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ABSTRACT
Thermal protection in marine electrical propulsion motors is commonly implemented
by installing temperature sensors on the windings of the motor. An alarm is issued
once the temperature reaches the alarm limit, while the motor shuts down once the
trip limit is reached. Field experience shows that this protection scheme in some cases
is insufficient, as the motor may already be damaged before reaching the trip limit. In
this paper, we develop a machine learning algorithm to predict overheating, based on
past data collected from a class of identical vessels. All methods were implemented to
comply with real-time requirements of the on-board protective systems with minimal
need for memory and computational power. Our two-stage overheating detection
algorithm first predicts the temperature in a normal state using linear regression
fitted to regular operation motor performance measurements, with exponentially
smoothed predictors accounting for time dynamics. Then it identifies and monitors
temperature deviations between the observed and predicted temperatures using an
adaptive cumulative sum (CUSUM) procedure. Using data from a real fault case,
the monitor alerts between 60 to 90 minutes before failure occurs, and it is able to
detect the emerging fault at temperatures below the current alarm limits.

KEYWORDS
Overheating, Anomaly detection, CUSUM, Linear regression, Temperature
monitoring

1. Introduction

The common safety practice for prevention of overheating in marine electrical propul-
sion motors is based on physically mounted temperature sensors on the windings of the
motor, often by resistor temperature detection (RTD) devices (IEEE Standard 3004.8
2016). An alarm is issued once the temperature reaches the alarm limit (H) and the
motor shuts down if it reaches the trip limit (HH). In the propulsion control software,
there is a fixed HH limit (typically at 155◦C), that only allows for a single point of
critical temperature level protection. Field experience shows that these standard hard
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thresholds can be insufficient, in particular with respect to timeliness, as the motor
may be damaged already before reaching the trip limit. Given the mounting location of
the RTD sensors, the efficiency, accuracy, and timeliness of the protection system can
vary, as the highest temperature of the windings may be at a different location than
the monitoring points. For instance, a hotspot may develop at a location where excess
heat is not effectively transferred to the monitoring spots, such that the overheating
is not detected by the sensors before a critical fault has occurred. The detection will
be influenced by i.e. the ambient conditions near the windings (such as humidity) and
the separation space between the windings. There is hence a need for more adaptive
and dynamic monitoring of overheating. The modelling of excess temperature devel-
opment or overheating has traditionally been based on physical models of the system
utilising thermodynamics or electrical parameters (see e.g. Gnacinski 2008; Maftei et
al. 2009; Lystianingrum, Hredzak, and Agelidis 2016; Pawlus et al. 2017), but these
model-based approaches may be difficult to develop.

In this paper, we instead demonstrate how past data and machine learning, follow-
ing a data-driven approach, can be used for timely prediction of overheating in high
performance marine propulsion motors. The main aim is to implement a real-time
thermal protection function that can detect an abnormal state prior to reaching the
HH temperature limit. We focus on using a relatively simple and transparent model,
which can be easily implemented in practice, without requiring substantial computa-
tional power and memory. The monitor uses measurements that are readily available,
and it is implemented based on existing instrumentation on industrial grade computa-
tion engines commonly applied in the on-board system. Using data from a known fault
incidence, we illustrate the usefulness of our monitor in detecting faults earlier and
at lower temperatures than the standard procedures. Such data-driven approaches to
condition monitoring are increasingly used for anomaly detection, fault identification
and prognostics in marine vessels (Vanem and Brandsæter 2019).

1.1. System overview

We consider thermal protection for propulsion motors on ships with diesel-electric
propulsion systems. The rating and dimension of these motors depend on the size
and design of the ship, and the rating of the motor ranges from kilowatts to several
megawatts of generated power. Protection of such motors is important both from a
cost and safety point-of-view. From the cost perspective, damage to a propulsion motor
may result in costly repairs or replacements, in addition to a loss or reduction of the
ability to provide the intended fiscal return over a period of time. From the safety
perspective, a partial loss of propulsion at a critical moment may lead to a safety
hazard due to reduced manoeuvrability of the ship. The critical function of this class
of motors motivated the development of the novel machine learning-based protection
function described in this study.

A schematic overview of the overall system we consider can be found in Figure 1.
An on-board freshwater cooling system is used to control the temperature of the motor
and other units. The motor itself is cooled by air, which is circulated by one or more
fans. Heat is transferred from the hot air to the water-based cooling system through a
heat exchanger, as seen in Figure 1. Cooling air temperature is measured on the inlet
and outlet of the heat exchanger. The rotation speed of the motor is either measured
directly, or provided by the Propulsion Control Unit (PCU), which is a controller
application integrated with the propulsion frequency converter controlling the speed
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Figure 1. Schematic overview of the system. The cooling air inlet and outlet temperatures are abbreviated
Tin and Tout, respectively.

and power of the propulsion motors. The mechanical torque and electrical power are
calculated and provided by the PCU. The system overview, shown in Figure 1, is fairly
generic and will be suitable for other applications beyond electrical motors and diesel-
electric propulsion systems on ships. More instrumentation may be available in some
applications, but here a minimum set was chosen for training and implementation, in
order for the protection function to be as general as possible.

2. Data

2.1. Training data

The data made available by ABB consist of temperature and performance recordings
from medium voltage (MV) electrical propulsion motors and the surrounding cooling
system aboard four vessels of the same design. Each vessel has three different motors
of two different classes, named class I and II in this paper, one motor of class I and two
motors of class II. The temperature measurements (◦C) on the windings of the motors
were recorded by six sensors in total, located in two separate triplets of windings;
referred to as U1, V1,W1, and U2, V2,W2. Several variables of the performance and the
motor’s surrounding cooling system could be measured, but the following subset of
variables was recorded consistently across all the vessels: power of the motor (% of
maximum nominal power), speed of the motor (% of maximum nominal speed), and
mechanical torque (% of maximum nominal torque), together with the inlet tempera-
ture (◦C), and the outlet temperature (◦C) of the cooling air in the cooling system.

2.2. Preprocessing

The data from each vessel and motor were collected at different time periods in 2017
and 2018. The time periods of collected data vary for the different vessels: 125 days,
around 4 months, for the first vessel; 80 days, around 2.5 months, for the second vessel;
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294 days, around 10 months, for the third vessel; and 262 days, around 9 months, for
the fourth vessel.

The data were collected using the ABB Remote Diagnostics System (RDS), an edge
device whose function is to collect data from the on-board devices and transfer it via a
satellite link to cloud storage, enabling remote troubleshooting and data analysis. The
on-board protection systems collect data at regular, sub-second intervals, while the
RDS queries the data using different data collection schemes. In the considered train-
ing data, all measurements were collected using an asynchronous sampling regime. The
idea behind the sample regime is that in order to not store more information than nec-
essary, measurements are only recorded if they differ substantially from the previously
measured value. Hence, values were polled at regular intervals, but only stored when
the difference between the current and the previously stored value exceeded a given
threshold. The threshold is configured differently for the different measurements. Un-
der the asynchronous setup, substantial amounts of data are collected during dynamic
periods, while none or few samples are recorded during stationary periods, for instance
at zero power, e.g. docking, or when running at a constant power over a long period of
time. The main strength of the asynchronous sampling regime is a reduction in storage
capacity and bandwidth for data transfer during stationary periods, while still being
able to record data with a relatively high bandwidth in dynamic periods (Losada,
Rubio and Bencomo 2015). The main weakness is reduced robustness to data gaps,
as missing measurements due to malfunctioning cannot be separated from stationary
periods without additional information.

The temperature, performance, and cooling system measurements were thus
recorded at non-uniform time intervals with gaps ranging from milliseconds to several
hours or days. To obtain regularly sampled data, required for the machine learning
analysis, all recordings were mapped onto a regular grid with 1 second sampling time,
over the range spanned by the timestamps of all the measurements. The synchroni-
sation of the temporal scale was applied to each ship separately as the collected data
covered different periods. With several recordings within the same second, the last
observed value was chosen.

To impute the non-recorded values in the regular time-aligned data, we applied a
last value carried forward (LVCF) interpolation principle, separately for each vari-
able. This complies with the asynchronous sampling regime in that a sequence of non-
recorded measurements will be replaced by the last recorded value. Alternatively, given
a synchronous sampling regime or a combination of asynchronous and synchronous
measurements, a linear interpolation approach could have been used. There are, how-
ever, also indications of missing data due to malfunctioning registration. We therefore
introduced a liberal upper threshold of 48 hours for the length of the interpolation
period, to avoid applying the LVCF principle to periods where it would clearly not
be suitable. The value of 48 hours was specifically chosen to not exclude certain long-
distance voyages with stable conditions of high power observed in the data. A shorter
upper threshold for the period length would have resulted in fewer observations in
the time-aligned data necessary for the machine learning analysis. In addition, for the
slowly changing temperature measurements, interpolation was only carried out if the
difference between measurements at either end of the period was below 3◦C. Changes
in temperature larger than this threshold suggested that the missing observations were
due to malfunctioning, and not the asynchronous sampling procedure. For the rapidly
changing measurements, i.e. power, speed, and torque, a reasonable restriction could
not be defined and interpolation was performed regardless of the change in value.

Before the synchronisation of the data, there were approximately 650 000 tempera-
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ture measurements and 3 million observations for the power, speed, and torque mea-
surements. After synchronisation, but before interpolation, there were around 450 000
complete observations with registered measurements in all variables. After the LVCF
interpolation, there were around 78 million complete observations in the training data.

Finally, overheating can only occur when the motor is in fact running, and predicting
the motor temperature at zero power corresponds to predicting ambient temperature.
Therefore the final preprocessing step was to remove all observations where the power
was approximately zero, set at the practical limit of the power being less than 1% of
maximum nominal power.

3. Methods

Our general framework for detecting heat development is to compare a prediction
of the temperature in a normal state to the actually observed temperature, and to
monitor deviations between the two. If the observed temperatures are significantly
higher than the predicted temperatures, we may suspect overheating. The approach
is illustrated in Figure 2. The left panel shows the observed and predicted tempera-
tures under normal conditions, where they largely agree. The right panel, on the other
hand, shows a hypothetical scenario where the observed temperature significantly ex-
ceeds the predicted temperature, indicating a possible overheating event. The novel
contribution is to predict the winding temperature using a machine learning model to
emulate the physical system. The prediction is based on available training data from
the motor performance and cooling system under normal conditions, to describe how
the temperature should behave.

We therefore use a two-step framework for overheating detection:

(1) first, build a predictive machine learning model for the winding temperature
based on observed historical data,

(2) then, monitor and detect deviations in the observed winding temperatures from
the predicted normal state values. When deviations exceed a certain threshold,
an alarm is issued.

In the predictive step, we train the machine learning model to predict the mean motor
temperature Tm (averaged over all windings) to ensure generalisability as the locations
of sensors and windings may differ across vessels and motors. In the detection step,
we monitor the deviations of the observed temperature on the individual windings, in
order to detect overheating events as early as possible. All analyses in the study were
performed using the statistical software R.

3.1. Modelling temperature using machine learning

The first step is to train a machine learning model to emulate the physical system of the
motor. We use ordinary least squares (OLS) linear regression (Chambers 1992; Hastie,
Tibshirani and Friedman 2001) as the machine learning algorithm, to comply with the
practical constraints of the on-board protective system with limited computational
power and memory. The OLS model predicts the mean motor temperature Tm, or the
output yt, at time t as a linear function of M input variables xi,t at time t:

yt = β0 + β1x1,t + · · ·+ βMxM,t + εt,
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Figure 2. Illustration of the general framework for overheating detection. The left panel shows the observed

and predicted temperatures under normal conditions. The right panel shows an observed temperature signifi-

cantly exceeding the predicted temperature, indicating a possible overheating event.

with a noise term εt. The initial input variables are the power, speed and torque of
the motor and the cooling air inlet temperature. In addition, the cooling air outlet
temperature is also available, but the role and subsequent exclusion of it from the
considered model is discussed in Section 5.

The model is fitted by least squares using the QR factorisation method (Hansen,
Pereyra and Scherer 2013). To optimise the predictive ability of the final model, we
assess several reasonable transformations of the input variables and select the best in
terms of prediction error.

3.1.1. Transformation of input variables

We first determine the relevant transformations of the input variables for the OLS
regression algorithm. Expert knowledge regarding the physical system of the motor
is used to guide the inclusion of relevant transformations. First, it is assumed that
the impact of the motor speed and torque on the winding temperature would be the
same irrespective of the direction of rotation, such that only the absolute values of the
speed and torque variables are considered as inputs. The power of the motor is always
positive.

The motor performance measurements of speed, torque, and power are characterised
by large and abrupt changes, as seen in the left panel of Figure 3. The individual sen-
sor and mean temperatures are, on the other hand, slowly varying measurements as
the motor, being a block of metal, heats up through conduction. We therefore con-
sider time-lagged, smoothed transformations of the volatile input variables, as such
smoothed variables will be more informative of the temperature, accounting for the
time dynamics of the system. For our purpose, exponentially weighted moving average
(EWMA) or exponential smoothing (Brown 1956; Holt 1957), is seen to be a good
choice for constructing such lagged input variables. Importantly, exponential smooth-
ing can be recursively defined, requiring minimal memory, such that the transformation
is easily implementable in an industrial real-time system. Alternative smoothing ap-
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Figure 3. The left panel shows an example of abrupt changes in speed, power, and torque compared to

the slowly changing mean temperature at an occurrence of acceleration of speed and torque. The right panel
shows the corresponding exponentially smoothed variables of speed, power, and torque, together with the

non-smoothed mean temperature.

proaches, such as fixed-window moving averages, would in comparison require more
memory.

EWMA smooths the time series using an exponential window function. It temporally
lags the original input variable u by recursively adding current variable values to
previous aggregates, multiplied by a smoothing factor 0 < θ < 1. More formally, the
exponentially smoothed input variable, xt at time-step t, of the original input variable,
ut, is given by

xt = (1− θ)xt−1 + θut, u0 = x0.

The smoothing factor θ determines the time constant of the system, τ , where the
relationship between θ, τ , and the sampling interval ∆T is given by

θ = 1− e−∆T/τ ' ∆T

τ
, τ � ∆T.

The time constant, τ , of an exponential moving average is hence given by τ =
∆T/ log(1 − θ), and represents the amount of time it takes the smoothed response
of a unit set function to reach 63.2% of the original signal. The EWMA characterises
the solution to a first-order ordinary differential equation, and therefore gives a good
approximation to physical systems such as heat transfer models.

When constructing the exponentially smoothed variables, a mechanism for handling
the remaining missing or censored observations is needed. We choose to reset the
exponential smoothing if an observation xk is missing or unavailable, meaning that
the smoothing is initialised by setting y0 equal to the first value after the missing
observations. After a reset, the smoothing requires time to stabilise, such that the first
30 minutes are subsequently censored and not used.
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3.1.2. Selection of input variables

We then select the best input variables to be included in the OLS algorithm. As
prediction is our main aim, we evaluate the different models based on predictive abil-
ity using cross-validation. Standard model selection approaches, such as evaluating
Akaike’s information criterion (AIC) would be less practical due to the large number
of observations (Claeskens and Hjort 2008). In cross-validation, different parts of the
training data are consecutively held out from the model fitting and predicted based
on the remaining data. The prediction error is then assessed by the root mean squared
error (RMSE) averaged over all parts.

In our setting, the part of the training data held out could comprise either the data
for one whole vessel, one motor class of a vessel, or one individual motor. Due to dif-
fering operating modes and varying sea conditions, the variability in motor operation
between different vessels is substantially larger than the variability between motors
within the same vessel. The two class II motors are, in addition, likely to run in the
same mode within the same vessel. As we specifically aim to assess how the predictive
performance generalises to a previously unobserved vessel, we perform cross-validation
leaving out each vessel, i.e. the single class I motor and the pair of class II motors,
in each cross-validation iteration. The cross-validation scheme therefore holds out all
three motors in one vessel for each iteration. As the amount of available data varies
between vessels, a weighted version of the root mean squared error is used. The vessel-
specific weights equal the proportion of observations for each vessel of the total data,
separately for the motor classes I and II. We further assume the physical systems of
the class I and II motors to be equal, but that they may run under different oper-
ating regimes. The same input variables are therefore used for all motors, but with
parameters estimated separately for the two motor classes.

We follow a forward and backward step-wise model selection strategy (Hastie, Tib-
shirani and Friedman 2001), testing increasingly complex models and comparing them
in terms of the cross-validated RMSE. The variables are included in the following
hierarchy:

(1) Cooling air inlet temperature
(2) Linear power
(3) Squared power
(4) Linear speed
(5) Squared speed
(6) Linear torque
(7) Squared torque
(8) Interaction between linear speed, power and torque

All power, speed, and torque terms were included as exponentially smoothed variables
as investigations showed that non-smoothed input variables always gave worse predic-
tion performance. Details on the separate cross-validation errors for each step, when
including different input variables, are provided in the Supplementary material. After
a final backward step, excluding the variables not improving the prediction, the final
model uses five input variables: cooling air inlet temperature, exponentially smoothed
squared power, linear and squared speed, and squared torque.

As part of the model selection procedure, a conditionally optimal time constant,
τ , was initially estimated separately for each input variable. To facilitate a physical
interpretation of the model, all τ values were fixed to the same value, found to be
τ = 28 min by minimising the cross-validation RMSE. The model with a common
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Table 1. Estimated parameters for the temperature pre-

diction models. The time constant τ is measured in min-

utes.

Variable Class I motor Class II motor

Constant 2.7 ·101 2.4 ·101

TaIn 8.4 · 10−1 7.8 · 10−1

Power2 (τ = 28) −3.5 · 10−3 1.0 · 10−3

Speed (τ = 28) −4.0 · 10−1 −9.6 · 10−2

Speed2 (τ = 28) 5.7 · 10−3 2.2 · 10−3

Torque2 (τ = 28) 9.9 · 10−3 5.4 · 10−3

time constant was seen to give only slightly worse prediction performance than the
individual time constant model, see the Supplementary material for further details.
The class I and II motor model fits are summarised in Table 1. We note that the sign
of the estimated effect of the squared power differed between the models, which is
likely due to the high correlations between the different input variables. The adjusted
R2 of the two models is 0.941 and 0.931, respectively. This close match between our
predictive model and the observed data can be seen in the illustration in the left part
of Figure 2. The training of the linear model with the training set of around 78 million
observations runs in a couple of minutes on a standard computer.

3.2. Fault detection algorithm

Given the prediction models for the normal state of the system, the second step is
to monitor the deviations between the observed temperature and the predicted tem-
peratures. We propose an online monitoring algorithm for the temperature deviations
based on the framework of Lorden and Pollak (2008) and Liu, Zhang and Mei (2017).
We further develop a novel tuning procedure to automatically select the parameters
of the monitoring algorithm.

The prediction models are trained on the mean temperature, but we monitor the
observed temperature deviations on the individual sensors to detect overheating events
as early as possible. For the fault detection algorithm, the aim is to detect as quickly as
possible, whether any of the temperatures in N sensors suddenly rises to an abnormally
high level compared to the normal state prediction. In our case, the number of sensors
is equal to the number of individual windings, N = 6.

We use the notation yj,t for the observed temperature of the individual sensor j =
1, . . . , N at time t, and ŷt for the predicted average temperature across the sensors at
time t produced by the models in Table 1. The deviations of the observed temperature
from the predicted temperature at time t, referred to as the residuals, are given by

ej,t = yj,t − ŷt, j = 1, . . . , N.

The goal is to detect whether the mean of the residual distribution for any of the
sensors has changed sufficiently far from 0 in the positive direction. Such a large
deviation is shown schematically in the right panel of Figure 2.

We monitor each sensor using a local monitoring statistic, zj,t, which is a function
of the temperature residuals of the jth sensor up until time t: ej,1, . . . , ej,t. We then
construct a global monitoring statistic for all sensors, Gt, by applying a set of filtering
or shrinkage functions, hj ≥ 0, on the local monitoring statistics of each sensor and
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summing their individual contributions,

Gt =

N∑
j=1

hj(zj,t). (1)

Finally, the global monitoring statistic, Gt, is compared to an alarm threshold, b, where
the alarm is raised when the statistic exceeds the threshold value.

The detection algorithm is required to detect true faults quickly with as few false
alarms as possible and to detect faults that are only visible in a single sensor. At the
same time, we need the algorithm to be computationally efficient and conceptually
simple. Further, it should also generalise to different motors and vessels without motor-
specific tuning. The simplicity of the monitoring system is important for the operator’s
understanding of the system and for implementation, as the monitoring system is coded
in the on-board vessel system and must be able to run in real-time. We specifically
select the local monitoring statistic zj,t and the filtering functions hj of the detection
algorithm to comply with these criteria.

3.2.1. Choice of monitoring statistic

For the local monitoring statistic, we use the adaptive cumulative sum (CUSUM)
statistic introduced by Lorden and Pollak (2008). We choose the adaptive CUSUM
because of its simplicity and computational efficiency, in addition to a proven ability to
quickly detect distributional changes of unknown magnitude. Alternative monitoring
statistics include the standard CUSUM statistic (Page 1954, 1955), the EWMA control
chart (Roberts 1959) or other sequential change-point detection statistics (Basseville
and Nikiforov 1993).

We assume the residuals to be independent and standard normally distributed, such
that the adaptive CUSUM statistic is given by

zj,t = max

(
zj,t−1 + µ̂j,tej,t −

1

2
µ̂2
j,t, 0

)
, (2)

for each sensor j. In practice, the overall distribution of the residuals in the training
data is standardised to have a mean of 0 and a standard deviation of 1, separately for
the two motor classes. The values µ̂j,t are adaptive means, recursively estimated for
each sensor, given by

µ̂j,t = max

(
sj,t
nj,t

, ρ

)
, sj,t =

{
sj,t−1 + ej,t−1, zj,t−1 > 0,

0, zj,t−1 = 0,
(3)

where nj,t = nj,t−1 + 1, if zj,t−1 > 0, and otherwise nj,t = 0, if zj,t−1 = 0, and
with initial values zj,0 = sj,0 = ej,0 = 0. Note that when sj,t = nj,t = 0, we define
sj,t/nj,t = 0.

The adaptive means and the monitoring statistic zj,t are therefore dependent on a
user-determined parameter, ρ > 0, representing the smallest relevant change. If there
is evidence that a change occurred, such that zj,t−1 > 0, the mean is estimated by a
recursively updated average. The update starts from a candidate change-point given
by the most recent time i where zj,i = 0 for 1 ≤ i ≤ t− 2. If there is no evidence of a
change, such that zj,t−1 = 0, the average is reset to 0. The statistic will further ignore
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irrelevant changes when ρ is selected appropriately. When the monitoring statistic is
zero, zj,t−1 = 0, the consecutive value only increases, zj,t > 0, if ej,t > ρ/2. At a
given observation time t, the number of operations needed to update the monitoring
statistic is independent of both the training set’s size as well as the length of the
current monitoring period, t. The computational complexity scales only linearly in the
number of sensors N (i.e. O(N)). The required calculations in real-time are thus very
limited and run on the scale of milliseconds, even if there are thousands of sensors.

The assumed normality and independence of the residuals is, however, an over-
simplification and results in a misspecified model. But due to the large amounts of
available training data and the fact that the temperature faults of interest correspond
to large changes in the mean, this simplistic model still yields good results in practice.
Further, the threshold b is set based on the number of false alarms in the training
data, irrespective of the model assumption of the CUSUM statistic. The model mis-
specification therefore does not result in loss of control of the false alarms, but rather
speed of detection. Given that the relevant changes in the means are relatively large,
any improvement in timeliness achieved by applying a more complex residual model
appears to be small.

In the standard CUSUM, changes in the mean have to be pre-specified. The re-
cursive estimation of the mean in the adaptive CUSUM makes this approach more
flexible. The adaptive CUSUM is therefore less prone to degrading performance due
to a misspecified µ compared to the standard CUSUM, and it achieves two goals si-
multaneously: ρ may be specified at the lowest possible level to filter out all small,
non-relevant changes, while at the same time maintaining near optimal detection speed
for changes of mean greater than ρ. This point is further discussed in Section 3.2.3.
This feature is important when only one fault is available for testing, as new faults
will be different in terms of the size of the change in mean. In the standard CUSUM,
µ must be balanced between these two goals, not being optimal for any of them. The
standard CUSUM is also prone to overfitting µ to the observed fault, suggesting that
the adaptive CUSUM generalises better to other vessels and faults.

3.2.2. Choice of global monitoring statistic

For the global monitoring statistic, we use the maximum over all sensors

Gt = max
j

(zj,t), j = 1, . . . , N, (4)

which is given by the order-thresholding filtering function, h(z) = z1{z ≥ z(1)}, where
z(1), the largest order statistic, is the maximum of z1, . . . , zN . The order-thresholding
applied to the sum in Equation (1) truncates the terms not corresponding to the
maximum to zero. Alternative filtering functions such as hard- and soft-thresholding,
h(z) = z1{z ≥ a} and h(z) = max(z − a, 0), depend on an additional constant a.

The maximum function is chosen to allow for quick detection of faults affecting only
a single sensor, i.e. emerging hotspots, as it is known to be more efficient than the sum
or average of sensors for such faults (Mei 2010; Xie and Siegmund 2013; Liu, Zhang
and Mei 2017). Soft- or hard-thresholding may yield faster detection speed for faults
affecting all sensors (Liu, Zhang and Mei 2017), but as the max filtering does not
introduce additional tuning parameters, it allows for better generalisability to new
and previously unobserved vessels. The fault detection algorithm is summarised in
Algorithm 1.
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Algorithm 1 Maximised adaptive CUSUM for temperature fault detection

Input: ρ, b
1: t = zj,0 = sj,0 = nj,0 = 0 for j = 1, . . . , N .
2: while maxj zj,t < b do
3: t = t+ 1.
4: Input set of standardised temperature residuals (e1,t, . . . , eN,t).
5: for j = 1, . . . , N do
6: if zj,t−1 > 0 then
7: sj,t = sj,t−1 + ej,t−1.
8: nj,t = nj,t−1 + 1.
9: else

10: sj,t = nj,t = 0.
11: end if
12: µ̂j,t = max

(
sj,t
nj,t

, ρ
)

.

13: zj,t = max
(
zj,t−1 + µ̂j,tej,t − 1

2 µ̂
2
j,t, 0

)
.

14: end for
15: end while
Return: t

3.2.3. Setting the detection threshold and minimum change size

To apply the detection algorithm in practice, we are required to determine the de-
tection threshold, b, and the minimum change size, ρ. These parameters are tuned to
detect a fault as early as possible, while controlling the number of false alarms, and at
the same time setting ρ as low as possible without severely compromising the detection
speed. The latter counteracts overfitting due to the limited number of faults, only one
single incident, and can therefore improve generalisability. The detection threshold, b,
is set relative to the number of acceptable false alarms, m, in the fault-free training
data. We define a potential false alarm event as the contiguous time-points where the
statistic Gt raises above 0 for a certain period of time, before going back to 0 again.
What governs the threshold b is the maximum value of Gt in each such region. To be
precise, if Ij for j = 1, . . . , k denote the k potential false alarm events in the training

data, then the value of Gt at the peak over each interval is given by Ĝj = maxi∈Ij Gi.

A threshold can then be obtained by setting b to the (m + 1)th largest Ĝj . As the
threshold depends on both ρ and m, we use the notation b(ρ,m) when it is useful to
make this dependence explicit.

The time of an alarm corresponds to the first time the monitoring statistic exceeds
the threshold, denoted as a function of ρ and m by

A(ρ,m) = min{t ≥ 1 : Gt > b(ρ,m)}.

Given that F is the time of a true fault, detecting the fault as early as possible while
allowing m false alarms, can be formulated as maximising

T (ρ,m) = F −A(ρ,m),

with respect to ρ for a given m. As multiple values of ρ and corresponding thresholds
b(ρ,m) may achieve approximately the same time to failure T , we select the smallest
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ρ maximising T within a user-specified error margin δ:

ρ̂(m) = min

{
ρ > 0 : max

ρ>0

{
T (ρ,m)

}
− T (ρ,m) ≤ δ

}
.

The corresponding threshold for a specific number of false alarms m is then given by
b(ρ̂,m). A grid search over ρ was used to find an approximately optimal ρ̂. Given a
training set of size n, the computational complexity to tune the penalty for a fixed
ρ and m is O(nN). Hence, for a given number of false alarms, m, the number of
operations is O(nN) times the size of the grid over ρ in the grid search.

The error margin δ is introduced to reduce overfitting of ρ to the one single fault.
We experienced that an error margin of 1 second resulted in ρ being set too high for
possible future faults, because a slightly higher ρ resulted in a few seconds quicker
detection. With δ, one can specify, for example, that all detection times within 60
seconds of the optimal detection time are good enough. We found that a δ of three
minutes provided a decent counter-balance to maximally overfitting ρ to our single
fault case presented in the next section.

4. Performance on real failure case

In this section, we present the results of the detection algorithm (Algorithm 1) applied
to a real overheating failure case. The failure occurred in one of the vessels available
in the training data, following the system described in Section 1.1, but outside the
training period. For this specific failure event, the inhibit alarm (HH) at 155◦C was
never reached and triggered, as the system was damaged below the hard threshold. The
upper panel of Figure 4 shows the residuals of the N = 6 temperature sensors in the
four hour period before the motor fails. The lower panel of Figure 4 shows in the same
period the corresponding individual CUSUM statistics (gray lines) and the maximised
adaptive CUSUM statistic (black line) following Algorithm 1. Only the top two largest
individual CUSUM statistics are visible in the figure. The displayed CUSUMs use
ρ = 17.8, which is the optimal ρ for m = 0 false alarms in the training data, obtained
by the procedure described in Section 3.2.3. The time of the motor failure is indicated
by the red line. The missing values in the residuals and the CUSUM statistic are due
to the motor being shut off, resulting in zero power, and the subsequent initialisation
of the exponentially smoothed variables, requiring a 30 minute burn-in period. The
tuning of the monitoring parameters was completed in about four and a half hours
(3.6 minutes for each value of ρ = 5, 5.2, . . . , 20.).

If no false alarms are allowed in the training period, the fault is detected as early as
57 minutes (vertical green dashed line) before the motor failure. The alarm is raised
when the mean temperature is 104.2◦C and the maximum temperature over the six
sensors is 111.3◦C. By allowing for one or two false alarm events in the training period,
the detection time remains approximately the same (around 56 minutes), but ρ may
be lowered to 16.2 and 12.4, respectively, following the tuning strategy in Section 3.2.3.
The lower ρ values improve the generalisability of the monitoring algorithm to new
faults. Finally, if we allow for three false alarms in the training period, the fault may be
detected already at 86 minutes prior to the failure, with a value of ρ = 17.2. The alarm
is then raised when the mean temperature is 91.0◦C and the maximum temperature
over the six sensors is 98.3◦C. Further allowing for four to ten false alarms in the
training period did not improve the detection time, but lowered the optimal ρ value.
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Figure 4. a) The residuals of each of the six temperature sensors before the fault. b) The corresponding

adaptive CUSUM statistics per sensor zj,t (gray lines) and their maximum Gt (black lines), for ρ̂ = 17.8 for
zero false alarms (m = 0) found by the procedure described in Section 3.2.3. The trained detection threshold

for these values of ρ̂ and m is b = 2170, and it gives an earliest possible detection time (green dashed vertical

line) of 57 minutes prior to the fault.

5. Discussion

We have demonstrated how a data-driven approach of using past data and machine
learning can provide timely prediction of overheating in marine vessels. The overall
procedure is designed for a real-time setting, with minimal requirements for memory
and computational power, such that it may run on any on-board control system. Based
on assessing a real failure case, our proposed alarm algorithm may detect a fault
between 60 and 90 minutes before the actual occurrence and at temperatures below
the current alarm limits, depending on the number of allowed false alarms. By using
a machine learning approach, one can capture predictive relationships, interactions
or feedback-loops, that may be unknown or non-intuitive to experts of the physical
model. Physical knowledge was only included in the model building step to guide the
selection and transformation of candidate input variables considered by the model.
Note that we do not aim to replace existing hard-threshold prevention standards, but
we believe data-informed tools will become an important and timely supplement.

The aim of this work was to use data from a subset of four vessels to create two
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models (class I and II) that could be used on all vessels in the fleet. The model was
hence trained on the average winding temperature, while the monitoring algorithm
itself was implemented on each individual winding. It should therefore be noted that
better performance could probably be obtained by training winding-specific models.
For all motors, the winding temperatures had a variation of around 3–4◦C, which ap-
pears to be consistent for each motor, but no pattern could be found across motors.
The bias is, therefore, likely caused by installation or manufacturing effects, and in-
dividual models for each winding would be able to filter out these biases and hence
improve the monitor performance. However, as these differences are motor-specific,
this would require retraining of the model for each new vessel.

A drawback of the model-based approach is that data is needed to build the models
for a specific cooling system configuration and motor type. Data is needed both for
building machine learning models, and for parameter identification in the case of a
physics-based model. Since only existing instrumentation is utilised, there is no ad-
ditional cost (for instance for purchasing or installing sensors) associated with the
approach. The model cannot be implemented on a new configuration directly. How-
ever, we believe that the selection of parameters and methodology could be applicable
to systems similar to this particular class of identical vessels.

Based on a single fault, it may be difficult to assess how the probability of detection
and the detection time will generalise to other overheating events. Further assessments
of the procedure is therefore needed, both on more vessels and faults. The difficulty
of obtaining failure cases stems both from the fact that they are rare (as a number
of protections are in place to avoid overheating of the motor due to the extreme
adverse consequences) and not openly available (as no similar incidents are known in
any open literature or published data sets). Importantly, both a larger number and
a wider range of faults should be used to validate how well the detection framework
generalises beyond the current fault case. If a substantial number of fault cases can
be obtained, machine learning models may also be applied directly to predict alarms,
instead of monitoring the deviation from the normal state. Additional fault cases may
also improve the estimates of the probability of detection and the timeliness of our
procedure.

For the prediction of the motor temperature, there were several models, or com-
binations of input variables, that gave similar or identical prediction performance. It
is reasonable to expect that the exact ordering of the different models would change
if more data were included. Also, the final model is likely to depend on the order of
which the input variables were included. Hence, there may be no one single preferred
model, clearly outperforming and superior to the rest. However, we aimed to select
the final model consistently by including the input variables lowering the prediction
error, while ensuring a parsimonious model.

In addition, it should be noted that including the air outlet temperature of the
cooling system in the model would lower the prediction error (in terms of RMSE) by
around a factor of one half. The air outlet temperature is strongly correlated with the
winding temperatures, and hence has a high predictive power. But the causal rela-
tion between the two is known to be misleading for our final aim, as it is the motor
temperature that causally affects the air outlet temperature. Any anomalous increase
in winding temperature will after a while lead to an increase in the air outlet tem-
perature. Our detection algorithm relies on observing a deviation from the prediction
of the normal state. However, under any system state, either normal or faulty, one
would expect the same relation between the motor temperature and the air outlet
temperature. Thus, if we include the air outlet temperature, there is a risk of the mo-
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tor temperature being well predicted (due to the air outlet temperature) even during
instances of overheating. And as the main aim is to detect deviating observed temper-
atures as early as possible, including the air outlet temperature inherently introduces
a risk of masking overheating cases.

More complex machine learning approaches may also be utilised in the prediction
step. This could include recurrent neural network and deep learning, such as the pop-
ular Long Short Term Memory (LSTM) models or Gated Recurrent Units (Hochreiter
and Schmidhuber 1997; Cho et al. 2014). These methods, however, require excessive
computational time and memory not available at the current on-board system imple-
mentation. Future work needs to assess whether such complex algorithms may improve
the predictive performance in the initial modelling step of our framework.
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