmic score
when different predictive Poisson models are compared. The model descriptions and ex-
ample plots can be found in in Figure 3. Figure 4 shows boxplots for Slog and S

λ̂
, as well as

boxplots of bootstrap resamples of the expected score based on 50 and 500 observations,
respectively.

The results show that the intensity score is more sensitive than the logarithmic score and
can more reliably identify the true distribution, when we use more than one observation.
Accordingly, when significance of score differences is assessed by permutation tests, us-
ing the intensity score leads to tests with a higher power, more details can be found in the

Validation of point process predictions with proper scoring rules 14
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Figure 3. The four different Poisson models considered in the second study. The spatial window is
[0, 10]× [0, 10]. The true distribution of the data, F1, is a homogeneous process with 50 expected
points, F2 and F3 are homogeneous processes with 40 and 60 expected points, respectively. F4

is an inhomogeneous process with intensity that increases linearly in x from 0.25 to 0.75.

appendix. The reason is that Slog is a local proper scoring rule that solely depends on the
value of the predictive density at the observation, whereas the CRPS and therefore S

λ̂
de-

pends always on the full predictive distribution. For Poisson point processes, evaluating
the logarithmic score is less computationally involved than evaluating the intensity score,
which relies on Monte-Carlo approximation of a (multiple) integral. However, in typical
spatial point process applications there are often limited observations available, either
because generating/collecting observations is involved (e.g. in ecology or epidemiology)
or because new observations take several years to materialize (e.g. in earthquake rate
prediction). In such cases, there is a substantial benefit from performing model selection
with more robust scores, even if it comes at additional computational costs. Let us finally
remark that the values of the y-axis in Figure 4 bear no inherent meaning. As typically
the case for scoring rules, should only be used for comparing different predictive models.

5 Application to Abies amabilis forests
In ecology and forestry spatial point processes have been increasing in popularity over
the last decades, as they allow to address many key questions such as local dominance of
species or species area relationships, see Velázquez et al. (2016); Wiegand et al. (2017) for
overviews. Law et al. (2009) review the use of summary statistics and conclude that the
pair correlation function is particularly popular, as it is a natural measure for what eco-
logists call the ‘plant’s-eye view’. The authors of Wiegand et al. (2013) carefully analyze
the information content of different summary statistics for use in ecology. They conclude
that the pair correlation function is the most informative second order summary statistic
in this context.

Here, we study location data of Abies amabilis (Pacific silver fir) at eight disjoint 6 by 6

meter plots at Findley Lake Reserve in Washington State, USA. See Grier et al. (1981) for
a description of the site conditions. Figure 5 shows the location of trees at two of the plots
for three different time points over 31 years. The area was clear-cut in 1957; the trees in
our dataset were apparently present as seedlings before the clear-cut and there appears
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Figure 4. The first column shows boxplots for Slog(y, F ) and Sλ̂(y, F ) for the four different pre-
dictive Poisson models described in Table 3. Model 1 is the true distribution of the data. Columns
two and three show boxplots for bootstrap resamples of the expected scores EG[Slog(y, F )] and
EG[Sλ̂(y, F )] computed from 50 and 500 observations, respectively.

to have been no reproduction in the stand since then. The first observation was made in
1978, 21 years after the area was clear-cut. On average, roughly 80% of the original trees
were still present in the second observation in 1990 and approximately 25% of them were
present in the third observation in 2009. The data was previously studied by Sorrensen-
Cothern et al. (1993) who investigated the development of tree crown structure under
competition for light.

The observations for each year are analyzed separately such that in each analysis, eight
independent realizations of the underlying process are available (the eight forest stands’
data in that year). We consider a spatial prediction scenario where we are given four of
the observations in order to fit a predictive distribution, which is then verified against the
other four observations using the intensity- and theK-function score. This is repeated for
all possible combinations of choosing four training stands out of 8, leading to a total of
4 ×

(
8
4

)
= 280 score evaluations for each model and each year. Some of the scores are

correlated, namely if they are based on the same observation (but use different training
sets) or if their training sets overlap.

Visual examination of the point patterns show no sign of anisotropy and indicates that
they exhibit clustering, particularly for the years 1978 and 1990 (see Figure 5). Therefore,
we consider various isotropic cluster point processes as predictive models, namely a log-
Gaussian Cox process and 4 different models of Neyman-Scott type, the Thomas, Matérn
cluster, variance Gamma and Cauchy model. Moreover, a homogeneous Poisson model
is considered as a benchmark. The log-Gaussian Cox process (LGCP) has a driving field
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Figure 5. Abies amabilis (Pacific silver fir) at two disjoint 6 by 6 meter plots at Findley Lake Reserve
in Washington State (rows). The area was clear-cut in 1957; the first column shows trees present
in 1978, 21 years after the clear-cut; the second column shows the trees still present in 1990, 33
years after the clear-cut; the third column shows the remaining trees in 2009, 52 years after the
clear-cut.

{Z(w)}w∈W , which is the exponential of a homogeneous Gaussian field with, for our
purpose, exponential autocovariance function

C(r) = τ2 exp(−r/σ)

, with variance parameter τ and scale parameter σ. Conditional on Z, the LGCP is then
distributed as a Poisson process with intensity Z. Neyman-Scott models have an invisible
homogeneous Poisson parent process U and for each parent point u ∈ U an offspring
process is considered, which is Poissonian with intensity λu(w) = αk(u − w), where k is
an isotropic kernel. The Neyman-Scott process is then the union of all offspring processes,
i.e. conditional on U, it is a Poisson process with intensity

λ(w) = α
∑
u∈U

k(u− w).

The Thomas model uses a Gaussian kernel k, which is specified by its standard deviation
σ. In the Matérn cluster model, the offsprings are uniformly distributed in a ball of radius
r around their parent, see Matérn (2013) for details. In the variance Gamma model, the
kernel is a convolution of a Gamma density and a Gaussian density and can be written
as

k(u) =
1

π2ν+1η2Γ(ν + 1)
(‖u‖/σ)νKν(‖u‖/σ),

where σ is a scale parameter, ν a shape parameter for the kernel and Kν denotes the
modified Bessel function of the second kind. For more details we refer to Jalilian et al.
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Figure 6. Mean scores for five different models predicting the spatial distribution of trees in 1979
in the described data set.

(2013). The Cauchy cluster model was introduced in Ghorbani (2013). It uses a heavy-
tailed Cauchy kernel, with scale parameter σ, i.e.

k(u) =
1

2πσ2

(
1 +
‖u‖2

σ2

)−3/2

.

The models differ in their number of parameters: The Poisson process has only one, the
LGCP two, the Thomas, Matérn and Cauchy model have 3 (the intensity parameter of the
parent process, the expected number of offsprings per parent α and the scale parameter
for the kernel), and the variance Gamma model has 4 (an additional shape parameter of
the kernel).

All models are fitted by the method of minimum contrast, see Diggle and Gratton (1984);
Waagepetersen (2007). To be precise, the K-function is estimated from the training set
and the parameters Θ of the model are then fitted to minimize the integrated distance

Θ̂ = arg min
Θ

{∫ rmax

0
(K̂(r)1/4 −K(r; Θ)1/4)2 dr

}
, (5.1)

where K(r; Θ) is the theoretical K-function for the model with parameter Θ. The upper
limit rmax should be chosen small relative to the diameter of the observation window, we
use the default value of spatstat, which is one fourth of the diameter. Typically, only
one point process observation is used to fit the model, and in this case the estimator K̂
described in Example 3.3 can be used. Our scenario where a single point process model
is fitted to multiple observation is somewhat non-standard. However, we can estimate K
from multiple observations by computing the estimator from Example 3.3 for all observa-
tions, and then taking the mean of these estimators. Thereafter we estimate Θ according
to (5.1).

Figure 6 shows the mean scores and bootstrap confidence intervals for all models for
the year 1978. The intensity score can only identify the Poisson model as significantly
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Figure 7. Mean scores for five different models predicting the spatial distribution of trees in 2009
in the described data set.

worse but cannot reliably distinguish between the cluster models. This is not surprising,
since all models are homogeneous and their theoretical intensities are identical. The K-
function scores indicate that the Cauchy process provides the best fit of the overall clus-
tering behaviour of the trees, closely followed by the LGCP and variance Gamma model.
For 1990 we obtained similar results (not shown), whereas for 2009 the Log-Gaussian
Cox model performs slightly better than the Cauchy model, see Figure 7. It can also be
observed that the difference between the Poisson model and the cluster point process
models has grown smaller in 2009. It is quite interesting that the clustering behaviour
of the trees changes over the years and that different point process models should be
used for different years to achieve the best results. Moreover, the good performance of
the Log-Gaussian Cox process is remarkable since it is the only considered cluster pro-
cess that is not of Neyman-Scott type. Neyman-Scott processes have a great appeal for
modelling plant distributions in ecology, since they are constructed by letting a parent
process spawning offsprings in close vicinity to the parent points, and therefore mimic
the process leading to the observed spatial distributions of the plants.

6 Discussion
We introduced a new class of proper scoring rules by combining estimators for summary
statistics with the continuous ranked probability score. Our scoring rules can be com-
puted from simulations of the predictive model. Therefore they can be applied to a wider
range of predictive distributions than the commonly used logarithmic score, which re-
quires the density of the predictive model to be known. They constitute, to the best of
our knowledge, the first non-trivial and proper scoring rules for spatial point processes
applicable to any predictive distribution. Even when comparing different Poisson mod-
els, where the logarithmic score is available, the intensity score performed better in our
simulation study, in the sense that it expresses more significant differences of the mean

Validation of point process predictions with proper scoring rules 19



scores between different models. The R package spatstat Baddeley et al. (2015) provides
manifold tools for simulating various spatial point process models and provides imple-
mentations of all common summary statistic estimators. It provides therefore a platform
that makes the introduced scoring rules easily applicable and, indeed, we used this pack-
age in all our simulation studies.

Our approach is based on the intuitive principle that, when the observation space is com-
plex, the observations and predictions can be mapped into a simpler space for validation.
This approach, that we simply call the mapping principle, is not restricted to point pro-
cesses, and opens a fruitful new perspective on validation of involved forecasts in gen-
eral. Indeed, when the observation space is involved, finding proper scoring rules can be
difficult, even more so when they ought to be sensitive to certain high level properties of
the observation-generating process. The mapping principle shifts this task to the much
easier task of finding real-(or function-)valued mappings sensitive to these properties.
Potential other applications include high-dimensional forecasts and forecasts of spatial
fields, as well as function-valued forecasts.

We argue that, in the context of point processes, it is natural to use estimators of sum-
mary statistics in the mapping principle, as they are designed to be sensitive to high-level
properties of the point process such as clustering or inhomogeneity. The variety of sum-
mary statistics available in the literature results in a collection of scoring rules sensitive
to different properties of the predictive process. An additional advantage is that many
theoretical properties of summary statistics and their estimators have already been in-
vestigated in the literature, and practicioners are familiar with them, making the output
of the scoring rules easier to interpret.

The mapping principle requires the choice of a scoring rule on the codomain of the map-
ping. We opted for the CRPS since it is strictly proper and can be efficiently approximated
by Monte-Carlo methods. When computational time is highly important, an attractive al-
ternative might be the mean square error (MSE), S(y, F ) := (y−EF [X])2. The expectation
of the pushforward measure T̂ (F ) can be Monte-Carlo approximated, and the computa-
tional costs are lower, since for the CRPS the term EF [|y−X|] needs to be approximated
for each observation y, which is not necessary for the MSE. However, the MSE is proper
but not strictly proper, and therefore the resulting score will be less sensitive to miscalib-
rations.

There are several avenues for potential future research. Generally, assessing the useful-
ness of the mapping principle in other contexts as mentioned above should be invest-
igated. The good performance of the kernel estimator score when compared to the log-
arithmic score entails the question, whether scores based on kernel density estimators
could outperform the popular logarithmic score in a wider range of settings. An import-
ant application for point-process-valued forecasts is earthquake rate forecasting, and a
variety of methods for forecast validation has been developped in this community, see
Schorlemmer et al. (2018) and references therein. Proper scores should be integrated into
the existing validation programs to see how they compare to other methods currently
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A Permutation tests
To supplement the comparison study of the logarithmic score and the intensity score in
Section 3, we assess the power of permutation tests based on the two scores. To this end
we simulate 500 point patterns by each predictive method F1, ..., F4 and compute both
scores. See Figure 3 in the main paper for a description of the models. Permutation tests
assess the significance in the difference of mean scores taken over n observations and
their power is therefore increasing in n. For a range of n, we subsample n observations
and the corresponding scores from the 500 simulated point patterns. Then we compute
the mean scores of these n observations and conduct a permutation test. The permutation
test assesses significance in score differences of two models by randomly permuting the
two models, and we consider 500 permutations in each step. We subsample from a previ-
ously simulated catalogue of scores in order to increase computational speed. This allows
us to repeat this procedure 500 times for each n = 5, 10, ..., 50. For each n, the power of the
permutation test is then approximated by the fraction of rejections out of the 500 repeti-
tions, at a significance level of 5%. Recall that the null hypothesis in the permutation test
is that the score differences are symmetrically distributed around 0, and a rejection there-
fore. This experiment is conducted four times, with the true distribution being F1, ..., F4.
Each time we assess the power of the permutation test when the true model is compared
with all three alternative models. The results are summarized in Figure A.1.

Note that the values in this figure are random approximations of the true power of the
tests, and are intercorrelated since we used subsampling. Nevertheless, they clearly show
that permutation tests based on the intensity score are more powerful and therefore the
intensity score differentiates more clearly between the predictive models. It is remarkable
that, based on the intensity score, the permutation test reaches a power of 0.9 for less
than 20 available observations regardless of which models are compared. In contrast, the
permutation test based on the logarithmic score has difficulties distinguishing between
the relatively similar models F1 and F2 as well as F1 and F3. Even when 50 observations
are available the power is below 0.5.
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Figure A.1. Power of permutation tests for comparing different predictive models with the true
distribution for a range of available observations n. The size of the test is 5%.
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