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Abstract: A security indicator is a sign that shows us what something is like or how a situation is
changing and can aid us in making informed estimations on cyber risks. There are many different
breeds of security indicators, but, unfortunately, they are not always easy to apply due to a lack
of available or credible sources of data. This paper undertakes a systematic mapping study on the
academic literature related to cyber security indicator data. We identified 117 primary studies from
the past five years as relevant to answer our research questions. They were classified according to a
set of categories related to research type, domain, data openness, usage, source, type and content.
Our results show a linear growth of publications per year, where most indicators are based on free
or internal technical data that are domain independent. While these indicators can give valuable
information about the contemporary cyber risk, the increasing usage of unconventional data sources
and threat intelligence feeds of more strategic and tactical nature represent a more forward-looking
trend. In addition, there is a need to take methods and techniques developed by the research
community from the conceptual plane and make them practical enough for real-world application.

Keywords: threat intelligence; data-driven decision making; risk management; data sources; trends

1. Introduction

Cyber risk estimates today tend to be based on gut feeling and best guesses. Improved
justification and traceability can be achieved through data-driven decisions, but this is
not straightforward. With evolving technology and constantly emerging attack methods
(and motivations), basing security decisions on past incidents is typically referred to as
“driving forward by looking in the rear-view mirror” [1] and cannot be considered reliable.
As a remedy to historical data and guesswork, Anderson et al. [2] suggested in 2008 to use
forward-looking indicators as an alternative source of decision data, but now, more than a
decade later, have we really succeeded in doing this?

The purpose of this paper is to present a systematic mapping study of the literature
related to cyber security indicator data. As defined by Kitchenham and Charters [3] and
Petersen et al. [4], systematic mapping studies provide an overview of a research area
through classification of published literature on the topic. This is somewhat different from
systematic literature reviews, which focus more on gathering and synthesizing evidence
[4], typically from a smaller set of publications. We identified relevant research and
classified their approaches according to a scheme. This contributes to a broad overview
of the research field, showing concentrations of effort and revealing areas that need more
attention. We then have the possibility to debate if we still base our risk estimates on guts,
guesses and past incidents, or whether we have managed to move the field forward, i.e.,
towards making informed cyber security decisions from relevant indicators. To guide our
investigation, we have defined the following research questions:

1. What is the nature of the research using security indicators?
2. What is the intended use of the data?

Electronics 2021, 10, 1092. https://doi.org/10.3390/electronics10091092 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5509-0184
https://orcid.org/0000-0001-9893-6613
https://orcid.org/0000-0001-9407-5748
https://orcid.org/0000-0001-9109-5401
https://orcid.org/0000-0001-8868-597X
https://doi.org/10.3390/electronics10091092
https://doi.org/10.3390/electronics10091092
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10091092
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10091092?type=check_update&version=1


Electronics 2021, 10, 1092 2 of 26

3. What is the origin of the data for the indicators?
4. What types of the data are being used?
5. What is the data content of the indicators?

The main contributions of this study are: (1) a broad overview of research efforts in the
domain of cyber security indicator data; (2) a detailed and reusable classification scheme
that can be used to capture new trends in this area using consistent terminology; (3) an
analysis of trends within the literature from 2015–2020; and (4) identification of focus areas
for further research.

The target audience for this work are researchers and practitioners who want to
establish better data-driven practices for cyber risk estimates.

The rest of the paper is structured as follows. Section 2 presents background informa-
tion about the underlying concepts that are central to our research focus. Section 3 gives
an overview of related work and Section 4 presents the methodology used to conduct our
systematic mapping study, including search strings, inclusion/exclusion criteria and an
overview of the screening process of papers. Section 5 presents the classification scheme
that is used to classify primary studies as well as the mapping results. In Section 6, we
discuss the result with respect to the research questions, compare our findings with exist-
ing research work and recommend possible directions for future work. Finally, Section 7
concludes the paper.

2. Background

The following describes terminology and concepts that are central to our mapping
study. An indicator is defined by Oxford Advanced Learner’s Dictionary [5] as “a sign
that shows you what something is like or how a situation is changing”. An indicator can
for instance be observations of mechanisms and trends within the cybercrime markets, as
suggested by Pfleeger and Caputo [6], and indicate relevant cyber threats. One or more
data sources can be used to determine the status of an indicator. For instance, statistics
from a dark net marketplace could be a remote data source, while a system log could be a
local data source. There are many possible data sources related to cyber threats, including
sharing communities, open source and commercial sources [7]. The term used in the
context of sharing such information is usually threat intelligence, which is any evidence-
based knowledge about threats that can inform decisions [8]. The term can be further
defined into the following sub-domains [9,10]:

• Strategic threat intelligence is high-level information used by decision-makers, such
as financial impact of attacks based on historical data or predictions of what threat
agents are up to.

• Operational threat intelligence is information about specific impending attacks against
the organization.

• Tactical threat intelligence is about how threat actors are conducting attacks, for instance
attacker tooling and methodology.

• Technical threat intelligence (TTI) is more detailed information about attacker tools and
methods, such as low-level indicators that are normally consumed through technical
resources (e.g., intrusion detection systems (IDS) and malware detection software).

To compare or possibly join data source contents, metrics can be useful.
Mateski et al. [11] defined a metric to be a standard of measurement and something
that allows us to measure attributes and behaviors of interest. An example of a metric is the
number of malware sales. A measure is a specific observation for a metric, for instance the
value 42 for a given week. According to Wang [12], security metrics should be quantitative,
objective, employ a formal model, not be boolean (0, 1) and reflect time dependence. There
is a plethora of possible security metrics, for instance Herrmann [13] presented more than
900 different ones in her book. The challenge is to find the ones that represent practically
useful security indicators.
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3. Related Work

We are aware of several review papers, survey papers and mapping studies that partly
overlap with ours and provide supplementary material. For instance, Humayun et al. [14]
performed a systematic mapping study of common security threats and vulnerabilities
from 78 articles, covering studies spanning over a decade (2007–2018). A direct comparison
of the study by Humayun et al. [14] and our study is not straightforward, mainly because
of the different objectives; for example, Humayun et al. [14] focused on an analysis of
publication venue, demography of researchers and key targets of cyber attacks. However,
there are common features in the two studies, such as the research methodology, choice of
academic databases and domain (i.e., cyber security). They also gave an overview of other
mapping studies and systematic literature reviews in the cyber security area. Beyond these,
there are many related surveys and reviews that we highlight in the following.

In a publication from 2107, Grajeda et al. [15] analyzed 715 research articles from
the years 2010 to 2015 with respect to the utilization of datasets for cybersecurity and
cyber forensics. They found 70 different datasets and organized them into 21 categories.
The datasets were collected and analyzed from both peer-reviewed articles and Google
search (for the datasets that may not have appeared in selected articles). Taking a broader
perspective on datasets for cybersecurity research, Zheng et al. [16] analyzed their use or
creation in nearly 1000 academic papers published between 2012 and 2016. They created
a taxonomy for describing the datasets and used machine learning to classify the papers
accordingly.

Griffioen et al. [17] evaluated the quality of 17 open source cyber threat intelligence
feeds over a period of 14 months and 7 additional feeds over 7 months. Within these, they
found that the majority of indicators were active for at least 20 days before they are listed,
and that some data were biased towards certain countries. Tundis et al. [18] also surveyed
existing open source threat intelligence sources, and, based on interviews with 30 experts
(i.e., cyber security professionals and academic researchers), they proposed an approach
for the automated assessment of such sources.

In 2016, Pendleton et al. [19] surveyed system security metrics, pointing to big gaps
between the existing metrics and desirable metrics. More recently, Cadena et al. [20] carried
out a systematic mapping study of metrics and indicators of information security incident
management based on 10 primary studies for the period from 2010 to 2019. Our study
and that of Cadena et al. [20] share the same motivation, i.e., to support informed security
decision-making, but the two differ in addressing terms of research focus. For example, we
look into classifying data source, data content, data usage, etc., whereas their focus was on
attributes related to cost, quality, service and standards.

In 2018, Husák et al. [21] published a survey of prediction and forecasting methods in
cyber security. They also looked at input data for these methods and observed that there are
many alternatives with different levels of abstraction. They found that evaluations tend to
be based on datasets with high age, which do not necessarily reflect current cyber security
threats. Other public datasets are scarcely used or artificially created by the authors to
evaluate their own proposed methods. Similarly, Sriavstava et al. [22] found in their review
that outdated datasets are used to evaluate machine learning and data mining methods.
Sun et al. [23] published in 2019 their survey on datasets related to cyber incident prediction.
Nineteen core papers were categorized according to the six data types: organization’s report
and dataset, network dataset, synthetic dataset, webpage data, social media data and mixed-type
dataset.

From their literature survey, Laube and Böhme [24] created a framework for under-
standing defenders’ strategies of privately or publicly sharing cyber security information.
They found that, although many theoretical works assume sharing to be beneficial, there is
little actual empirical validation.

Diesch and Krcmar [25] investigated the link between information security metrics
and security management goals through a literature study. After eliminating duplicates,
they found 195 technical security metrics based on 26 articles. They questioned whether all
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of these are really useful. Kotenko et al. [26] showed how different types of source data
are used in attack modeling and security evaluation. They also provided a comprehensive
selection of security metrics.

Gheyas et al. [27] performed a systematic literature review on prediction of insider
threats based on 37 articles published between 1950 and 2015. They found that only a
small percentage of studies used original real-world data. Tounsi and Rais [9] conducted
a survey in 2017 that classified and distinguished existing threat intelligence types and
evaluated which were the most popular open source/free threat intelligence tools. They
also highlighted some of the problems with technical threat intelligence, such as quality,
short-livedness and the overwhelming amount of data, much of it with limited usefulness.
Another literature study on threat intelligence by Keim and Mohapatra [28] compared
nine of the available open source platforms. They pointed out challenges related to a lack
of standardization and ability to select data based on creation date. Samtani et al. [29]
reviewed the cyber threat intelligence platforms provided by 91 companies (mostly based
in the US). More than 90% of the companies relied either solely or primarily on internal
network data. They noted that the Darknet was slowly emerging as a new viable data
source for some of the companies. In a literature review on the use of Bayesian Network
(BN) models in cyber security, Chockalingam et al. [30] identified the utilized type of data
sources. Here, most models used expert knowledge and/or data from the literature, while
only a few relied on inputs from vulnerability scanners and incidents data. Furthermore,
they found that 13 out of 17 BN models were used for predictive purposes.

4. Methodology

We followed the guidelines and recommendations on systematic mapping studies or
scoping studies as proposed by Kitchenham and Charters [3] and Peterson et al. [4,31]. In
the planning phase, we established a review protocol, which is an essential element when
conducting secondary studies. The review protocol describes the research questions (see
Section 1) and methods for conducting the secondary study, such as how the primary
studies should be located, appraised and synthesized [32]. Especially when several re-
searchers are involved, a clearly defined protocol reduces the possibility of researcher
bias and misconceptions. The following briefly describes the contents of the protocol and
implementation.

4.1. Search Keywords

Based on our research questions, we defined an initial set of search keywords, which
were used to identify the top relevant papers based on a Google Scholar search. We studied
these in detail and applied a snowballing technique to find additional papers and a few
instances of grey literature that we knew would be relevant. Snowballing refers to using
the reference list of a paper, or the citations of the paper, to identify additional papers [33].
The resulting set of 18 core papers were then used as a tool to identify and extract a larger
set of keywords. These keywords were then used as basis for defining search strings. As
shown in Table 1, we separated between primary keywords to look for in the title and
secondary ones for the title, abstract and list of keywords defined by the authors of the
primary studies.

Table 1. Primary and secondary keywords.

Title Keywords Title, Abstract, Author Defined

“cyber security”, “information secu-
rity”, “cyber risk”, “cyber threat”,
“threat intelligence”, “cyber attack”

“predict”, “strategic”, “tactical”, “likeli-
hood”, “probability”, “metric”, “indicator”

We tested the keywords by checking if they would re-discover the core papers they
were derived from. We also removed some superfluous keywords that did not seem to
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increase the result set. A general observation from experimenting with search strings was
that combinations with only the keyword “security” in the title would be too ambiguous,
returning irrelevant results related to the protection of food, animals, borders and climate.
Hence, we developed search strings that would either contain keywords “cyber security”
or “information security” to improve accuracy of search results.

4.2. Inclusion Criteria

To limit the result set and support the screening process, we defined a set of inclusion
criteria, stating that the studies must be:

• related to actual use of indicator data for cyber security risks;
• published between 2015 and 2020 (the selection does not include studies indexed after

September 2020);
• written in English; and
• peer-reviewed.

Similarly, our exclusion criteria stated that the studies should not be:

• in the form of patents, general web pages, presentations, books, thesis, tutorials,
reports or white papers;

• purely theoretical in nature and with no use of data;
• about visual indicators for tools (e.g., browser extensions);
• addressing topics related to failures, accidents, mistakes or similar;
• repeated studies found in different search engines; or
• inaccessible papers (not retrievable).

4.3. Database Selection and Query Design

In our study, we chose five online databases: IEEE Xplore, Science Direct, ACM Digital
Library, SpringerLink and Google Scholar. These were selected because they are central
sources for literature related to computer science and cyber security. Google Scholar is
not a literature database by itself, but indexes other databases, so there was bound to
be some overlap. For each of the databases, we iteratively defined the search string and
conducted manual searches within the database, based on the keywords in Table 1. As
Brereton et al. [32] observed, the databases are organized around completely different
models and have different search functionalities. It was therefore impossible to use the
exact same search strings for all five databases, and we had to tailor the search strings
individually. The full definitions of the final search strings that we eventually applied can be
found in Appendix A. Most databases order results by relevance, and we therefore applied
“ten irrelevant papers in a row” as a stopping criterion. In this way, we did not have to go
through the complete result set for all search strings.

4.4. Screening and Classification Process

An overview of the search and screening process is given in Figure 1. This process
was initiated during September 2020. Researchers A and B independently ran through
every search string for all databases and extracted primary studies based on titles. Each
of the two result sets where then assessed by the other researcher. The strategy here was
that Researcher B voted on papers selected by Researcher A, while Researcher A voted on
papers selected by Researcher B. Duplicates were removed and only those studies with
votes from both Researchers A and B were selected for the next stage of the screening.
This also included papers for which inclusion/exclusion was hard to decide based on title
alone. In total, 392 papers were selected at this stage based on title-screening, for the next
stage of abstract/summary-based screening. Due to the number of primary studies, four
researchers (Researchers A–D) were involved, and we had to calibrate how papers were
selected. To do this, 20 papers were randomly picked out for a test screening where all
researchers read the abstracts and made a selection. Afterwards, they compared results
and discussed deviations to establish a common practice. Following this, the complete set
from the title stage were randomized and divided into four groups, one for each researcher.
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There was no duplication of efforts (double reading) at this stage, and each researcher got a
unique set to screen based on abstract using our inclusion/exclusion criteria. The result set
from the abstract stage yielded 219 primary studies.

Identify core papers
and derive keywords

Establish classi-
fication scheme

Search Engines Results
IEEE Xplore 166
Science Direct 124
ACM DL 74

SpringerLink 706
Google Scholar 121

Researcher A: Title
based selection (220)

Researcher B: Title
based selection (322)

Merge title se-
lections (392)

Researcher A:
Abstract based
selection (94)

Researcher B:
Abstract based
selection (91)

Researcher C:
Abstract based
selection (92)

Researcher D:
Abstract based
selection (90)

Merge abstract
selections (219)

Researcher A: Full pa-
per based selection

and classification (73)

Researcher B: Full paper based
selection and classification (73)

Researcher C: Full pa-
per based selection

and classification (73)

Merge final se-
lection and clas-
sification (117)

Figure 1. Mapping study flow chart.

Parallel to the screening process thus far, all researchers had been working on develop-
ing a classification scheme to address the research questions. It consisted of 46 parameters,
which were partly adopted from related work and partly based on what we had observed
in the core papers and selected abstracts. To test the classification scheme itself and to
calibrate the researchers for classification, we randomly selected 20 primary studies that Re-
searchers A–C read in full and classified accordingly. As before, the researchers compared
and discussed their efforts in a joint session.

In the final stage, the complete set of primary studies from the abstract stage were
randomized into three unique groups, fully read, classified and merged. This final result
set included 117 primary studies, from which the results in Section 5 were derived. The
complete list of the selected primary studies is provided in Appendix B.
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5. Results

As mentioned in Section 1, systematic mapping studies provide an overview of a
research area through classification of published literature on the topic. Thus, in the
following, we first present the classification scheme used to categorize the primary studies,
and then we present the mapping results with respect to the classification scheme.

5.1. Classification Scheme

The Cyber Security Indicator Data (CSID) classification scheme is illustrated in Figure 2.
It covers seven main categories: research type, data openness, data usage, domain, data
source, data type and data content. In the following, we describe each category as well as
their sub-categories.

CSID 

classification

Research type

Data 

openness

Data 

usage

Domain

Data 

source

Data 

type

Data content

Free

Internal

Limited

Restricted

None specific

Energy

Manufacturing

IoT

Healthcare

Transport

Nuclear

Military

Aviation

Cyber insurance

IT

ICS

Multiple

Other

Strategic

Operational

Tactical

Technical

Network

System

Expert opinion

Databases / 

repositories

Threat 

intelligence feeds

Unconventional

Self-assessment

Test results

Real-time data

Historical data

Estimations

Projections

Aggregated

Combined

Filtered

Structured

Unstructured

Enriched

Enumerations

Meta data

Training sets

Multimedia

Network traffic events

Intrusion detection alert

Loss data / impact

Attacker costs

Defense costs

Attack / incident likelihood

Defence / mitigation likelihood

IP-adresses

File hashes

Signatures

User behaviour

DNS-data

Vulnerabilities

Incident descriptions

Threat agents

Attack planning

Countermeasures

Targets

Risk value

Risk factor

Validation research

Evaluation research

Figure 2. The Cyber Security Indicator Data (CSID) classification scheme.
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Research type represents different research approaches. Each primary study included
in our systematic mapping study is associated with one research approach. As Petersen et
al. did in their mapping study [31], we chose to use an existing classification of research ap-
proaches by Wieringa et al. [34]. However, based on the exclusion criteria, we disregarded
solution proposal, philosophical, opinion and personal experience papers and focused on map-
ping validation research, which describes novel techniques with example experiment/lab
data, and evaluation research, showing how techniques are used in practice with real data
and an evaluation.

Data openness represents the availability of data reported in the primary studies. We
distinguish between the following categories of data openness: free in the sense that the
data are completely open and freely available; limited availability where a membership is
required to access data; restricted access where data are made available to, e.g., authorities;
and internal access meaning that the data are only accessible from own system(s). We also
considered a fifth category, commercial, where access to data requires payment. However,
none of the primary studies reported on commercially accessible data and this category is
therefore disregarded.

Data usage refers to the intended use of data. We consider four categories of data
usage: strategic, operational, tactical and technical. These categories correspond to the four
sub-domains of threat intelligence described in Section 2. Each primary study was associ-
ated with one data usage category.

Domain refers to an application domain, including energy, manufacturing, IoT, health-
care, transport, nuclear, military, aviation, cyber insurance, IT and industrial control systems.
In addition, we included three categories to group the primary studies not addressing a
specific domain (none specific), a combination of different domains (multiple) and finally
other domains.

Data source indicates where the data used in the primary studies originate from. We
consider eight non-exclusive data source categories in our classification scheme. Network
data come from network resources such as firewalls, routers, gateways and DNS-logs. Sys-
tem data come from computer resources, typically from internal systems in an organization.
Expert opinion are indicative variables such as consensus, experience and self-proclamation.
Databases/repositories provide general data obtained via, e.g., queries. Threat intelligence
feeds are obtained through subscription-based push services. Unconventional data are open
source indicators that are either not directly related to the target or not made to predict
threats, such as data from marketplaces, forums, blogs and social media. Self-assessment
data are obtained from internal forms or surveys. Test results come from internal tests,
typically obtained from tools for penetration testing, vulnerability scanners, etc.

Data type refers to the nature of the data. We consider 14 non-exclusive categories
of data type. Real-time data are obtained from real-time events via, e.g., sensors. Historical
data can be log data and recorded frequencies of particular events. Estimations are based on
incomplete data. Projections are made to reflect future values. Aggregated data are based on
similar content, e.g., aggregated cost. Combined data emerge when different data types are
used to create other data. Filtered data are obtained when values have been removed or
masked for some reason, e.g., to preserve anonymity. Structured data are clearly defined
data types whose pattern makes them easily searchable and interpretable. Unstructured
data are more difficult to find and interpret, such as audio, video and social media postings.
Enriched data are improved in some way, e.g., by adding missing details. Enumerations are
catalogues of publicly known information, such as the Common Weakness Enumeration
(CWE) [35]. Meta data are data about data, include ontologies and language specification.
Training sets cover artificial data used for testing, training or simulation. Multimedia are
mostly temporal media such as video and audio.

Data content refers to the metrics provided by the data sources. We consider 20
non-exclusive categories of data content. Network traffic events are recorded events in the
network layer that can indicate an attack. An intrusion detection alert originates from either
network or computer resources. Loss data/impact are about the measured effects/costs
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of an attack. Attacker costs reflect the required investments to successfully perform an
attack. Defence costs reflect the required investments to successfully mitigate an attack.
Attack/incident likelihood is a measurement of the (qualitative or quantitative) likelihood of a
successful attack or incident. Defence/mitigation likelihood is the (qualitative or quantitative)
likelihood of a successful defence or mitigation of an attack. IP-addresses include blacklisted
ones or those with suspicious activity. File hashes are used to identify malicious files, such
as malware. Signatures are code signatures that may be used to identify, e.g., a virus. User
behavior reflects content about how people interact in a system, e.g., by monitoring the
behavior of employees. DNS-data can for instance be poisoned DNS servers or addresses.
Vulnerabilities are descriptions of such found in software/hardware. Incident descriptions
reflect real security incidents and breaches. Threat agents are descriptions of attributing
threat agents. Attack planning is information obtained from discussions in forums and social
media. Countermeasures describe recommended preventive or reactive countermeasures for
certain threats. Targets are descriptions of identified targets exposed to attacks. Risk value
means the combined likelihood and impact values, i.e., for a specific domain, organization
type or size. Risk factor contains values related to risks, such as probability, likelihood,
frequency, uncertainty, confidence, consequence or impact.

5.2. Mapping Results

In the following, we present the result of our systematic mapping study with respect
to the classification scheme described in Section 5.1. A CSV dataset, which includes this
scheme and the details of our current classification of primary studies, is available as open
research data [36] in order to provide openness, traceability and possible extensions of
our work.

As shown in Figure 3, there has been a linear growth in the number of primary studies
per year in the period 2015–2020. From being a relatively narrow field with only a handful
publications, the increase shows that research on security indicator data is becoming
popular. We do not have an exact number for 2020 since the study was conducted before
the end of that year. However, the dotted regression line has an annual slope of 7.2, which
yields about 40 new publications for 2020.

Figure 3. Number of papers per year.

Figure 4 shows a bubble chart illustrating a matrix comprised of the four data usage
categories (strategic, operational, tactical and technical) and the 14 domain categories
(energy, manufacturing, IoT, etc., including none specific, multiple and other). Each of the
117 primary studies are grouped in the bubble chart based on a pair of categories (x, y),
where x represents a category of domain application and y represents a category of data
usage. The numbers in the matrix represent the number of primary studies that fall under
each pair of categories, which is also reflected by the size of the bubbles.
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Figure 4. Data usage versus domain.

We can also see from Figure 4 that the majority of the primary studies (84 out of 117)
do not address any specific usage domains. Moreover, 26 of these 84 primary studies
use technical data, 22 use strategic data, 20 use operational data and 16 use tactical data.
Considering the primary studies across all domains from the data usage perspective
shows that most of the primary studies use technical data (38), followed by strategic
data (31), operational data (27) and tactical data (21). Besides the domain categories none
specific, multiple and other, the remaining domain categories are addressed by at least one
primary study.

As explained in Section 5.1, we group the primary studies with respect to research type
facets. The diagram in Figure 5 shows that the primary studies mostly belong to validation
research (87 papers), with much less representation within evaluation research (30 papers).

Figure 5. Research type facet.

In terms of data openness, we discovered that the data used in the primary studies
mainly fall under the categories free or internal (see Figure 6). In total, 56 out of 117 (48%)
primary studies use data that are free, while 46 out of 117 (39%) use internal data. From the
remaining primary studies, only 12 (10%) use limited data and 3 (3%) use restricted data.
When the study used more than one type of data openness, we classified according to the
strictest one.

With respect to the origin of data, we see from Figure 7a that the two most pop-
ular data sources are network related data obtained from resources such as firewalls,
routers and gateways, as well as system related data obtained from computer resources.
Unconventional data, threat intelligence feeds, databases/repositories and expert opinion
(see Section 5.1) are other popular resources of data. Note that the data source categories
shown in Figure 7a are categories addressed by 20 or more primary studies. The remaining
data source categories were addressed by few primary studies (less than 20) and there-
fore do not represent any significance compared to the counts for the categories shown in
Figure 7a. In addition, note that several primary studies include more than one data source.
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Figure 6. Data openness.

Figure 7. (a) Data source categories addressed by 20 or more primary studies; and (b) number of
primary studies addressing data source categories in the period.

Figure 7b shows the trend for each category over time. We see that the number of
papers addressing the categories system and network have increased the most since 2017,
and we also see that the category unconventional has increased significantly since 2018.

We applied a similar strategy for presenting the mapping results as described above
for the data type and data content categories. Figure 8a illustrates the data type categories
addressed by 20 or more primary studies. In this case, we see a pattern of the three most
popular groups of data type categories. Figure 8a shows that structured and historical data
are the most popular data type categories, followed by unstructured, combined and real-time
data in a shared second place, and finally training sets and estimations in a shared third
place. In terms of the trend for each category over time, Figure 8b shows that structured
and historical data are also the categories that have been increasing the most. Moreover, the
categories unstructured and training sets have increased significantly since 2018.
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Figure 8. (a) Data type categories addressed by 20 or more primary studies; and (b) number of
primary studies addressing data type categories in the period.

With respect to data content categories, Figure 9a shows that network traffic event is the
dominating category, followed by incident descriptions and vulnerabilities in a shared second
place, and finally risk factors and IP-addresses in a shared third place. As for data content
categories (cf. Figure 9b), studies on network traffic events have had an increasing trend
since 2015, while the remaining categories follow more or less a flat trend since 2015.

Figure 9. (a) Data content categories addressed by 20 or more primary studies; and (b) number of
primary studies addressing data content categories in the period.
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In summary, the observations in Figures 7–9 show that data sources are mainly from
network resources such as firewalls, routers and gateways. The data types are mainly
structured and historical data, and the data content is mainly related to network traffic
events. In terms of trends for data sources, we see an increasing number of papers using
system, network and unconventional data sources. Moreover, trends for data types show
an increasing number of papers using structured, historical, unstructured and training
set data. Finally, trends for data content show that network traffic events is the most
increasing category.

Finally, we investigated the average number of data source, data type and data content
categories that were considered by the primary studies within the reported period. This
average trend will help us understand whether the number of categories used by the
primary studies are increasing over time. As illustrated in Figure 10, the usage of data
source categories is following a flat trend with the lowest average 1.7 in 2017 and 2019
and the highest average 2.0 in 2018. However, the usage of data type and data content
categories are increasing following a linear trend. With respect to data type categories,
the lowest average is 1.8 in both 2015 and 2016 and the highest average is 3.0 in 2019.
With respect to data content categories, the lowest average is 1.8 in 2016 and the highest
average is 3.1 in 2018. Thus, while using multiple data sources has not increased much
over the years, the usage of multiple data types and data content is increasing following a
linear trend.

Figure 10. Average number of data source/data type/data content categories per year.

6. Discussion

In this section, we discuss our results with respect to the research questions. We
compare our findings with previous work in order to find similarities, address our main
limitations and recommend future research.

6.1. RQ 1: What Is the Nature of the Research Using Security Indicators?

As shown in Figure 5, the majority of the papers included in our systematic mapping
study were validation research papers (87 out of 117). This is not surprising since, as
pointed out by Wieringa et al. [34], the core business of engineering research is to propose
new techniques and investigate their properties. However, this implies that most studies
lack empirical evaluation with real-world application. It seems to be easier to publish
methods and techniques on a conceptual level than to apply them in practice. This is in line
with what Pendleton et al. found for security metrics [19], i.e. researchers often encounter
a lack of real data for verification and validation.

6.2. RQ 2: What Is the Intended Use of the Data?

The results show that the selected studies are rather evenly distributed in the given
data usage categories. In some studies, the data are used for more than one usage category;
in such cases, we classified the paper by choosing the broader category. For example, for
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technical as well as strategic usage, the study is classified for strategic use as it covers
the technical usage. The usage patterns indicate an inclination towards using Technical
(38) threat intelligence, which is followed by using Strategic (31), Operational (27) and
Tactical (21) data. We consider it positive that the data are used at four levels for informed
decision making. However, the studies are sparsely distributed in a wide range of usage
domains, with approximately 72% of the selected studies, i.e., 84 of 117, not addressing
a specific domain. The sparse distribution of studies within specific domains, mostly
1–2 studies per domain, indicates that research in tapping the potential of threat intelligence
at various levels is still in its beginning stages. Chockalingam et al. [30] argued that domain-
specific empirical data sources are needed to develop realistic models in cyber security. It
can therefore be inferred that more research is needed in domain-specific data usage to
contribute to utilizing comprehensive threat intelligence.

6.3. RQ 3: What Is the Origin of the Data for the Indicators?

Our results show that the two most popular data origins were from networks and
systems. Unconventional data, threat intelligence feeds, databases/repositories and expert
opinion were also quite commonly used (see Figure 7). We consider it positive that
real-world data have been increasingly used in the last few years, in particular since the
majority of earlier studies are not using real-world data. For example, related to digital
forensics, Grajeda et al. [15] showed that the clear majority of datasets are experimentally
generated (56.4%), with real-world user generated in second place (36.7%). Furthermore,
Gheyas et al. [27] showed that only a small percentage of studies up until 2015 used original
real-world data for the prediction of insider threats. Chockalingam et al. [30] also showed
in 2017 that most Bayesian Network models used expert knowledge and/or data from the
literature as their data sources.

An interesting observation regarding the origin of the data is that each of the primary
studies used, on average, more than one data source for deriving their indicators (Figure 10).
For example, the approach presented by Erdogan et al. [37] reports four data sources as
input for cyber-risk assessment (network layer monitoring indicators, application layer
monitoring indicators, security test results and business-related information obtained from
stakeholders). While we did not record whether these previous studies have shared the
datasets openly with others, the benefits of collecting and sharing such data are pointed
out by Moore et al. [38] and Zheng et al. [16].

Close to half (48%) of the input data from the primary studies were free, meaning
publicly available. That is somewhat lower than what Zheng et al. [16] registered (76%).
This could be explained by the fact that many studies used more than one type of data
source, and we classified these according to the strictest type (typically internal).

6.4. RQ 4: What Types of Data Are Being Used?

The trends related to data type indicate that the community is increasingly becoming
better in taking advantage of structured and historical data in particular. Wagner et al. [39]
showed a precipitously increasing research interest in cyber threat intelligence sharing up
until 2016, followed by a slight decline in the following years. One could assume that this is
due to improved maturity and uptake of standardized languages for sharing threat intelligence,
such as Mitre’s STIX [40]. However, studies by Ramsdale et al. [41] and Bromander et al.
[42,43] show the contrary and that, in practice, threat intelligence providers are opting
for custom or simple formats. We did not classify primary studies according to specific
sharing standards or enumerations, and this could be a future extension to the scheme.
Mavroeidis and Bromander [44] provided an overview of those already used for sharing
threat intelligence. It is also outside of our analysis whether the increasing number of
papers are using different data source instances or if they are using the same ones.

The results indicate a recent sharp growth in publications applying unstructured data.
We believe this is directly related to the increased usage of unconventional data sources,
such as social media. This is in accordance with findings by Husák et al.’s [21] in their
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survey of prediction and forecasting methods in cyber security, showing recent approaches
based on non-technical data from sentiment analysis on social networks or changes in user
behavior.

6.5. RQ 5: What Is the Data Content of the Indicators?

As mentioned in our results, network traffic dominates among the data content types,
which conforms with the popular corresponding data source/origin (network) and data
usage (technical) classifications. We also found that many of the primary studies did not
really give precise information about what kind of network traffic they were using, which
is partly the reason we find a high concentration here. For some primary studies, we could
classify more precisely towards IP-addresses or DNS-data. In 2016, Pendleton et al. [19]
recommended that security publications should explicitly specify their security metrics,
but we did not find much evidence of this actually being done. Data about incidents and
vulnerabilities also have a technical content, and, as Tounsi and Rais [9] pointed out, these
are easy to quantify, share, standardize and determine immediate actions from. Although
not directly comparable, Grajeda et al. [15], found utilization of datasets related to malware
(signatures), network traffic and chat logs (attack planning and targets), but these were not
dominating for forensics. Within the datasets catalogued by Zheng et al. [16], there were
content related to vulnerabilities, exploits (incident descriptions), cybercrime activities
(attack planning and targets), network traces (network traffic events), user activities (user
behavior), alerts (intrusion detection alert) and configurations (countermeasures). Here,
the technical content types dominated as well.

6.6. Limitations and Recommendations for Future Research

While a systematic mapping study captures focus areas and trends within the litera-
ture, it does not dig into the details and quality of results from the primary studies. Hence,
we cannot give any recommendations on which data and indicator types work better than
others. That would require a more focused literature review, but it is our impression that
the current literature does not contain appropriate and comparable parameters to make
such benchmarks.

Due to the empirical nature of systematic mapping studies, threats to validity such as
construct validity or internal validity are present. To mitigate threats to validity concerning
selection, screening and classification of studies, we defined a detailed screening strategy
and screening and classification process. In addition, we carried out a calibration exercise
to address variances between researchers. To a considerable degree, the aforementioned
measures confirm the validity of the search, screening and classification processes. We also
acknowledge that relevant publications may have been overlooked due to missing search
keywords, delayed indexing by search engines or human mistakes in the screening process.
Despite actions taken to calibrate the participating researchers and reduce systematic
errors, the mapping is based on subjective interpretations of paper contents. Due to limited
resources, we did not have the opportunity to undertake double review of the complete set
of full papers. However, we would argue that we included such a large body of primary
studies that the mapping still shows an accurate and precise overall picture.

Our classification scheme is more detailed or has a different focus than what is seen
in related work (e.g., Sun et al. [23], Grajeda et al. [15] and Zheng et al. [16]). It is also
highly reusable and can be applied to capture new trends by doing a similar study in
the future. Furthermore, it would be interesting to include more grey literature (e.g.,
technical reports, white papers, theses and web pages) to capture use of cyber security
indicators that are not driven by academic research. According to Garousi et al. [45], such
multivocal literature reviews can be valuable in closing the gap between academic research
and practice. This kind of work would require more use of manual search and snowballing,
which unfortunately is quite resource demanding.
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7. Conclusions

We conducted a systematic mapping study on the use of cyber security indicator data
in the academic literature to structure the research area. The number of publications has had
a linear growth over the past five years, and the dominant approach is validation research
based on free (public) or internally developed indicators. The usage patterns show a slight
inclination towards technical threat intelligence, with little use of domain specific data. We
can see a trend where data originating from network or system resources are increasing the
most, followed by unconventional data, threat intelligence feeds, databases/repositories
and expert opinion. On average, more than one data source is used to derive indicators
in each paper. Our results show that the research community is eagerly developing
new methods and techniques to support security decisions. However, many proposed
techniques are on the conceptual level, with little or no empirical evaluation, thus may not
yet be mature enough for real-world application. With indicators that are rather technical in
nature, we can quickly share information about present security events, increase situational
awareness and act accordingly. This allows contemporary cyber risk estimates to become
more data-driven and less gut-driven. At the same time, such indicators tend to be short-
lived. The increasing usage of unconventional data sources and threat intelligence feeds
of more strategic and tactical nature represent a more forward-looking trend. We cannot
really say whether or not we have become better at anticipating attacks, but at least it seems
the research community is trying.
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Appendix A. Search String Definitions

For all databases, we tried to create as equivalent searches as possible. However, we
had to consider differences in features and functionality. The sections below show how we
implemented the queries for each of the databases.

Appendix A.1. IEEE Xplore

The Command Search feature of this database allows query strings consisting of data
fields and operators (in caps). We also applied a filter to limit the result to publications
including and between 2015 and 2020. The following search string was applied:

((" Document Title ":" cyber security" OR
title:" information security" OR
title:" cyber risk" OR
title:" cyber threat" OR
title:" threat intelligence"
OR title:" cyber attack ") AND

("All Metadata ":" predict" OR
Search_All :" strategic" OR
Search_All :" tactical" OR
Search_All :" likelihood" OR
Search_All :" probability" OR
Search_All :" metric" OR

https://doi.org/10.5281/zenodo.4639585
https://doi.org/10.5281/zenodo.4639585
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Search_All :" indicator "))

Appendix A.2. Science Direct

We made use of the search form instead of a query string for this database. The
advanced search feature allowed us to specific keywords for the title and another set for the
title, abstract and author-specified keyword. However, the space between keywords implicitly
meant an AND-operator, while what we really needed was OR. This meant that we had to
submit 42 search forms, one for each primary keyword for the title in combination with
every secondary keyword for the range 2015–2020.

Appendix A.3. ACM Digital Library

This database allowed searching for specific keywords in title, abstract and author
specified keywords. The following search string was applied:

[[ Publication Title: "cyber security "] OR
[Publication Title: "information security "] OR
[Publication Title: "cyber risk"] OR
[Publication Title: "cyber threat "] OR
[Publication Title: "threat intelligence "] OR
[Publication Title: "cyber attack "]] AND
[[ Abstract: predict] OR [Abstract: strategic] OR
[Abstract: tactical] OR [Abstract: likelihood] OR
[Abstract: probability] OR [Abstract: metric] OR
[Abstract: indicator ]] AND
[Publication Date: (01/01/2015 TO 12/31/2020)]

Appendix A.4. SpingerLink

We employed a form-based (advanced) search. The title search did not allow for
operators, hence we had to submit six search forms, one for each primary keyword and
where at least one of the secondary keywords appeared somewhere. There was no option
to search within just the abstract or author defined keywords, hence the result set became
large, and we had to use the stopping criteria (results sorted by relevance, stop after 10
irrelevant in a row). The date range was set to 2015–2020.

Appendix A.5. Google Scholar

The advanced features of this search engine allowed for specifying title keywords,
with additional ones using | as an OR operator. It was important to turn off personalized
search results (turn off “signed-in search activity”) so that different researchers would
get the same results. If not, the results would have been influenced by their previous
search history. We specifically excluded patents and citations and defined the date range
2015–2020. The following search string was applied:

allintitle: ("cyber security" |
"information security "| "cyber risk" |
"cyber threat "| "threat intelligence" |
"cyber attack ") (Predict | strategic |
tactical | likelihood | probability |
metric | indicator)
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• Liu, Yang et al. (2015). “Predicting cyber security incidents using feature-based
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