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Abstract: Sub-seismic faults are small faults or fractures that may be difficult to determine but can 8 

have large consequences on fluid flow and pressure communication in the subsurface. Thus, knowing 9 

their distributions may be important in several subsurface applications, like hydrocarbon exploration 10 

and exploitation, geothermal energy production and subsurface CO2 injection. The aim of the 11 

presented work is to use a stochastic model to populate a three-dimensional structural model of the 12 

subsurface with sub-seismic faults. The novelty of the proposed method is to condition the stochastic 13 

model to input maps describing displacement and stress orientation along subsurface horizons. Hence, 14 

the resulting structural model will be consistent with these maps. The maps can originate from a 15 

variety of sources, for example from predictions of a geomechanical model or (indirect) 16 

measurements of subsurface displacements and stresses. The model uses the optimization algorithm 17 

simulated annealing, where the residual between the displacement of the modelled sub-seismic faults 18 

and the input displacement map is minimized in an iterative process. Each sub-seismic fault is 19 

modelled with a three-dimensional displacement field around the fault slip plane, making comparisons 20 

to the input displacement 1map along a horizon possible. An example of how the model distributes the 21 

sub-seismic faults around larger known faults, using a synthetically created displacement map, is 22 

provided. The result shows that the model quickly converges towards a set of sub-seismic faults 23 

giving total displacement and strike orientation close to the input maps.  24 
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1. Introduction 29 

 30 

Sub-seismic faults are small faults or fractures that are not visible on seismic data and poorly sampled 31 

in wells (Yielding et al. 1992). Larger faults with throws above the limit of seismic resolution can be 32 

interpreted from seismic data. High resolution seismic and advanced interpretation techniques like 33 

fault attribute volumes can map faults with throws less than 10 meters (Torabi et al. 2019a; Roche et 34 

al. 2021), whereas lower resolution seismic may only resolve faults with throws above 20-30 meters 35 

(Maerten et al. 2006). In the range between the sub-seismic and the larger faults, only a fraction of the 36 

true number of faults may be interpreted from seismic (Bond 2015). 37 

 38 

Sub-seismic faults can have large consequences on fluid flow and pressure communication in the 39 

subsurface and modelling their effect may be important in assessing natural resources (Yielding et al. 40 

1992; Damsleth et al. 1998). In hydrocarbon production, the sub-seismic faults may affect the 41 

production performance and is important for field development strategies and production forecasts. In 42 

other applications like geologic storage of CO2 or geothermal energy production, they may have 43 

impact on the reservoir potential and fluid flow paths with respect to storage capacity and energy 44 

production. 45 

 46 

Structural modelling of sub-seismic faults is an uncertain exercise and several methods to generate 47 

fault networks is proposed in the literature. Munthe et al. (1994) proposes a stochastic clustering and 48 

repulsion technique dividing faults into mother and children groups. Furthermore, they argue to 49 

perform the fault modelling on unfaulted horizons to avoid mismatch between modelled horizons 50 

(with faults) and the seismically observed horizons. Following their work, Hollund et al. (2002) 51 



 

 

specifies the location of the mother and children faults based on fault density maps indicating regions 52 

more likely to have sub-seismic faults than others. In Maerten et al. (2006) the fault density maps are 53 

estimated from subsurface stresses near larger observed faults. The stresses are obtained from a 54 

geomechanical simulator and combined with a Coulomb failure criterion they predict orientation and 55 

densities of the smaller faults. Sub-seismic faults that displaces the horizons more than a tolerated 56 

distance away from their seismically observed positions are excluded. The same approach is adopted 57 

in Gong et al. (2018). The fault network can alternatively be created using a fault growth algorithm 58 

tied to a heuristic geomechanical model like in Gillespie et al. (2017) and references therein. Others 59 

addresses the uncertainty in the structural interpretation of faults and how to stochastically perturb the 60 

topology and the geometry of the fault network. For example, Godefroy et al. (2019) suggests a 61 

theoretical framework of using graph theory and geological rules and Cherpeau (2010) proposes to 62 

represent the topology of the fault network by binary threes. The latter is based on the idea of a fault 63 

operator like Hollund et al. (2002), but is more flexible and not restricted to corner-point reservoir 64 

grids used for flow simulations (Ponting 1989). 65 

 66 

The approach presented here is to stochastically generate sub-seismic faults conditioned on 67 

displacement and strike orientations maps. The fault model is similar to Hollund et al. (2002), and the 68 

fault attributes (displacement, geometry and orientation) are stochastically modelled according to 69 

statistical distributions, an approach first proposed by Yielding et al. (1992). The sub-seismic faults 70 

are elliptically shaped with a surrounding three-dimensional displacement field as described in 71 

Georgsen et al. (2012). The displacement along the fault surface represents the fault throw. The 72 

influence of all faults at any given point in the volume can be calculated and defines the total three-73 

dimensional displacement field. The total displacement field is compared to the input displacement 74 

map along a horizon. The stochastic optimization framework of simulated annealing (Kirkpatrick 75 

1983) is used for the comparison, where an iterative process stochastically updates faults to improve 76 

the match between the total displacement field and the input displacement map. 77 

 78 



 

 

The total displacement field can be seen as a measure of the continuous fault-induced strain and can 79 

thus be compared to displacement maps based on strain calculations from geomechanical modelling. 80 

The suggested approach can therefore be useful in applications where geomechanical predictions or 81 

(indirect) measurements of subsurface displacement and stresses are available. Another advantage is 82 

that the applied fault model works directly on a corner-point reservoir grid used for flow simulations. 83 

Hence, it can be included in a workflow assessing the effect different networks have on the fluid flow. 84 

Simulated annealing has previously been applied to fracture modelling. For example, Tran et al. 85 

(2006) applies it to model discrete fracture networks where the function they optimize (the object 86 

function) is an average of functions describing different fracture statistics. Masihi et al. (2012) and 87 

Mahmoodpour and Masihi (2016) uses a more physical approach with an object function based on 88 

mechanical equilibrium between fracturing and strain energy. The novelty of the presented algorithm 89 

is to tie the object function to the residual between the displacement of the generated fault set and the 90 

input map. The residual is calculated along a horizon and uses the modelled displacement field around 91 

of each sub-seismic fault in the network. 92 

 93 

The functionality of the algorithm is demonstrated on synthetically created displacement and 94 

orientation maps. The result shows that the algorithm quickly converges towards a set of sub-seismic 95 

faults giving total displacement and strike orientation close to the synthetic maps. The robustness of 96 

the algorithm is also tested by applying different fault size distributions and compare the results. 97 

 98 

The focus of this paper is on the stochastic optimization algorithm and its mathematical framework. 99 

The paper is outlined as follows: Sect. 2 describes the fault model and Sect. 3 presents the 100 

optimization algorithm. The example and results are given in Sect. 4. The model and results are 101 

discussed in Sect. 5, and lastly summarized in Sect. 6.  102 

 103 

2. Stochastic Fault Model 104 



 

 

 105 

The fault model is constructed by three-dimensional operators, which means it is not only the fault 106 

surface that is modelled, but also how the faulting influences and deforms the surrounding volume 107 

(Georgsen et al. 2012). A typical fault in a gridded surface is illustrated in Fig. 1 where the volume 108 

around the slip surface is deformed within the influence range. The range defines the influence radius 109 

for the deformation around the fault surface. One advantage with the deformation operator is that it 110 

can be reversed, thus faults and their effects on the surrounding volume can also be removed from the 111 

geometry (Hollund et al. 2002). With this model it is possible to add and remove faults individually 112 

and update the total displacement field accordingly. This is essential when faults are added and 113 

removed stochastically in the optimization algorithm. The sub-seismic faults are modelled as ellipses 114 

with maximum displacement at the center and an ellipsoidal volume of influence around the fault 115 

(Hollund et al. 2002; Gibson et al. 1989). 116 

 117 

The fault model enables modelling of fault sets that are distributed in a three-dimensional volume 118 

following a marked point process (Munthe et al. 1994). A marked point process is a process where 119 

points are first distributed in a volume, and then each point gets associated marks assigned to it. The 120 

marks can be any feature and can be stochastically drawn. Here the fault center points are the 121 

distributed points in the volume, and the marks are the fault attributes, that is maximum displacement, 122 

length, height, range, strike and dip angle.  123 

 124 

For each fault, the maximum displacement 𝑑 is drawn from a truncated power-law distribution  125 

𝑔(𝑑) =
𝐾𝑑−𝐾−1

𝑑𝑚𝑖𝑛
−𝐾 −𝑑𝑚𝑎𝑥

−𝐾 ,          (1) 126 

where 𝑔(𝑑) is the probability density, 𝐾 > 0 is the power-law exponent and 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are the 127 

truncation limits of the distribution. 128 

 129 



 

 

The length, height and range of each fault are drawn from subsequent distributions using the drawn 𝑑 130 

as an input parameter, similar to Hollund et al. (2002) and Munthe et al. (1994). The distributions for 131 

the fault attributes length (𝑙), height (ℎ) and range (𝑟) are 132 

 133 

𝑙 = (
𝑑

𝑐1
)

1

𝑐2 𝑉1, ℎ =
𝑙

𝑐3
𝑉2, 𝑟 = 𝑐4√𝑙ℎ𝑉3,        (2) 134 

 135 

where, 𝑐1, … , 𝑐4 are constant positive parameters and 𝑉1, 𝑉2, 𝑉3 are log-normal distributions 136 

representing the noise in the model. A log-normal distribution is a probability distribution where the 137 

logarithm of the variable is normally distributed. This ensures that the drawn random values are 138 

positive, giving meaningful fault attributes from the relations in Eq. (2).  The log-normal distributions 139 

𝑉1, 𝑉2, 𝑉3 are defined with expectation equal to 1 and user defined standard deviations 𝜎1, 𝜎2, 𝜎3.  The 140 

constant parameters 𝑐1, … , 𝑐4 and the standard deviations 𝜎1, 𝜎2, 𝜎3 can be estimated from seismically 141 

mapped faults or geological outcrop data. See for example Walsh and Watterson (1988) and Kim and 142 

Sanderson (2005) for discussions on relationships between displacement and dimension attributes of 143 

faults. 144 

 145 

According to Munthe et al. (1994) the marked point process is defined as follows: 146 

1. Draw the coordinates of the center point of the sub-seismic fault. 147 

2. Draw the maximum displacement from a power-law distribution using Eq. (1). 148 

3. Draw the dimension attributes of the sub-seismic fault using Eq. (2). 149 

4. Draw the orientations (strike and dip). 150 

 151 

The marked point process is used to generate a specific number of faults within a volume. The 152 

position (coordinates) of the faults may be drawn uniformly or they can be drawn based on density 153 

maps where some regions will be more populated with faults than others. 154 



 

 

 155 

The strike and dip of the faults are drawn from normal distributions with specified means and 156 

standard deviations. Mixture of different normal distributions creating a multimodal distribution of, 157 

for example, strike orientation is possible. The mean value of the distributions may also be drawn 158 

from maps causing them to vary laterally. See Fig. 2 for examples of faults where the position is 159 

drawn either uniformly in a volume, or from lateral varying maps. 160 

 161 

3. Optimization Algorithm 162 

 163 

The optimization algorithm follows the framework of simulated annealing (Kirkpatrick 1983). The 164 

aim is to minimize an object function, that is the residual distance between the displacement field of 165 

the generated fault set and the displacement map. The starting point is an initial fault set (of 𝑛 faults) 166 

generated using the marked point process. For every iteration the algorithm selects one fault in the 167 

current fault set at random and samples a new proposed fault. The total displacement field is 168 

calculated for both the current fault set and a new proposed fault set where the selected fault is 169 

replaced with the proposed fault. If the proposed fault set has lower residual distance, it is kept and 170 

the current fault set is discarded. 171 

 172 

One key aspect of the algorithm is that it sometimes accepts the proposed fault set even if it causes an 173 

increase in the (residual) distance. This is done to avoid local minima. How likely it is to accept such 174 

a set depends on how much the proposed fault increases the distance and a parameter that adjusts the 175 

probability for accepting. This parameter is called temperature in the simulated annealing framework 176 

(Kirkpatrick 1983). In the beginning the temperature is high, giving high acceptance probability to 177 

allow a wide search and easily escape sub-optimal solutions. As the process continuous it is more 178 

likely for the solution to be in an area around the global minimum and the temperature is decreased 179 

slowly for narrowing the search for the optimal solution. For each iteration, the algorithm checks a 180 



 

 

convergence criterion that must be met before the temperature is decreased. When the temperature 181 

goes towards zero the algorithm will mostly accept proposals that minimize the distance. The 182 

algorithm is stopped when a global convergence criterion is met. The whole workflow is illustrated in 183 

Fig. 3. 184 

 185 

Figure 4 shows an illustration of a current fault set and a fault set where the selected fault has been 186 

replaced with a new proposed fault (highlighted in red). The proposed fault has different position and 187 

fault attributes than the fault it replaces. The rightmost panes in Fig. 4 show the corresponding total 188 

displacement fields for both fault sets. When a new fault is sampled, the displacement map is used as 189 

proxy for fault density, so the map will reflect the probability for where to place the fault. New 190 

proposed faults will then most often be suggested in regions with large displacement, which will 191 

greatly improve the convergence speed. Correspondingly, the algorithm will favour small or no faults 192 

in regions with low displacement. However, a region with high displacement may consists of many 193 

small faults or fewer larger faults.  194 

 195 

The further details of the algorithm can be described as follows. A fault set of 𝑛 number of faults is 196 

denoted as 𝑓 = {𝑓𝑖}1
𝑛, where 𝑑𝑓𝑖

 is the three-dimensional displacement field of the fault 𝑓𝑖. The total 197 

displacement field of fault set 𝑓 then becomes 𝐷𝑓 = Σ𝑖=1
𝑛 𝑑𝑓𝑖

. For calculation purposes the 198 

displacement fields are discretized and evaluated in 𝑚 grid cells denoted as 𝑑𝑓,𝑗 and 𝐷𝑓,𝑗 where 𝑗 =199 

1, … , 𝑚. The number of grid cells 𝑚 should be high enough to reflect the complexity of the 200 

displacement map, but a large number of cells will also increase the run time. 201 

 202 

The goal is to generate faults that minimize the distance between 𝐷𝑓 and the input displacement map 203 

𝑀. The comparison is done by the squared residual distance 204 

𝐿𝑓 = |𝐷𝑓 − 𝑀 |
2

= Σ𝑗=1
𝑚 (𝐷𝑓,𝑗  − 𝑀𝑗)

2
,       (3) 205 



 

 

where 𝑀𝑗 is the discretized version of the input map. Thus, 𝐿𝑓 is the object function of the algorithm 206 

and is in the following referred to as the distance. 207 

 208 

Before running the algorithm, it must be initialized by the following steps: 209 

1. Generate a fault set of 𝑛 faults. 210 

2. Calculate the total displacement field 𝐷𝑓 of the fault set. 211 

3. Determine initial value of the temperature 𝑇0. 212 

 213 

Sub-seismic faults are proposed, rejected and accepted in an iterative process as follows: 214 

1. Compute the distance 𝐿𝑓 for the current fault set using Eq. (3). 215 

2. Propose the next step by: 216 

a. Randomly select one fault, 𝑓𝑘, in the fault set 𝑓 and calculate the corresponding fault 217 

displacement field 𝑑𝑓𝑘
. 218 

b. Sample a new (proposed) fault, 𝑓𝑝, with fault displacement field 𝑑𝑓𝑝
. 219 

c. Compute a new distance 𝐿𝑝 where the displacement of fault 𝑓𝑝 is added and the 220 

displacement of fault 𝑓𝑘 is subtracted from the total displacement field 𝐷𝑓. That is, 221 

𝐿𝑝 = Σ𝑗=1
𝑚 (𝐷𝑓,𝑗 + 𝑑𝑓𝑝,𝑗  − 𝑑𝑓𝑘,𝑗 − 𝑀𝑗)

2
 222 

3. Compute the acceptance criterion 𝛼 =  exp (−Δ/𝑇𝑖), where Δ =  𝐿𝑝 − 𝐿𝑓 and 𝑇𝑖 is the current 223 

temperature. 224 

4. Draw 𝑢~U[0,1] from a uniform distribution and compare with the criterion: 225 

a. 𝛼 ≥ 𝑢: The proposed fault is accepted. Replace 𝑓𝑘 with 𝑓𝑝 in 𝑓 and update 𝐷𝑓 226 

accordingly.  227 

b. 𝛼 < 𝑢: The proposed fault is rejected. 228 

5. If the end criterion is met for the current temperature (𝑇𝑖): 229 

a. Lower the temperature according to an annealing schedule. 230 



 

 

6. Terminate if the convergence end criterion is met, if not repeat from step 1. 231 

 232 

The temperature is lowered according to a predefined annealing schedule. The schedule of 233 

Kirkpatrick (1983) is applied, where 𝑇𝑖+1 = 𝑠𝑇𝑖, and 𝑠 is a predefined parameter that is less than 1. 234 

The algorithm should iterate a sufficient number of times before the temperature is lowered. For the 235 

current temperature (𝑇𝑖) the number of accepts is counted, and the temperature is lowered if the 236 

number exceeds a predefined number 𝑁𝑎. Additionally, the temperature is also lowered if the total 237 

number of attempts exceeds 𝑁𝑇, where 𝑁𝑇 should be several magnitudes larger than 𝑁𝑎. The schedule 238 

of lowering the temperature is similar to the suggested schedule in Tran (2007) and Masihi et al. 239 

(2012). The initial value 𝑇0 should be determined based on the parameters of the current model, which 240 

in this case would mean the input parameters of Eqs. (1) and (2). Masihi et al. (2012) argues to select 241 

𝑇0 such that the acceptance ratio is around 0.95. 242 

 243 

The end criterion for terminating the algorithm follows the suggestion of Kirkpatrick (1983). They 244 

suggested that if the desired number of acceptances (𝑁𝑎) is not achieved at three successive 245 

temperatures, that is the number of iterations of three successive temperatures reaches 𝑁𝑇, then the 246 

algorithm should be stopped. 247 

 248 

4. Testing on Synthetic Maps 249 

 250 

To test the algorithm two-dimensional synthetic displacement and orientation maps are created as 251 

input. The maps are based on the Emerald field, that is a tutorial example of a faulted subsurface 252 

structure in the reservoir modelling software RMS (Roxar 2018). Figure 5 shows the faults and their 253 

location in the grid of the structural model. The size of the grid is about 7,700 m x 7,700 m x 750 m. 254 

See for example Qu et al. (2015) for further details. For illustration purposes, the synthetic 255 

displacement map is created only around the faults F2 and F3 that are highlighed in red in Fig. 5.  256 



 

 

 257 

The synthetic displacement map is created by taking a linear trend that decreases away from the fault 258 

surface and adding Gaussian noise at random locations along the trend. Adding noise creates the 259 

effect of non-linear decreasing displacement in the damage zone and gives variability to the 260 

displacement map. For demonstration purposes it was prioritized to create a map that had this 261 

variability, rather than having the most geological realistic representation. Further, the trend has its 262 

maximum at the fault surface and reaches zero 800 meters away from the fault. The maximum is set 263 

to 20.5 meters, corresponding to the avereage displacement at the hanging wall and foot wall side of 264 

the faults. According to Torabi et al. (2019b) the extent of  the damage zone depends on the fault 265 

displacement and would typically be between 5 and 80 meters for a fault with total displacement of 266 

about 40 meters, like F2 and F3. The larger extent of about 800 meters is selected to make the visual 267 

interpration of the different sub-seismic faults and the resulting displacement pattern easier. The 268 

synthetic displacement map is shown in Fig. 6 (left),  representing the displacement in the damage 269 

zone around the faults. The solid black lines are the fault lines of the hanging wall and foot wall side 270 

of the fault when projected onto the two-dimensional map. Between the hanging wall and foot wall 271 

line, there is an area with no displacement due to the dipping of the faults and consequently sub-272 

seismic faults are not allowed here. The synthetic orientation map is shown in Fig. 6 (right) where 273 

each point in the map is equal to the local strike of the closest fault, F2 or F3, repsectively. 274 

 275 

To test the algorithm 700 sub-seismic faults is generated with displacement between 4 and 15 meter 276 

and a power-law exponent equal to 2 in Eq. (1). The number of faults is chosen so that the cumulative 277 

fault displacement prior to optimization (Σ𝑗=1
𝑚 𝐿𝑓,𝑗) is similar to the cumulative input displacement 278 

(Σ𝑗=1
𝑚 𝑀𝑗). For the displacement versus length ratio a value of 0.01 for 𝑐1 and 1.0 for 𝑐2 in the Eq. (2) 279 

is used, which gives faults with lengths between 400 and 1,500 meters. The parameter 𝑐3 in the fault 280 

length-height ratio is set to 2.0, and the parameter 𝑐4 in the formula for the range is set to 0.3. The 281 

standard deviations 𝜎1, 𝜎2, 𝜎3 for the 𝑉1, 𝑉2 and 𝑉3 distributions are set to 0.1, 0.1 and 0.2 respectively. 282 



 

 

Further, the faults are vertical with dip angle 90 degree and strike values are drawn from a normal 283 

distribution where the mean value is taken from orientation map in Fig. 6 (right) with standard 284 

deviation equal to 10 degrees. The maps are discretized into 300x300 cells, which means that 𝑚 in 285 

Eq. (3) is 90,000. 286 

 287 

When setting up the simulated annealing parameters the start temperature 𝑇0 is set to 10,000 and 288 

reduced by ten percent whenever updated, that means 𝑇𝑖 = 0.9𝑇𝑖−1. The temperature is updated when 289 

the number of accepted faults 𝑁𝑎 reaches 200 or when the maximum number of attempts (proposing 290 

faults) 𝑁𝑇 reaches 20,000. The algorithm is terminated when 𝑁𝑎 is not reached for three consecutive 291 

temperatures. 292 

 293 

Figure 7 shows the total displacement field of the initial set of faults where the locations of the faults 294 

are conditioned on the displacement map. The corresponding result after running the algorithm is 295 

shown in Fig. 8. The total displacement in Figs. 7 and 8 is shown both with and without the faults 296 

overlaid. When visually inspecting the results before and after running the optimization algorithm the 297 

position and orientation of the faults appear somewhat similar. The effect of the optimization is more 298 

evident in residual maps showing the difference between the total displacement and the synthetic 299 

displacement map. Figure 9 shows the residual of the total displacement at the initial step (left) and 300 

after the optimization (right). The figure clearly shows that the total displacement becomes closer to 301 

the synthetic map after running the algorithm. 302 

 303 

Figure 10 shows the acceptance rate in percent and the squared distance 𝐿𝑓 plotted for every thousand 304 

iteration. The criterion to stop the algorithm is reached after 175,000 iterations, which means that on 305 

average each fault has been proposed updated about 250 times. Figure 11 shows the evolution of the 306 

temperature during the course of the algorithm, reaching a final value of 8.6. Most of the 307 



 

 

improvements occurs during the first 30-40,000 iterations, where 𝐿𝑓 drops to almost one fifth of its 308 

initial value. During the rest of the iterations the results slowly decreases until the end criterion is met. 309 

This behavior is typical for a simulated annealing process (Tran et al. 2006). 310 

 311 

The effect of using different distributions to draw the maximum displacement of the sampled faults is 312 

also evaluated. Power-law, uniform, Gaussian and log-normal distributions are tested. The parameters 313 

for each distribution are listed in Table 1, and the distributions are plotted in Fig. 12. All distributions 314 

are truncated between 4 and 15 meters. The input data and settings (number of faults etc.) are the 315 

same as used in the example above. Table 2 list the cumulative displacement and squared residual 316 

distances (𝐿𝑓) at the initial step and after the end criterion for the different distributions. The 317 

cumulative displacement is calculated by summing the discretized total displacement map, that is 318 

Σ𝑗=1
𝑚 𝐷𝑓,𝑗. From Table 2 it is seen that the squared residual distance at the initial step is much higher 319 

for uniform and Gaussian distributions, because these distributions will initially draw a higher number 320 

of larger faults than power-law and log-normal distributions. However, all four distributions reach 321 

about the same level of residual distance after the end criterion, with power-law achieving the lowest 322 

value. The shape of the resulting distributions reaches a similar skewed pattern where the mass is 323 

concentrated around the smaller faults. The cumulative input displacement, Σ𝑗=1
𝑚 𝑀𝑗, is 159,580 m and 324 

in the table it is seen that the cumulative displacement of all four cases converges towards a similar 325 

value. These results lead to the conclusion that the simulated annealing algorithm is robust with 326 

regards to variations in the input distribution for drawing the sub-seismic fault displacement values. 327 

 328 

5. Discussion 329 

 330 

The presented method iteratively updates faults so that their total displacement matches with an input 331 

displacement map. The method is based on the following three required components: (1) A stochastic 332 

fault model must be used to generate faults with variability, (2) it must be possible to measure the 333 



 

 

displacement for each fault in the volume or along a horizon, and (3) a mechanism to add and remove 334 

single faults and their influence on the total displacement field is needed. The elliptic fault model of 335 

Hollund et al. (2002) is used as this is a flexible model for generating fault networks and calculating 336 

the faults’ displacement field. It is however a simplistic representation of sub-seismic faults with the 337 

limitation that the maximum displacement is at the center of the fault. Other, more complicated sub-338 

seismic fault models should also work well as long as the three required components are fulfilled. The 339 

same applies for more advanced interactions between faults, like evaluating truncations between sub-340 

seismic faults when proposing and rejecting new faults. That would refine the displacement modelling 341 

and should be included in future developments of the model.  342 

 343 

In the current fault model the same fault attribute relations (parameters in Eq. (2)) are used for all 344 

faults. Torabi and Berg (2011) investigates fault attribute relations where they suggest that the 345 

relations could change based on different level of displacement values. This is further discussed in 346 

Kolyukhin and Torabi (2012) for different types of faults and lithologies and in Kolyukhin et al. 347 

(2018) for faults in the Barents Sea. Incorporating these ideas into the model is straight forward, as the 348 

model first draws the displacement and then the subsequent attributes. 349 

 350 

To better control the displacement distribution of the final fault set, deviations from a target fault 351 

displacement distribution like Eq. (1), could be included in the object function. That would prohibit 352 

the algorithm from only accepting small or large faults. If combined with a mechanism where the 353 

number of faults in the set is adjusted stochastically, the algorithm could also search for the optimum 354 

number of sub-seismic faults needed to replicate the displacement map. It is also straight forward to 355 

extend the algorithm to condition on multiple horizons or a full three-dimensional cube by letting the 356 

sum in Eq. (3) run over each horizon or over all cells in the cube. 357 

 358 

Munthe et al. (1994), Hollund et al. (2002) and Maerten et al. (2006) addresses the problem of how to 359 

make sub-seismic fault networks consistent with observed horizons from seismic data. The presented 360 

method is a contribution along these lines, as it is searching for a fault set with total displacement 361 



 

 

similar to an input map. The input map could for example represent the depth variability of a horizon, 362 

observed from seismic or computed from a geomechamical model. 363 

 364 

6. Conclusions 365 

 366 

Simulated annealing is used to find the optimum position and fault attributes of sub-seismic faults in a 367 

three-dimensional volume to match input maps of displacement and fault strike orientation. The 368 

algorithm is demonstrated on synthetically created maps and it is shown that it quickly converges 369 

towards a set of sub-seismic faults giving total displacement and strike orientations close to the input 370 

maps. By numerical experiments, it is demonstrated that the convergence of the algorithm is robust 371 

with regards to using different fault size distributions. 372 

 373 

It is suggested that the presented approach may be suitable when the aim is to create sub-seismic fault 374 

sets matching a specific displacement field and strike orientation maps. It would for example ensure 375 

good consistency between modelled sub-seismic faults and input maps from geomechanical model 376 

predictions or observations. From a more general perspective the presented approach contributes to 377 

the assessment of sub-seismic fault patterns that otherwise can be difficult to map from seismic or 378 

well data. 379 
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Figure Captions 485 

 486 

Fig. 1 Three-dimensional grid deformed by an elliptic fault 487 

 488 

Fig. 2 Example of using laterally varying maps in stochastic modelling of sub-seismic faults. To the 489 

left the faults are positioned at random in the volume and to the right the faults’ position and 490 

orientation are picked according to underlying density and orientation maps 491 

 492 

Fig. 3 Flow diagram of the workflow 493 

 494 

Fig. 4 Fault set with 9 faults (left). Current fault fault selected (top center, red) and an alternative fault 495 

sampled (bottom center, red). To the right is the total displacement fields for current (top) and 496 

proposed (bottom) fault sets 497 

 498 

Fig. 5 Structural model of the Emerald field dataset from RMS (Roxar 2018) with faults F2 and F3 499 

highlighted as red 500 

 501 



 

 

Fig. 6 The synthetic displacement map (left) and the strike orientation map (right). The colors 502 

represent displacement (left) and degree of orientation (right). Each map is overlaid with hanging wall 503 

and foot wall lines for the two faults F2 and F3 from Fig. 5 504 

 505 

Fig. 7 Total displacement field from the 700 generated sub-seismic faults at the initialization step with 506 

(left) and without (right) the sub-seismic faults overlaid as black lines 507 

 508 

Fig. 8 Total displacement field from the 700 sub-seismic faults after running the algorithm with (left) 509 

and without (right) the sub-seismic faults overlaid as black lines 510 

 511 

Fig. 9 The residual maps at the initialization step (left) and after running the algorithm (right) 512 

 513 

Fig. 10 The acceptance rate of the proposed faults in percent (orange) and the evolution of the 514 

objective function 𝐿𝑓 (blue) plotted for every thousand iteration 515 

 516 

Fig. 11 Evolution of annealing temperature (logarithmic scale) versus iteration 517 

 518 

Fig. 12 Distributions used for drawing maximum displacement of sub-seismic faults. All distributions 519 

are truncated below 4 and above 15 meters 520 

 521 

Table Captions 522 

 523 



 

 

Tab. 1 Distributions used for drawing maximum displacement of the sub-seismic faults. All 524 

distributions are truncated below 4 and above 15 meters. SD denotes the standard deviation of the 525 

distribution 526 

 527 

Tab. 2 The cumulative displacement and squared residual distance (𝐿𝑓) at the initial step and after the 528 

end criterion when using the different distributions in Table 1 to draw the maximum displacement of 529 

the faults. All values are in meters 530 
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Figure 2 537 
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Figure 12 565 
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 567 

Distribution Parameters 

Power-law Power-law exponent = 2 

Uniform Mean = 9.5, SD = 3.2 

Gaussian Mean = 9.5, SD = 3 

Log-normal Mean = 1.9, SD = 0.3 

Table 1 568 

 569 

Distribution Initial step  After end criterion 

 Cumulative 

displacement 

Cumulative 

residual 

 Cumulative 

displacement 

Cumulative 

residual 

Power-law 152,561 424,361  158,224 61,103 

Uniform 447,446 5,466,440  159,920 64,348 

Gaussian 413,608 4,329,780  160,292 66,581 

Lognormal 174,017 481,200  157,927 63,711 

Table 2 570 

 571 


