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Abstract: Continuous authentication has been proposed as a possible approach for passive and
seamless user authentication, using sensor data comprising biometric, behavioral, and context-
oriented characteristics. Since these are personal data being transmitted and are outside the control
of the user, this approach causes privacy issues. Continuous authentication has security challenges
concerning poor matching rates and susceptibility of replay attacks. The security issues are mainly
poor matching rates and the problems of replay attacks. In this survey, we present an overview
of continuous authentication and comprehensively discusses its different modes, and issues that
these modes have related to security, privacy, and usability. A comparison of privacy-preserving
approaches dealing with the privacy issues is provided, and lastly recommendations for secure,
privacy-preserving, and user-friendly continuous authentication.

Keywords: continuous authentication; security; privacy; usability; user experience

1. Introduction

We are dependent on computing technology to store and process our personal data.
We interact with devices in the form of smart-phones, cars, sensors, Internet of Things
(IoT), and other devices. Authentication ensures that the given entity is one it claims to
be [1]. Authentication can be characterized by different factors such as knowledge-based
authentication (PIN, password), possession-based (devices, smartcards, etc.), physiological-
based (such as fingerprint, iris, voice, face), behavioral-based (such as keystroke dynamics,
touch dynamics, motion dynamics, etc), and context-aware factors (such as physical loca-
tion, IP-addresses, device-specific data, browsing history, etc.). According to a report [2],
cyberattacks are happening every year, and accounts are being compromised every second.
This happens due to poor implementation of authentication mechanisms. Weak passwords
can be broken easily and strong passwords are not memorable. Nowadays, physiological
biometric-based approaches are widely adopted in smart devices that use face recognition
and fingerprints recognition, which are examples of what we refer to as authentication
modes or simply “modes”. These approaches attempt to improve the usability over con-
ventional authentication approaches. A disadvantage about physiological biometrics is
that physiological features are static, which can be reproduced by an adversary.

In general, user authentication can be performed on a device or a server-side: (1) The
user will authenticate himself towards the mobile device. Device-side authentication is
performed entirely on the device [3]. (2) The user will authenticate himself towards a
cloud service. By means of his user credentials, the user proves his authenticity to the
cloud (authentication server), which performs the user authentication and grants the user
access to the service if the authentication succeeded. High-performance computational
resources and on-demand availability enable users and companies to leverage cloud-based
services. Many mobile devices are using cloud-based services for data processing and
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storage, which facilitate access to multiple services and also provide easy backup to data.
In a “traditional” setting, the user authenticates himself at the beginning of a session. In the
case of device-side authentication, the session normally lasts as long as the user is using
the device actively, and after that, it locks automatically. In the case of service/cloud-side
authentication, the user provides some authentication credentials to the server, which then
determines whether the user is authentic or not and on that basis grants the user access to
the service.

A potential problem about session-oriented approaches is that if the user leaves the
computer or the device for some time, a malicious user accessing the device in the meantime
is not prevented from using it or any services that the user is logged onto. This issue could
be mitigated by security mechanisms that continuously re-authenticate the user during the
session. User authentication can be conducted actively or passively. The former requires
explicit user attention or user action, such as entering a password or pin or putting a finger
on the finger print scanner. The latter is a seamless and transparent form of authentication
that runs in the background without notifying the user or requiring any user attention.

Continuous authentication (CA) offers advantages with regard to usability and secu-
rity. It passively re-authenticates users without notifying the user or requiring any user
attention, and it locks the system automatically in case the user is inactive or when it
observes irregularities or anomalous behaviors. Continuous authentication utilizes phys-
iological biometrics pattern recognition, behavioral biometrics pattern recognition, and
context-aware authentication modes, sometimes in combination. Combining multiple
modes is sometimes referred to as multi-modal authentication.

Usability pertains to ease of access, user friendliness, how satisfactorily or efficient a
product or service achieves its function, and how prone it is to errors (ISO 9241-11:2018 [4]).
Continuous authentication seeks to offer some trade-off between security, privacy, and
usability due to its passive and seamless operation. It continuously monitors users actions
and behaviors, which achieves security and usability, but not privacy as authentication
mechanisms are conceptually security mechanisms. Since continuous authentication mech-
anisms collect personal data, such as physiological, behavioral, and context-aware user
data, this causes privacy concerns.

Survey Contributions

This survey presents an overview of continuous authentication modes with perfor-
mance comparison. Specifically, we seek to answer the following questions:

1. What privacy and security challenges are there when data processing and storage is
conducted in the cloud versus locally on the device?

2. How do the different CA modes score with regard to privacy (disclosure of person-
specific information about behavior, location, physiological biometric characteris-
tics, etc.) and security (how secure authentication is obtained by a mode)?

3. What techniques are preferable for mitigating the privacy and security issues of the
different CA modes?

4. What behavioral, physiological, and context-aware modes, and combinations thereof,
are most suited in actual CA implementations?

Furthermore, besides these questions, this survey also discusses open challenges re-
lated to usability, challenges related to ISO/ICE standards, and other challenges regarding
the applicability of continuous authentication in real-time projects. The rest of the survey
is arranged as follows: Section 2 discusses preliminaries; Section 3 provides a detailed
overview of several modes of continuous authentication; Section 4 discusses the security
and privacy risks associated with different modes of continuous authentication. The usabil-
ity and other open issues are discussed in Section 5. Section 6 discusses privacy-preserving
approaches and provides future recommendations. Moreover, Section 7 discusses the list
of related surveys conducted for continuous authentication. Finally, the conclusion of the
survey is stated in the last section.
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2. Preliminaries

In this section, we introduce some basic authentication concepts. According to
ISO/IEC 24760-1 [5], an identity is a “set of attributes related to an entity”. Continu-
ous authentication with physiological and behavioral biometrics utilizes user-specific
biometric information (referred to as templates) for user identification, whereas context-
aware continuous authentication modes use context-related information for authentication.
The following subsections explain authentication properties and identity management.

2.1. Properties of Identification

The following are properties required for identification [6]:

• Uniqueness means that each subject should have a unique identity or a set of identities.
• Universality means that the unique identity is invariant for a period of time and within

a predefined scope.
• Acceptability relates to user experience, to what extent that users will accept their

identities, and to how applicable or practical they are.

2.2. Steps for Authentication and Data Processing

Continuous authentication can be accomplished with following steps:

• Data acquisition. Raw data are acquired by various devices that contain a number of
sensors (such as accelerometer, proximity sensor, camera, magnetometer, gyroscope,
GPS sensors, etc.). Human behavioral information can be attained by proximity
sensors and accelerometers, while gyroscope sensors detect smartphone’s rotational
motion. GPS sensors collection location data.

• Feature extraction. Obtaining a set of useful features/attributes from the collected data.
• Feature selection. This phase removes irrelevant, redundant, and noisy features and

selects only the most relevant features from the set of useful features.
• Classification. This phase divides the users into two classes that agree with the

authentication outcome of acceptance or rejection. Various Machine Learning (ML)
algorithms can be utilized for classification purposes, such as k-Nearest Neighbours
(k-NN), Neural Network (NN), Support Vector Machine (SVM), Decision Tree (DT),
and many others.

The literature on continuous authentication refers mostly to a few well-known ML
algorithms, such as k-NN, SVM, NN, and DT. A brief introduction of these algorithms with
their advantages and limitations is given in the following subsection.

2.2.1. ML Algorithms

In this subsection, we provide a brief introduction of the most common ML algorithms
that are used for continuous authentication.

(1) k-Nearest Neighbors (k-NN) [7]. Given N feature vectors (training vectors), this
algorithm identifies k nearest neighbors of a point in a class. The working of k-NN relies
on the distance between feature vectors. Nearest neighbors are found by using any dis-
tance calculation algorithms, such as the Euclidean distance algorithm and the Manhattan
distance algorithm, over a positive integer k. This algorithm selects N points and starts
calculating distances with all its neighbor points. It places a point in N clusters according
to the nearest distance.

k-NN is simple and easy to implement as it does not require training steps. However,
it has challenges, because it only chooses neighbors based on distance values. Moreover,
k-NN stores entire training data in the memory, which can be a reason for slow performance
on large datasets [8].

(2) Support Vector Machine (SVM) [9] is the most utilized ML algorithm. It separates
data classes into two groups by drawing a hyperplane (line). This line is called the decision
boundary. Any data point that lies on one side of the boundary will be classified in one
class (legitimate class), and anything that lies on the other side will be classified in another
class (illegitimate class).
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SVM splits classes based on their distances from one data point to the other nearest
data points. SVM can be classified as a linear SVM or non-linear SVM. The linear SVM seg-
regates data with a hyperplane with a straight boundary. In contrast, the non-linear kernel
does not create straight boundaries, which implies that the non-linear algorithms utilize
kernels to classify non-separable data into separable data. Many continuous authentication
approaches utilize SVM for classification [10–13]. SVM can perform well on small datasets;
however, like k-NN, it cannot perform well on large and noisy datasets [14].

(3) Neural Networks (NN) [15], also known as artificial neural networks (ANN),
consist of a node layer, an input layer, one or many hidden layers, and an output layer.
Every node has a weight and a threshold value that is associated with connected nodes.
A node is only activated when its output value is above the threshold value. Otherwise, no
data are sent to the next layer of the neural network.

NN can be further classified into following types: Feed-forward Neural Network [16],
Recurrent Neural Network (RNN) [17], Multilayer Perceptron (MLP) [18], Long Short
Term Memory (LSTM) [19], etc. The neural network offers many advantages, such as they
store information on the entire network; they can work on incomplete information and
can perform multiple jobs simultaneously [20]. Moreover, each type of NN offers distinct
advantages depending on applications, such as RNN performs well on image data, LSTM
is suitable for time series data, and MLP has various applications in natural language
processing (NLP) and speech recognition.

(4) Decision Trees (DT) [21] is a supervised ML algorithm that builds trees by continu-
ously splitting or classifying the input data depending on certain parameters. DT consists
of a root node, internal nodes (non-leaf nodes), and leaf nodes (or terminal nodes). The
root node contains complete training data, the splitting process divides decision nodes into
sub-nodes over a given condition, and leaf nodes or terminal nodes are the outcomes or
decisions. This algorithm recursively generates new trees from the data until it reaches a
stage where it cannot further classify nodes. The leaf nodes of a decision tree contain the
decisions (or classifications).

2.2.2. Performance

Performance indicates how accurately and securely a method achieves authentication.
This is measured by means of ratios of correct acceptances (true positives, TP), correct
rejections (true negatives, TN), false acceptances (false positives, FP), and false rejections
(false negatives, FP) [22]:

• Accuracy is the ratio of the number of correctly matched authorized users out of
all users:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

• False Acceptance Rate (FAR) is the likelihood of incorrectly accepting an unauthorized
user. This is typically stated as the ratio of the number of incorrect acceptances divided
by the number of incorrect acceptances (FP) and correct rejections (TN):

FAR =
FP

FP + TN
(2)

• False Rejection Rate (FRR) is the likelihood of incorrectly rejecting an authorized user.
This is typically stated as the ratio of the number of incorrect rejections divided by the
number of incorrect rejections (FN) and correct acceptances (TP).

FRR =
FN

FN + TP
(3)

• Equal Error Rate (ERR) is the rate at which both FAR and FRR are equal. The lower
the ERR value of a biometric system, the higher the accuracy of the system.
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A brief introduction to ML approaches in different modes of continuous authentication
is discussed in the following sections.

3. Modes of Continuous Authentication

In order to define CA clearly, we mention two definitions provided in the literature.
Traore [23] defines CA as “a new generation of security mechanisms that continuously monitor
user behavior and use this as basis to re-authenticate them periodically . . . ” Lorena et al. [24]
defines CA as “a security mechanism that monitors user actions at every point in time . . . during
a session and determines if that user is the legitimate one.” These definitions are a bit limited and
do not cover all aspects of CA. The first definition considers only behavioral biometrics,
while the second definition does not clarify whether continuous authentication is achieved
actively or passively. We propose defining continuous authentication as continuously and
passively monitoring users by means of recognizing user features and actions (i.e., physiological
biometrics, behavioral biometrics, or context-aware authentication modes) during a session.

3.1. Physiological Biometrics

Physiological biometrics (fingerprint recognition, face recognition, and iris recognition)
are among the well-known and most commonly used traditional authentication modes.
These modes are also utilized for continuous authentication.

3.1.1. Face and Voice as Biometrics

Face recognition and iris recognition can be utilized for continuous authentication.
A face recognition-based biometric authentication method was presented in [10]. The
authors utilized the support vector machine (SVM) for experiments and recruited 32 appli-
cants to test the prototype. Their method achieved 3.92–7.92% EER. In 2015, Crouse et al. [11]
also proposed a face recognition-based continuous authentication method for mobile de-
vices. This method collected face images of 10 applicants and trained SVM classification
algorithm for experiments. They achieved 0.1–1% FAR, 73% TAR, and 64% accuracy.

Voice recognition can be used for continuous authentication. Feng et al. [25] propose
a voice recognition method for continuous authentication. It was evaluated by means of
18 users. It achieved 97% recognition accuracy with 0.1% FPR. A list of studies on face-
based and voice-based continuous authentication methods with performance comparison
is shown in Table 1.

Table 1. Face and voice.

Studies Modality Classification Algorithms # Users Performance

[10] Face SVM 32 3.92–7.92% EER
[11] Face SVM 10 0.1–1% FAR, 73% TAR, 64% accuracy

[26] Face LBP 12 82% accuracy on small-size image, 96% on
80 × 80 pixels

[12] Face SVM dataset 13–30% EER
[13] Face SVM dataset 94% accuracy, 0.92% TNR
[27] Face CNN YouTube 0.86% EER

[25] Voice SVM 18 97% accuracy, 0.1% FPR
[28] Voice SVM 27 93% accuracy, 3% FRR
[29] Voice HMM 21 99% accuracy, 1% EER, 1% FRR
[30] Voice DTW 15 88% accuracy, 15% FRR, 0.01% FRR
[31] Voice HMM 12 93.3% accuracy, 1.01% EER

3.1.2. ECG and EEG Features as Biometrics

Electroencephalography (EEG) measures the electrical activities of the brain sig-
nals, and electrocardiography (ECG) measures the timing and strength of heart signals.
EEG and ECG are considered as unique features that can be used for user authentica-
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tion [32]. Table 2 presents experimental results and a performance comparison of a few
studies [33–37], which utilized EEG and ECG as modes for continuous authentication.
Some studies combine two or more different modes (multimodal biometric) for continuous
authentication such as face and fingerprint, face, iris, and voice, EEG, gait and fingerprint,
EEG, eye blink, etc. Table 3 indicates performance of some multimodal biometric systems
found in the literature.

Table 2. EEG-, ECG-, and eye-movement-based authentication.

Studies Techniques Classification Algorithms # Users Performance

[33] EEG FFT 23 11% EER
[34] EEG FFT 23 79% accuracy
[35] EEG kNN 50 97% CRR

[38] ECG 1DMRLBP - 10.10% EER, 1.57% FAR, 0.39% FRR
[39] ECG ZMCP 19 100% accuracy, 0.36% EER
[40] ECG kNN-DDM - 84.8% accuracy, 0.2% EER

[41] Eye movement SVM 20 88.73% accuracy, 10.61% EER
[42] Eye movement SRC 30 93.1% accuracy, 6.9% EER
[43] Eye movement SVM 22 3.93% EER
[44] Eye movement SVM - 97.95% accuracy
[45] Eye blink CNN CEW 98.4% accuracy

[46] BioAura SVM, AB - 1.9% EER, 7.6% FAR, 9.6–8.4% FRR

Table 3. MultiModal biometrics.

Studies Modality Classification
Algorithms # Users Performance

[36] EEG, gait SVM, RNN 6 63.16% FRR with EEG, 1.9% FRR with multiple modes

[37] EEG, ECG Euclidean 526 22.97–29.36% ERR with EEG, 0.928–8.216% ERR with
multiple modes

[47] Face, fingerprint HMM 11 0.9995% accuracy with fingerprint, 0.970% accuracy
with face

[48] EEG, fingerprint NBM 40 4.16% ERR with EEG, 1.12% ERR with fingerprint

[49] Face and voice LBP, VAD 152 HTER: 11.9% (male), 13.3% (female), EER: 10.9% (male),
10.5% (female)

[50] EEG, eye blink LS 31
0.89–1.1% ERR, 6.71% FAR with EEG, 2.71% FAR with
multi-mode, 8.49% FRR with EEG, 2.09% FRR with
multi-mode

[51] EEG, face BT 6 90% accuracy

3.2. Behavioral Biometrics

User behavior recognition can be utilized for user authentication. The following
modes of behavioral biometrics are used for continuous authentication.

3.2.1. Motion Dynamics

Motion dynamics are indicated by the patterns of a person’s gait or walking style.
Gait-based recognition techniques can identify and differentiate human activities based
on walking style. Motion dynamics data are collected from sensors, such as gyroscopes or
accelerometers that are attached to the human body for data collection. Derawi et al. [52]
used a Google mobile device (G1) containing embedded sensors for data collection. In this
study, 51 volunteers participated in the data collection process by carrying mobile phones
that had a motion sensor on the right-hand side of the hip. Hence, this method used
Dynamic Time Warping (DTW) for matching and achieved 20% EER. Mäntyjärvi et al. [53]
placed a sensor on the waist. They performed experiments with 36 participants and utilized
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FFT for matching. The proposed method achieved an accuracy of 72–88% with 7% EER.
Gafurov et al. [54] attached sensors on 100 participants, whereof 30 users had sensors on
the ankle, 30 users on their arms, 100 users had sensors on the hips, and 50 participants
had a mobile device in their pockets. Authors utilized kNN for classification and achieved
equal error rates (5%, 10%, 13%, and 7.3%), respectively. Table 4 presents a comparison of
few recent gait-based recognition approaches with respect to their performance [55–61].

Table 4. Gait-based authentication.

Studies Classification Algorithm # Users Performance

[52] DTW 51 20% EER
[53] FFT 36 72–88% accuracy, 7% EER
[54] kNN 100 85.7% accuracy, 5% EER
[55] SVM 14 92.7% accuracy
[56] SVM 51 53% accuracy, 33.3% EER
[57] CNN 4007 91% accuracy, 33.3% EER
[59] CC 15 95% accuracy, 5.5% EER
[58] CRM 48 53% accuracy, 21.7% EER
[60] GDI 744 66.3% accuracy, 5.6% EER
[61] GDI 51 37% accuracy, 7.22% EER

3.2.2. Touch Dynamics

Touch dynamics are commonly used authentication methods for smart devices, where
touch screens are used as a source for data collection. User authentication is performed
by analyzing user behaviors such as gestures, swipes, or tapping on the screen. Sae-
Bae et al. [62] presented a multi-touch gesture-based authentication approach by using
five-finger touch gestures and movements that was tested on 34 participants. The authors
utilized the Dynamic Time Warping (DTW) algorithm. Their proposed method achieved
an accuracy of 90% with an ERR of 2–5%. Rauen et al. [63] utilized gesture-related data
to verify users. Their method monitors different gesture activities such as how users deal
with screen (pressing a button and scrolling styles). They tested their method with a
random forest (RF) classification algorithm and achieved an accuracy between 99.68 and
96.26% with 3.15% FAR and 9.13% FRR. Some other studies also used touch dynamics for
continuous authentication [64–71]. A performance comparison for these approaches is
presented in Table 5.

Table 5. Touch dynamics.

Studies Classification Algorithms # Users Performance

[62] DTW 34 90% accuracy, 2–5% EER
[63] RF - 99.68–96.26% accuracy, 3.15% FAR, 9.13% FRR
[64] DT, RF 41 12.5% FAR, 1.63% FRR
[65] L1 distance 78 77% accuracy, 6.33–15.40% EER
[66] (1NN), DTW 23 90% accuracy
[67] MHD 104 92.65–93.96% accuracy, 1.55–0.31% EER
[68] SVM 95% accuracy
[69] SVM 40 88.5% accuracy, 5.17% FRR
[70] PSO-RBFN 48 60% accuracy, 2.22% FAR, 2.54% FRR, 2.4% EER
[71] MLP 20 95.96% accuracy, 6.94% FAR, 2.55% FRR

SVM 20 94.4% accuracy, 3.7% FAR, 3.5% FRR
LR 20 84.3% accuracy, 13.7% FAR, 14.6% FRR
NB 20 86.7% accuracy, 14.2% FAR, 11.5% FRR

[72] SVM 41 0–4% EER
[73] DTW 48 77% accuracy, 21% FAR, 19% FRR
[74] RF, J48 tree 40 4.66% FAR, 0.13% FRR



Sensors 2021, 21, 5967 8 of 26

3.2.3. Stylometry Dynamics

Every user writes text in a unique style. Stylometric-oriented recognition techniques
analyze written texts to identify a user’s identity. This mode uses sentence structure
and semantics to authenticates users. Brocardo et al. [75] presented user authentication
approach that verifies users by their stylometry. They divided texts into several blocks, and
extracted features vectors from each block. Basic features are extracted by a combination of
lexical words and lexical characters, whereas advanced features are extracted by N-gram
analysis. They used the support vector machine (SVM) algorithm on two different datasets
(Enron, Twitter), and achieved 9.98–21.45% EER. Kaur et al. [76] conducted experiments to
recognize and analyze specific text activity by written text. They analyzed 3057 tweets with
different ML algorithms (SVM, k-NN, RF, MLP). Among these 3057 tweets, their approach
identified 94.38% accurately. A performance analysis of a few more studies is discussed
in Table 6.

Table 6. Stylometry.

Studies Classification Algorithms # Users Performance

[75] SVM datasets 9.98–21.45% EER
[76] SVM tweets 94.38% accuracy
[77] SVM 76 12.42% EER
[78] KNN dataset 91% accuracy, 3.3% EER
[79] SVM 67 0.004% FAR, 0.01% FRR

3.2.4. Keystroke Dynamics

Several researchers have proposed keystroke pattern recognition for user authenti-
cation. Such techniques analyze individual typing styles on the keyboard based on the
assumption that individuals handle keyboards uniquely. By registering keypress events
and time duration, patterns of key latency and key-hold time can be obtained. Assuming
that users have unique keystroke patterns, this can be considered as a behavioral biometrics
mode and be used for recognizing users for continuous authentication.

Joyce et al. [80] introduced user authentication using keystrokes dynamics in 1990.
Their proposed method measured and analyzed typing speed. Their experiments were
performed on 33 participants who were asked to type a paragraph as a text. Their experi-
ments achieved 0.25% FAR and 16.36% FRR. Gascon et al. [81] proposed a keystroke-based
continuous authentication technique, where 300 participants typed short sentences on the
smartphone. Typing events were recorded to analyze typing motion of the user’s fingers.
They utilized SVM for matching, and their method achieved 92% TPR and 1% FPR.

The performance of the research works in [81–84] are presented in Table 7.

Table 7. Keystrokes Dynamics.

Studies Classification Algorithms # Users Performance

[80] - 33 0.25% FAR, 16.36% FRR
[81] SVM 300 92% TPR, 1% FPR
[82] kNN 20 0.08% EER
[83] SVM 24 0.44–3.93% EER
[84] kNN 20 97.90% accuracy, 5.1% EER
[85] kNN 63 83.22–92.14 % Accuracy
[86] Statistical 100 5.73% FAR, 7.27% FRR, 6.9% EER

3.2.5. Eye Movement

User behavioral features related to eye movements or eye blinks can also be utilized for
continuous authentication. In 2004, Kasprowski et al. [87] introduced user authentication
based on eye movements. They captured eye fixation on the object (middle and on eight
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edges) with the help of eye-tracking equipment. The experimental results prove that these
features are useful for user authentication. Song et al. [41] captured the subjects’ focus
on the screen and recorded the eye movements. Twenty participants were engaged in
experiments; the proposed system achieved 88.73% accuracy with 10.61% EER. Further
experimental results of a few recent studies [42–44] using eye-movement for continuous
authentication are discussed in Table 2. Recently, Saied et al. [45] proposed an eye-blink-
based user authentication system that captures eye-blink patterns and compares them
during the authentication phase. They achieved an accuracy of 98.4%, which has been
proven on CEW dataset [88]. Experimental results of other studies are presented in Table 8.

Table 8. Eye-movement-based authentication.

Studies Techniques Classification Algorithms # Users Performance

[41] Eye movement SVM 20 88.73% accuracy, 10.61% EER
[42] Eye movement SRC 30 93.1% accuracy, 6.9% EER
[43] Eye movement SVM 22 3.93% EER
[44] Eye movement SVM - 97.95% accuracy
[45] Eye blink CNN CEW 98.4% accuracy

[46] BioAura SVM, AB - 1.9% EER, 7.6% FAR, 9.6–8.4% FRR

3.3. Context-Aware Authentication

Context-aware modes utilize IP-address, devices, operating systems, and other profil-
ing parameters, such as GPS, battery usage, network usage, web browsing behaviors, and
online activities to authenticate a user continuously. Yazji et al. [89] proposed an implicit
authentication method by observing user activity patterns to distinguish between normal
and abnormal behaviors. Their authentication method monitors user activities, such as the
physical location where the files are accessed, which operations are performed on the file,
the time when they access the network, and IP addresses of the source and destination.
The authors performed experiments on eight users. Their authentication method achieved
90% accuracy with 13.7% FAR and 11% FRR. Gomi et al. [90] proposed browsing-based
user recognition for continuous authentication. They collected and analyzed the browsing
histories (in conjunction with IP addresses, URLs, and access times) of 1000 users using
Linear Regression (LR) to verify the users. The authors achieved 85% accuracy with 0.03%
EER. Recently, Mahbub et al. [91] utilized user app-usage patterns for continuous authen-
tication. Their method analyzes the time and duration spent on certain applications by
a specific user. Based on their analysis, they used hidden Markov models (HMMs) on
two datasets (UMDAA-02, Securacy). The performance comparison for these studies is
presented in Table 9.

Table 9. Context-aware authentication.

Studies Techniques Classification Algorithms # Users Performance

[89] File system, network
access, GPS NN, ED 8

90% accuracy, (28.8% (file-system),
46.4% (networked), 13.7% (combined))
FAR, (15.6% (file-system) 7%
(networked) 11% (combined)) FRR

[90] Online activities LR Users online history about 85% accuracy, 0.03% EER

[91] App-usage HMMs UMDAA-02,
Securacy 16.16% EER

[92] Bluetooth, WiFi K-NN 200 85% accuracy, 13% EER
[93] GPS SVM MDC Dataset 82.05% accuracy
[94] GPS W2V CARS, SherLock 83% accuracy
[95] GPS Mot2vec CDR not given
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4. Security and Privacy Concerns

This section discusses the criteria for secure and privacy-preserving methods by
considering privacy principles [96]. Moreover, this section also discusses security and
privacy issues associated with different modes of CA and possible security vulnerabilities
in machine learning (ML) algorithms.

Referring to Question 2, this section discusses how do the different CA modalities
score with regard to privacy and security. Privacy issues that are relevant for this paper
pertain to the disclosure of person-specific information about behavior, physiological bio-
metric characteristics, and context-aware information, such as location, etc. Security issues
relevant for this paper pertain to authentication in the sense of how well the addressed
authentication modalities perform. We do not consider software-related security issues,
such as software vulnerabilities, nor communication security, etc.

4.1. Continuous Authentication Cases

Continuous authentication can be utilized to protect smart devices, such as smart-
phones, and also cloud-based services. In both scenarios, data can be processed either in
the cloud or in the smart device.

Case 1. Authentication processing is performed in the cloud for the purpose of users
accessing a cloud-based service. In this case, the device collects data, and continuous
data processing and authentication are performed in the cloud. Hence, device processing
is reduced, but considerable communication is required, which is consequently power-
consuming. Importantly, this case has privacy issues due to the transmission and revealing
of personal data to the cloud.

Case 2a. Authentication processing is performed in the device for the purpose of
authenticating the user to the device. So, in this case, the device collects and processes
data. The processing requires considerable memory and computational resources, which is
power-consuming.

Case 2b. Authentication processing is done in the cloud for the purpose of authenticat-
ing the user to the mobile device. In this case, the authentication processing is outsourced
to a third-party server, which, similarly with Case 1, requires considerable communication.
There are, therefore, privacy issues due to the transmission and revealing of personal data
to the cloud.

4.2. Threat Actor Assumptions

Section 4.1 sketched cases or scenarios for continuous authentication. In this section,
we describe relevant threat actor assumptions for these cases.

For Case 1, we assume that there exists a curious (a.k.a. semi-malicious) insider at the
server-side who wants to know about the user-specific authentication information, such as
location data, IP address, or other online activities, that will be continuously transmitted
from the device to the server. We also assume that the curious insider has either partial
or full knowledge of training data (i.e., the template) used for physiological or behavioral
biometrics, the features computation process, and feature selection criteria. The curious
adversary has the capability of template reconstruction. The security issue is that Case 1
relies on the performance of authentication mode. If the adopted authentication mode does
not provide good accuracy (i.e., specific mode produces high FAR), then we assume there
is a threat of a masquerade attack.

Considering Case 2a in Section 4.1, we assume that the mobile devices securely store
user data so that an adversary with access to mobile devices cannot attain the stored
templates. The security threat pertains to the performance of the modalities. This is, for
instance, of relevance in case a device is stolen, as indicated in Figure 1b.

Considering Case 2b, we assume similar privacy and security threats as mentioned in
Case 1, which implies that we have a threat actor that is a malicious or curious insider who
has access to authentication data.
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rate (FRR) of a specific mode. Secondly, how easy is it to forge a biometric modality,
and numbers of possible attacks such as mimicry attacks, template leaking attacks, cross-
comparison attacks, etc. Physiological and behavioral biometric authentication mechanisms
do not provide 100 percent accuracy, meaning that there are chances of false matches.
In general, physiological biometric methods have better accuracy than both behavioral
biometrics and context-aware authentication modes. An important point that is often
overseen is that these methods are subject to certain kinds of attacks commonly referred
to as replay attacks, which, in this context, could be forging fingerprints, etc. [97–102].
Moreover, physiological biometrics need segmentation, which requires more preprocessing.
Behavioral biometric-based approaches, such as touch dynamics or keystroke dynamics,
can be more efficient because they require less preprocessing compared to physiological
biometrics. There are still arguments about whether continuous authentication modes
are secure or not. These modes do not provide very good accuracy as these approaches
produce a high false acceptance rate (FAR) and false rejection rate (FRR). Due to these
reasons, there are possibilities of false acceptance. Moreover, continuous authentication
modes with behavioral biometrics are tested on small datasets. These approaches need to
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4.3. Security Concerns

The security of continuous authentication modalities is determined by different factors,
including the performance such as accuracy, false acceptance rate (FAR), and false rejection
rate (FRR) of a specific mode. Secondly, how easy is it to forge a biometric modality,
and numbers of possible attacks such as mimicry attacks, template leaking attacks, cross-
comparison attacks, etc. Physiological and behavioral biometric authentication mechanisms
do not provide 100 percent accuracy, meaning that there are chances of false matches.
In general, physiological biometric methods have better accuracy than both behavioral
biometrics and context-aware authentication modes. An important point that is often
overseen is that these methods are subject to certain kinds of attacks commonly referred
to as replay attacks, which, in this context, could be forging fingerprints, etc. [97–102].
Moreover, physiological biometrics need segmentation, which requires more preprocessing.
Behavioral biometric-based approaches, such as touch dynamics or keystroke dynamics,
can be more efficient because they require less preprocessing compared to physiological
biometrics. There are still arguments about whether continuous authentication modes
are secure or not. These modes do not provide very good accuracy as these approaches
produce a high false acceptance rate (FAR) and false rejection rate (FRR). Due to these
reasons, there are possibilities of false acceptance. Moreover, continuous authentication
modes with behavioral biometrics are tested on small datasets. These approaches need to
be tested on more than one dataset to determine whether these modes produce the same
performance, such as same accuracy, same FAR, and FRR on different datasets.

4.4. Privacy Concerns

For processing data in the cloud, data are outsourced to the third-part authentication
server, which opens security and privacy concerns, i.e., users are not aware of what type of
data is collected and stored, how these data will be used in the future, and who has access
to their personal data.

Continuous authentication with different modes faces various privacy challenges.
Context-aware CA modes monitor user location data obtained by GPS, online user activities,
IP address, app-usage, etc. Since these data contain users’ personal information, for
instance, GPS data reveals the current location of the user. Such techniques cannot protect
the privacy of the user’s identity and location [103–105].

Continuous authentication by monitoring online activities, such as cookies or online
activities, with browsing history data may disclose information about user (such as gender,
age, and preferred sites) [106–108]. Researchers [109] performed experiments to identify
users by matching anonymous browsing histories with the publicly available dataset
(twitter). They achieved more than 70% accuracy; even browsing history data was in an
anonymized form.
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Physiological biometric templates compromise the privacy of user identity informa-
tion, health information, and other biological information [110]. For instance, CA using
face recognition systems to collect and store facial features, which may disclose user emo-
tional states by analyzing facial expressions [111]. Behavioral biometric modalities can also
compromise user privacy in similar ways. Behavioral biometric modalities authenticate
the user by recognizing their daily life routine data, such as gait recognition, stylometry,
touch dynamics, etc., which reveal current user activities. Moreover, keystroke dynamics
can be used to identify user age, gender, and the hand used for typing [112]. Compromised
profiles based on behavioral biometrics may reveal user identities and behavior that cannot
be permanently changed like a password [113].

4.5. Security and Privacy Challenges in Machine Learning Algorithms

Machine learning (ML) has several applications in different fields; ML requires con-
tinuous collection of high-quality, unprecedented data. These data are uploaded to a
centralized location. ML algorithms extract patterns from these data and build models,
and models are updated with newly collected data [114]. Physiological and behavioral
biometric-based approaches utilize ML algorithms. However, an investigative study [115]
provides experimental evidence that ML approaches are vulnerable to sample inference
attacks, reconstruction attacks (single and multi-sample), and label distribution estimation
attacks (single and multi-sample). A study in [116] performed experiments to prove that
ML models are also vulnerable to membership attacks. Moreover, another study [117]
also provides common privacy breaches and attacks, such as model inversion, data de-
anonymization, and model extraction attacks [118].

Machine learning models for classification, such as Support Vector Machine (SVM),
k-Nearest Neighbors (kNN), and Hidden Markov Models (HMM), are mostly utilized for
various continuous authentication modes. Authors [113] claim that these models (SVM and
kNN) store actual user samples in users’ authentication profiles. Based on the available data,
they utilized positive samples (belong to one user) and presented reconstruction attacks on
mobile-based continuous authentication in the cloud, which successfully identifies users
from data samples.

4.6. Attacks on Different Modes of Continuous Authentication

From a security point of view, continuous authentication with various modes faces
different challenges. Countermeasures against various attacks on physiological biometrics
have been discussed for decades [119,120], but, still, physiological biometrics are not consid-
ered secure authentication modes. Behavioral biometric-based approaches also face distinct
security vulnerabilities. Touch dynamics cannot withstand adversarial generative attacks;
these attacks manipulate training models to produce erroneous outcomes. Study [121]
provides experimental evidence that these attacks on touch dynamics can increase EER
ranging from 5% to 50%. Such attacks on keystroke dynamics can increase EER from 28% to
84% [122]. Moreover, Khan et al. [123] demonstrated in experiments on smartphones that
keystroke dynamics cannot resist mimicry attacks. Kumar et al. [124] designed imitation
attacks on a gait-based authentication system by imitating user gait patterns by using a
digital treadmill. Classification results prove that these attacks can increase FAR from 5.8%
to 43.66%. Karimian et al. [125] demonstrated the presentation attack in experiments that if
an attacker captures a short template of ECG data by any means (malicious insider), these
template data can be used to map attacker ECG data into the victim’s ECG data. They
collected ECG templates of 52 users from Physikalisch-Technische Bundesanstalt (PTB)
database for experiments. Their attacks achieved average success rates of 90% to 96%.

5. Usability and Other Issues

Considering the usability perspective, this section discusses practical challenges asso-
ciated with the adaptation of continuous authentication (CA). In the context of usability,
almost all biometric modalities face distinct challenges [126].
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5.1. Modality-Specific Issues

Regarding Research Question 4, this section discusses the limitations of each modality
in different scenarios. In real-life scenarios, the employed authentication modality needs
to be determined by the user situation, i.e., what the user is doing (or not doing) at the
moment. To the best of our knowledge, none of the single approaches could be suitable for
all user situations.

Continuous authentication with physiological biometric-based modalities faces var-
ious challenges, such as fingerprint recognition, which requires the user to perform an
action (scan fingerprint after some time). Considering the definition for continuous au-
thentication in Section 3, fingerprint recognition conflicts with the concept of continuous
authentication because it requires user attention and user action and does not authenticate
users passively. Similarly, the voice recognition authentication mode does not fit well with
the concept of continuous authentication, as this consequently does not work with quiet
users but, in contrast, requires continuous speaking, which is not practical. Moreover, face
and iris recognition modes could be utilized for continuous authentication, assuming that
the user is holding the device in front of their face. Nevertheless, continuous monitoring
with a camera could also affect user acceptance.

Motion-based continuous authentication basically takes the walking style (gait) into
account. This implies that in cases of running or jogging, users will not necessarily be
recognized or that the recognition accuracy will be lowered.

Some context-aware modes utilize only GPS data to authenticate a user continuously.
These approaches are not efficacious when devices are stolen inside a specific area and, in
this regard, cannot differentiate whether the user is legitimate or not. Moreover, access
is denied to legitimate users when they move out of specified locations. Continuous
authentication mode based on online search histories and browsing data does not provide
technical details, such as how authentication will work in real scenarios, as continuous
authentication requires continuous data. However, it is still unclear how the model will be
trained with new data and if users search sites other than their regular routine, how they
will be authenticated. Thus, these modes cannot deal with such scenarios, and due to these
reasons, these modes are considered weak modes of continuous authentication.

5.2. Reduced Recognition Accuracy

User recognition accuracy is important for authentication security in the sense that
low accuracy leads to poor authentication security. Likewise, low recognition accuracy in
the sense of false rejections affect usability and will be perceived as poor usability and poor
user experience [127]. Some behavioral modalities may produce high false acceptance rates
(FAR) and false rejection rates (FRR), which consequently will lead to reduced security
and usability.

5.3. Emotional States

In regard to the previous subsection, a user deals differently with a keyboard or
touchscreen during stress compared to their normal mood. Emotional states (such as stress,
happiness) will be a factor that also has an impact on recognition accuracy and, therefore,
the usability for touch dynamic modalities and behavioral modalities in general.

5.4. Lack of Standards and Protocols

A list of standards has been proposed by the international electrotechnical commission
(IEC) and the international standard organization (ISO). Usability follows ISO standard
9241-11 [4]; cryptographic authentication protocols follow different ISO standards: entity
authentication follows ISO/IEC 9798-3 [128], message authentication using shared key
follows ISO 16609:2012 [129], and zero-knowledge proofs and techniques follow ISO/IEC
9798-5 [130], while cybersecurity, information security, and privacy protection follow
ISO/IEC JTC 1/SC27 [131].
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However, we could not find such standards for continuous authentication. It is needed
to be standardized, for instance, what estimated time a behavioral biometric-based ap-
proach could take to observe user behaviors during the enrollment phase. If the estimated
time in the enrollment phase for user behavior observation is too short, then it cannot
completely identify a user, which could compromise security. If the estimated enrollment
time is too long, then it could affect the usability. The purpose of continuous authentica-
tion is to detect imposters immediately after the session begins. The enrollment phase of
continuous authentication is different than static authentication; continuous authentication
requires more time to observe user behaviors during the enrollment phase [132]. Moreover,
the minimum-maximum time to block a device in case of illegitimate access and mech-
anisms to unblock the device also need to be standardized. Finally, it is also imperative
to differentiate that continuous authentication modes, such as behavioral biometrics and
context-aware modes, can be used as an identity, or these modes are only utilized for user
verification. In general, behavioral biometrics and context-aware modes cannot be used
solely as authentication factors; however, these modes could be used as an additional factor
with ID/password.

5.5. Power Consumption Issue

Continuous authentication actively monitors user actions. Sensors play an essential
role, especially continuous authentication with behavioral biometrics. From the data
collection phase to authentication and authorization, all processes require sensors and
continuous data processing [133]. The deployment and utilization of a certain amount of
sensors to improve the recognition accuracy of specific activity, but it requires additional
expenses of computation resources and energy consumption. Battery consumption is
one of the paramount issues in a smartphone. Smartphones use a number of sensors
(e.g., proximity sensors, light sensor, gyroscope, barometer, accelerometer, and a digital
compass) [134]. These sensors consume a large amount of battery power. Sensory data
are collected at higher power costs [135]. Few studies provide the detailed analysis on
smartphone power consumption [136–139]. In general scenarios, power management
could be attained by cutting off sensors’ power when they are not in use, but continuous
authentication requires continuous monitoring and continuous processing, as well as the
sensory power that needs to be turned on during the entire active sessions.

6. Recommendations for Future Research Directions

This section discusses privacy-preserving approaches and provides recommenda-
tions to propose secure and privacy-preserving methods for continuous authentication.
Moreover, this section also provides recommendations to improve usability.

6.1. Privacy-Preserving Approaches

Continuous authentication with different modes outsources personal data to the server
for authentication purposes. Compromised user accounts/profiles can cause identity theft
and can also reveal user identity and other related information. These data require secure
and privacy-preserving storage and processing. This section discusses privacy-preserving
approaches and alludes a few recommendations to achieve secure and privacy-preserving
continuous authentication.

6.1.1. Cancelable Biometrics

Cancelable biometrics was introduced to solve security and privacy concerns for bio-
metrics. Cancelable biometric approaches provide template non-reversible and biometric
salting, which can increase the security and privacy of templates. Images are transformed
in a way that makes it difficult to reconstruct the original image from the distorted image.
Cancelable Biometrics also provides the capabilities to enroll and revoke new biometric
samples, i.e., revoke the previous templates and reissue new templates in case previous
templates get compromised. Few studies utilized cancelable biometrics techniques for tem-
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plate protection, such as the authors in [140] utilized random projection approach with the
cancelable feature. Authors in the study [141] utilized the fingerprint mixing (mixing two
fingerprints) technique. Moreover, a study [142] used a BioHashing interpretation-based
cancelable biometric approach to enable privacy.

6.1.2. Bloom Filters

A bloom filter [143] is a space-efficient probabilistic data structure of support member-
ship queries. Bloom filters are used to determine whether a given element is a member of a
set or not [144]. Bloom filters have intrinsic characteristics that offer advantages, such as
the space-efficient, controlled false positive, constant-time query, etc. In recent decades,
authors applied bloom filters for biometric templates. The authors in [145] used cancelable
biometrics with bloom filters. Moreover, a study [146] used adaptive bloom filters for BTP.
Furthermore, the authors in the study [147] also utilized bloom filters to achieve unlinkable
and irreversible biometric templates.

6.1.3. Homomorphic Encryption

Homomorphic encryption (HE) allows computation on encrypted data so that the data
remain confidential during processing. Partially homomorphic encryption (PHE) supports
either addition or multiplication at a time. In comparison, fully homomorphic encryption
(FHE) supports both operations (addition and multiplication). Thus, by utilizing these
homomorphic encryption techniques, the users do not need to trust the server. The users
send encrypted data to the server for processing, and the server performs computation
without data decryption of the data [148]. During the authentication for services, personal
user data are transmitted to an (untrusted) cloud authentication service. Thus, by using
homomorphic encryption (HE), we can accomplish data confidentiality. Homomorphic
encryption is utilized in a few studies where the biometric data were outsourced to the
server. The following studies utilized homomorphic encryption for privacy-preserving
biometric authentication: [149–155].

6.1.4. Secure Two-Party Computation

In secret sharing schemes, parties share a secret among a group of participants so that
no individual can reconstruct the secret from the information available to him. Secret shar-
ing methods enable multiple parties to cooperate with each other and construct/reconstruct
the secrets. Secret sharing could be helpful with two-party computation [156] if users do
not trust the cloud and do not want to outsource personal data due to privacy concerns.

In the case of the biometric authentication process, users hold their biometric samples,
and biometric templates are stored in a database at the server-side. A protocol is executed to
determine the similarity or dissimilarity between templates. Secure two-party computation
can enable the identification without disclosing biometric data to each other. Thus, utilizing
secure two-party computation and dividing the data processing resources between the
client and server will be useful to achieve privacy and trust. A list of references that utilized
secure two-party computation to achieve privacy: [157–160].

6.1.5. Zero-Knowledge Proofs

Zero-Knowledge Proof (ZKP) [161] is considered a privacy-enhancing technique.
ZKP enables secure data sharing and ensures that one party can prove itself without
disclosing particular or personal information. ZKP does not allow the server to read or
write user authentication data, metadata, or cryptographic keys. This technique ensures
that user authentication data will remain confidential from malicious or curious insiders
and external attackers even if the server gets compromised. The authors in [162] present
privacy-preserving authentication with zero-knowledge proofs.
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6.1.6. Comparison

Many of the privacy-preserving techniques have been utilized for biometric template
protection to solve security and privacy issues. However, these techniques still face
distinct challenges. Privacy-preserving methods based on cryptobiometrics, such as fuzzy
commitment schemes [163] and fuzzy vault schemes [164], have been utilized for biometric
data protection. However, these solutions face issues related to data distinguishability and
data reversibility, which cannot provide full privacy [158]. Regarding the performance of
cancelable biometric approaches, these approaches can cause two problems: (1) they can
obscure the feature of local neighborhoods element, and (2) during the compression phase,
alignment cannot be appropriately performed [165].

For privacy-preserving context-aware modes, several statistical privacy techniques,
such as k-anonymity [166], l-Diversity [167], and t-closeness [168] can be applied to achieve
privacy-preserving continuous authentication. These techniques anonymize user identity
attributes, quasi-identifiers, and other sensitive attributes that can reveal the user’s identity
to achieve privacy. These techniques can also be applied to context-aware data that
continuous authentication modes utilize. However, we could not find references related
to the application of these approaches in continuous authentication. Experiments can be
performed to see what level of privacy and accuracy an authentication system achieves by
applying these statistical techniques.

Classical cryptographic approaches demand decryption before comparison, i.e., tem-
plate comparison cannot be performed in the encrypted domain, implying that templates
need to be decrypted during the authentication process. Decryption before authentication
can enable an adversary to observe biometric templates and launch an authentication at-
tempt. Homomorphic encryption solves the issue of decryption before authentication [169]
because HE allows computation on encrypted data.

Regarding Question 3 in Section 1, and by considering the ISO standard for biometric
information protection ISO/IEC 24745 [170], the security and privacy issues for continuous
authentication can be mitigated by utilizing cryptographic techniques, such as homomor-
phic encryption with secure two-party computation and Zero-Knowledge Proofs (ZKP).
However, while designing FHE, the degree of polynomials is increased by the addition
of noise, which can be result in poor performance. Therefore, FHE requires applying
boot-striping for noise removal. Furthermore, bloom filters also seem to be promising
techniques to protect biometric information with efficient security and performance. Bloom
filters can also be utilized with homomorphic encryption [171]. Continuous authentica-
tion modes suffer from significant security and privacy challenges; thus, the utilization
of homomorphic encryption combined with bloom filters can solve both security and
privacy challenges. Moreover, these techniques can be applied to all modes of continuous
authentication, as discussed in Section 3.

6.2. Recommendations to Improve Usability

The usability-related issues stated in Section 5 can be improved in different ways. One
aspect is to improve the usability with the help of psychology. This includes studying
cognitive and social factors, such as user emotions, user behavior, and user habits, to
determine the differences in users’ emotional states, such as users’ behaviors during
happiness or anger. This knowledge can be utilized to design new solutions based on users’
psychological states that could improve user acceptance and usability. The other way is to
ask users’ opinions by conducting a survey to know user experiences with different modes
of continuous authentication.

Regarding the modality-specific issues discussed in Section 5.1 and in order for con-
tinuous authentication to be usable, a set of modalities needs to be considered that could
automatically choose the authentication mode according to the scenario. Most of the litera-
ture, in general, addresses one or two modalities isolated from other modalities, i.e., these
approaches are suitable for only one or two specific situations. Recently, the proposed
studies [172,173] utilized multiple modalities and evaluated their approaches on different
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modes. Further work in this direction combined with privacy-preserving approaches can
solve modality-specific and privacy issues.

7. Related Surveys

This section presents a brief discussion on recently published surveys on continuous
authentication (CA), as shown in Table 10. In 2015, the authors presented a survey [174]
focusing on a short overview of multi-biometric authentication and discussed the applica-
bility and adoption of implicit authentication with multi-biometric authentication traits.
In 2016, Patel et al. [126] presented current progress and future challenges of CA on mobile
devices. Ayeswary et al. [175] also presented a brief overview of different CA methods,
their merits, and demerits. Moreover, the authors explained open problems and emerging
necessities of a continuous authentication system as well. Gonzalez-Manzan et al. [24]
presented a comprehensive overview of different components of continuous authentication
for the Internet of Things (IoT). Furthermore, this survey also focuses on the industrial
status, ongoing research project contributions on continuous authentication, an overview
of related standards, and different aspects proposal for future research directions for CA
also presented in this survey.

In 2020, Abuhamad et al. [176] presented sensor-based behavioral biometrics, a new
survey. This survey describes different behavioral biometric-based approaches and their
adoption for CA on smartphones. Rasnayak et al. [177] analyzed continuous authentication
from the perspective of usability and resource consumption. In addition, they prepared
questionnaires in their survey and asked users’ opinions. They conducted a survey involv-
ing 500 participants. Furthermore, they showed in their conclusion that users want to utilize
continuous authentication, but they want less resource-consuming methods. Furthermore,
users have privacy concerns regarding their data that have been utilized for continuous
authentication. Eglitis et al. [178] investigated how sensory data are collected and utilized
in experiments for behavioral biometrics. Moreover, they examined 32 papers and as-
sessed their citations and how training is performed. Recently, in 2021, the authors of [179]
discussed privacy issues associated with sensor-based behavioral biometics. Moreover,
they discussed a short overview of behavioral biometric-based approaches. Furthermore,
they also presented the review of different available datasets, and finally, the authors also
suggested recommendations that could be proven as a considerable privacy-preserving
treatment for continuous authentication.

Table 10. A list of continuous authentication surveys.

Topics Year Focus

Expanding continuous authentication with mobile devices [174] 2015 CA for IoT

Continuous and transparent multimodal authentication: Reviewing the state of
the art [180] 2016 CA with multimodal biometrics

Continuous User Authentication on Mobile Devices: Recent Progress and
Remaining Challenges [126] 2016 CA overview

Continuous Authentication and Authorization for the Internet of Things [181] 2017 CA for IoT

Who wants Continuous Authentication on Mobile Devices? [182] 2018 User opinion and experience

Leveraging user-related Internet of Things for continuous authentication: A
survey [24] 2019 CA for IoT

A survey on different continuous authentication systems [175] 2019 CA overview

Data Behind Mobile Behavioural Biometrics—a Survey [178] 2020 Behavioral biometrics

Towards Wider Adoption of Continuous Authentication on Mobile Devices [177] 2020 Security and power consumption
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Table 10. Cont.

Topics Year Focus

Sensor-based Continuous Authentication of Smartphones’ Users Using Behavioral
Biometrics: A Contemporary Survey [176] 2020 CA with behavioral biometrics

Touch-dynamics based Behavioural Biometrics on Mobile Devices—A Review
from a Usability and Performance Perspective [183] 2020 Usability and Performance

Privacy-Preserving Sensor-Based Continuous Authentication and User Profiling:
A Review [179] 2021 Privacy overview

8. Conclusions

Continuous authentication is slightly different from static authentication. It requires
efficient performance in terms of accuracy and high computation. Behavioral biometrics
could be the best mode of continuous authentication due to its seamless nature. How-
ever, unfortunately, this mode does not achieve very high accuracy yet. Furthermore,
other modes of continuous authentication cannot be considered strong modes due to
their limitations. Moreover, we cannot ignore other issues related to usability and user
experiences before applying continuous authentication in a specific domain. The aspects
of security, privacy, and usability in continuous authentication require researchers and
industrial attention.

In this survey, we have discussed physiological, behavioral biometrics, and context-
aware modes relevant to continuous authentication. We have gathered and compared the
results of different studies pertaining to continuous authentication in terms of security,
privacy, and usability. Most continuous authentication modes achieve usability to some
extent, but security and privacy are still questionable, in which we have identified some
security and privacy risks of relevant modes. Moreover, issues related to usability, such as
power consumption and lack of standards and protocols, are also identified in this survey.
Finally, we have discussed privacy-preserving methods and have provided a comparison
and future directions to improve security, privacy, and usability. The recommended
improvements can make continuous authentication more applicable in different domains
of real-world applications.
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Abbreviations
The following abbreviations are used in this manuscript:

1DMRLBP 1-dimensional Multi-resolution Local Binary Patterns
AB Ada Boost
BB Behavioral Biometrics
BT Bayesian Theory
CA Continuous Authentication
CC Cross-Correlation
CEW Closed Eyes in the Wild
COTS Commercial Off The Shelf
CNN Convolutional Neural Network
CRR Correct Rejection Rate
CRM Cyclic Rotation Metric
DDM Drift Detection Method
DTW Dynamic Time Warping
ED Euclidean Distance
ERR Equal Error Rate
FAR False Acceptance Rate
FC Fuzzy Commitment
FF Feed Forward
FFT Fast Fourier Transform
FPR False Positive Rate
FRR False Rejection Rate
GAN Genuine Authentication Rate
GDI Gait Dynamics Images
HMM Hidden Markov Model
HTER Half Total Error Rate
Idp Identity Provider
kNN k-Nearest Neighbors
LBP Local Binary Pattern
LDA Linear Discriminative Analysis
LS Least Square
Mot2vec Motion-to Vector
LR Linear Regression
MAD Median Absolute Deviation
MHD Modified Hausdorff Distance
MLP Multi Layered Perception
NB Naive Bayes
PCA Principal Component Analysis
PSO-RBFN Particle Swarm Optimization Radial Basis Function Network
RF Random Forest
SP Service Provider
SRC Sparse Representation Classification
SVM Support Vector Machine
TPR True Positive Rate
W2V Word2Vec
VAD Voice Activity Detection
ZMCP Ziv–Merhav Cross Parsing
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