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ABSTRACT
Traffic estimation from very-high-resolution remote sensing imagery has received in-
creasing interest during the last few years. In this article, we propose an automatic
system for estimation of the annual average daily traffic (AADT) using very-high-
resolution optical remote sensing imagery of urban areas in combination with high-
quality, but very spatially limited, ground based measurements. The main part of the
system is the vehicle detection, which is based on the deep learning object detection
architecture mask region-based convolutional neural network (Mask R-CNN), mod-
ified with an image normalization strategy to make it more robust for test images of
various conditions and the use of a precise road mask to assist the filtering of driving
vehicles from parked ones. Furthermore, to include the high-quality ground based
measurements and to make the traffic estimates more consistent across neighboring
road links, we propose a graph smoothing strategy that utilize the road network. The
fully automatic processing chain has been validated on a set of aerial images cov-
ering the city of Narvik, Norway. The precision and recall rate of detecting driving
vehicles was 0.74 and 0.66, respectively, and the AADT was estimated with a root
mean squared error (RMSE) of 2279 and bias of -383. We conclude that separating
driving vehicles from parked ones may be challenging if vehicles are parked along the
roads, and that for urban environment with short road links several remote sensing
images covering the road links at different time instances are necessary in order to
benefit from the remote sensing images.
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1. Introduction

Road traffic density is a crucial parameter for road applications, including planning,
construction and operation of road networks, but also to estimate the level of pol-
lution caused by traffic. In Norway, traffic density is currently regularly measured
at 9300 ground-based counting stations throughout the Norwegian road network,
but this is far from satisfactory when it comes to geographical coverage. Mobile
equipment such as radar is also applied, but those counts are limited in both space
and time, the mobile device is expensive, and operation is time-consuming. It is also
challenging to distinguish vehicle weight classes in data from mobile radar devices.

Due to these limitations on equipment, operational costs, geographical coverage,
and resolution with respect to vehicle weight classes, remote sensing images are
now being evaluated for estimating traffic Larsen, Haug, and Aldrin (2008); Eikvil,
Aurdal, and Koren (2009); Larsen, Salberg, and Eikvil (2013); Leitloff et al. (2014);
Audebert, Le Saux, and Lefèvre (2017). Very-high-resolution (VHR) aerial images
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allow for automated monitoring of road traffic situations Hinz and Stilla (2005);
Zhao and Nevatia (2003); Eikvil, Aurdal, and Koren (2009); Leitloff, Hinz, and Stilla
(2010); Larsen, Salberg, and Eikvil (2013); Leitloff et al. (2014); Liu and Mattyus
(2015); Paisitkriangkrai et al. (2015); Kampffmeyer, Salberg, and Jenssen (2016);
Audebert, Le Saux, and Lefèvre (2017). Using remote sensing imagery, reduced costs
and immense improvements in geographical coverage are obtained compared with
the use of mobile equipment. These benefits are also observed in other applications
(see e.g. Lato, Frauenfelder, and Bühler (2012); Lv et al. (2019); Yu et al. (2018)).

To assess the traffic density in a road network, a commonly used measure is
the annual average daily traffic (AADT), which is the average number of vehicles
passing a given point each day. Larsen, Haug, and Aldrin (2008) showed that the
AADT of a given road link can be estimated from vehicle counts obtained from
road traffic snapshots (e.g. VHR aerial or satellite images) if the length of the road
link is sufficiently long, or a sufficient number of traffic snapshots is available. The
conversion from road traffic snapshot vehicle counts to AADT also requires that the
vehicles are driving at a known speed, e.g. the speed limit.

Several algorithms for vehicle detection in remote-sensing data have been devel-
oped during the last decades. Eikvil, Aurdal, and Koren (2009) proposed the use of
image segmentation with global thresholding followed by two stages of object classi-
fication. Their study site was located at the inner city roads in Oslo, Norway. The
results showed that the segmentation step was the limiting factor of the proposed
method, with approximately 20% of the vehicles were lost in this process due to
low contrast and fragmented objects. An adaptive boosting (AdaBoost) classifier in
combination with Haar-like features were applied by Leitloff, Hinz, and Stilla (2010)
to detect single vehicles for VHR optical satellite images. Moreover, vehicle queues
were detected using a line extraction technique, and single vehicles were determined
within the queue using a robust parameter estimation. The authors reported that a
detection rate of over 80% was possible. The advantage of the scheme proposed by
Leitloff et al. is the potential to detect and count vehicles in queues. However, some
limitations were reported related to missing detection of vehicles with low contrast
to the surrounding and false detections caused by shadows casts. Larsen, Salberg,
and Eikvil (2013) proposed a system for automatic traffic monitoring using very-
high resolution satellite imagery. Central in the proposed system was a segmentation
strategy, where interesting features (blobs) in the image were located using a scale
space-filtering approach. From each detected blob, spectral, geometric, and context-
based features were extracted and classified into six vehicle classes and a non-vehicle
class. An advantage of the proposed system was that it included a fully automatic
approach from cloud detection to vehicle counting, however, a major limitation of
the system is that it was designed for rural conditions. Leitloff et al. (2014) used a
three stage procedure for detecting vehicles: first an AdaBoost classifier with Haar-
like features, then blob detection for reducing the number of vehicles hypothesis,
and finally a support vector machine (SVM) on various geometric and radiometric
features. They also used a road database as a prior to detect only along the roads in
a certain direction. The performance of the system by Leitloff et al. (2014) was in
general very good. Some false positive detections was observed due to the sensitivty
of the Haar-like features for strong edges. However, their system was not designed
for traffic monitoring during disaster and mass events, and utilizes optical image
sequences that are processed real time on board aircraft to estimate road traffic
information.

After the introduction of deep learning to the computer vision community
Krizhevsky, Sutskever, and Hinton (2012); Zhao et al. (2019), several studies have
applied deep learning to detect vehicles in VHR optical images (see e.g. Paisitkri-
angkrai et al. (2015); Kampffmeyer, Salberg, and Jenssen (2016); Audebert, Le Saux,
and Lefèvre (2017); Sabour, Frosst, and Hinton (2017); Yu et al. (2019)). Previous
work that has focused on semantic segmentation of urban environments (includ-
ing vehicles) includes among others Paisitkriangkrai et al. (2015), who proposed
a scheme for semantic segmentation using a combination of a patch-based convo-
lutional neural network (CNN) and a random forest classifier that is trained on
hand-crafted features. To increase the classification accuracy further, a conditional
random field (CRF) was used to smooth the final pixel labeling results. Inspired by
the fully convolutional network (FCN) architecture Long, Shelhamer, and Darrell
(2015), Kampffmeyer, Salberg, and Jenssen (2016) designed an architecture that
allowed end-to-end learning of pixel-to-pixel segmentation of VHR optical remote
sensing images. Training of the FCN network was done by weighting each class
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with its median frequency to account for class imbalance, i.e. some classes, like the
vehicle class, contains much fewer pixels than other classes. This enhanced the seg-
mentation performance of the vehicle class significantly. Even though the focus of
Kampffmeyer, Salberg, and Jenssen (2016) was semantic segmentation, their ap-
proach also demonstrated the potential of deep neural networks to detect vehicles
in VHR optical remote sensing images. Audebert, Le Saux, and Lefèvre (2017) pro-
posed a three-step segment-before-detect pipeline to perform vehicle extraction and
classification in VHR remote sensing data over urban areas. The three steps consisted
of: (i) semantic segmentation using a FCN, (ii) vehicle detection by bounding box
regression, and (iii) object-level classification with a traditional CNN. The results
obtained by Audebert, Le Saux, and Lefèvre (2017) were in general good. However,
the semantic maps created by SegNet can be noisy, with blurred transitions between
the classes. To compensate for this, Audebert, Le Saux, and Lefèvre (2017) applied
several morphological operations. Recently, novel deep learning image analysis ar-
chitecture such as capsule networks Sabour, Frosst, and Hinton (2017) has also been
applied for vehicle detection in VHR remote sensing images Yu et al. (2019). Their
approach was based on a superpixel-based patch generation strategy and the convo-
lutional capsule network. Capsule networks can effectively handle objects of varying
sizes and orientations, and therefore provide a good match to the task of detect-
ing vehicles in remote sensing images. The proposed method performed effectively
in handling various vehicle conditions and achieved promising vehicle detection re-
sults.

In this article, the overall goal is to develop methodology for automatic estimation
traffic using VHR remote sensing images. In order to fulfil this goal, key components
to be developed are an automated approach for robust detection of vehicles in VHR
remote sensing data, utilize the existing road network for improved traffic estimating,
and enable calibration towards existing high-quality traffic estimates. Evidently,
the ideal choice of methods for image analysis-based vehicle detection depends on
the conditions in the image, which again depends on location, type of road, traffic
density, etc.

The proposed system to extract vehicle counts from VHR remote sensing images
consists of a fully automatic processing chain, where the only input required is the
remote sensing image and a road vector file that identifies the geographic coordinates
of each road segment, and a high-quality road mask (Figure 2 (b)). The system
includes a new normalization approach for improved generalization of the neural
network model to unseen scenery. In addition, a novel graph theory approach for
denoising and automatic conversion from the neural network output counts into
annual average daily traffic (AADT) is described. The vision is to apply the traffic
estimates provided by the proposed system for each road link to improve local air
quality estimates using a model based on the European monitoring and evaluation
programme (EMEP), referred to as the urban EMEP (uEMEP) model. uEMEP is
a methodology for subgrid downscaling of EMEP gridded consentrations, which are
about 7× 7 km2, to say 50× 50 m2 Wind and Denby (2017).

2. Data

In this paper, we develop the deep learning algorithm using the public available inter-
national society for photogrammetry and remote sensing (ISPRS) two-dimensional
(2D) semantic labeling contest datasets Int. Soc. Photogramm. Remote Sensing (IS-
PRS) (2018). The ISPRS datasets are comprised of aerial images over two cities in
Germany: Potsdam and Vaihingen, which have been labelled with six of the most
common land cover classes: impervious surfaces, buildings, low vegetation, trees,
cars and clutter.

2.1. Training data

For training the vehicle detection module, both the ISPRS Potsdam and ISPRS
Vaihingen datasets were utilized. Both datasets contain several patches of true or-
thophoto aerial imagery in addition to a ground truth labelling for part of the data.
The ISPRS Potsdam dataset contains 38 patches of 6000 × 6000 pixels with 5 cm
resolution and red green blue (RGB) channels. Of the 38 image patches, 24 of them
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includes a ground truth labelling. The ISPRS Vaihingen dataset contains 33 patches
of different sizes with 9 cm resolution and infrared red green (IRRG) channels. Of
the 33 patches, 16 includes a ground truth labelling.

2.2. Road database

In this work, all the detected vehicles are assigned to a unique road link object
from “Norsk Vegdatabase (NVDB)” (the norwegian road database). In addition
to the geographic location of the road links, the NVDB has also been utilized to
extract information about the speed limit. For most road links, the speed limit was
included in the database, however, for a few instances this was not the case. For those
road links, the standard speed limits were used. In Norway these are 50 km h−1 in
residential areas, and 80 km h−1 in rural area areas. The NVDB does not contain
any information about parking regulations associated to each road segment.

The NVDB is far from accurate in terms of the geographic location of the road
segments. In some cases, the center line is even located outside of the road. However,
in Norway there exist a database, “Felles Kartdatabase - Veg (FKB-veg)” (common
map database - road), which includes polygons that accurately places the edge of
the road. Please note that the FKB-veg database does not include the road link
objects or any references to those objects.

Some of the road links in the NVDB database includes estimated AADT values.
These have been estimated from ground based counting devices, and are regarded
to be of high quality.

2.3. Test data

The test data consist of aerial images of the city Narvik in Norway, one set from
2012 and one from 2017. The resolution of the images is 10 cm, and the images
contain the three RGB channels. However, to fit the training data, we only consider
the RG channels (see Section 3.1).

In order to be able to get some statistics from the vehicle detection step, a manual
inspection of the 2012 dataset was performed in order to identify the vehicles. In
total 1707 vehicles were found, and of them only 123 were labelled as driving vehicles,
whereas the remaining 1584 vehicles were assumed to be parked.

3. Vehicle detection

3.1. Data preprocessing

The training datasets presented in Section 2.1 and the test data in Section 2.3 have
only the red and green (RG) channels in common. Both the Potsdam dataset and
the test dataset have the standard RGB channels, whereas the Vaihingen imagery
has infrared (IR), red and green channels. Hence, in order to use both the training
datasets, only the the red and green channels were used for training the vehicle
detection model. Preliminary experiments showed that the performance of the de-
tection model were better when including the Vaihingen dataset and using only two
channels compared to using only the Potsdam dataset for training. Since pre-trained
models which expects three channels were used, the green channel were also used as
a blue channel, thereby using images with red, green and green instead of red, green
and blue channels respectively.

In order to reduce the effect from different sensors, different weather conditions,
etc., a normalization of the images was performed. However, a standard normaliza-
tion with regard to mean and standard deviation calculated with the entire image
as basis is highly dependent on the scene. I.e., an image covering a downtown area
would be normalized differently compared to an image from a rural area where more
green surroundings will impact the normalization. Since vehicles in most cases are
located on impervious surfaces, using a road mask to extract only pixels from imper-
vious surfaces, will yield a more consistent normalization. Preliminary experiments
showed an improved stability from the different images compared to a standard
normalization .
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Finally, the resolution of the training data was changed in order to match the
input data, in addition the training images were cropped into smaller image patches
more suitable for training of a neural network.

The image normalization scheme was also conducted on the test images. However,
in contrast to the training images that includes fully segmented labelling where the
impervious surfaces are denoted as a separate class, such labels are not available
for the test images. Fortunately, the road data base FKB-veg includes an accurate
delineation of the roads, and were thus used for masking the pixels covering the
roads. For areas which are not covered by the FKB-veg, it is also possible to derive
a road mask using Open Street Map or other similar databases. Although, the
neural network does not require a certain size, the test data images are split into
smaller tiles in order to avoid too high memory usage.

3.2. Instance segmentation and vehicle counting

In order to detect and count the individual vehicle instances in the images, we
trained the object detection and segmentation deep learning network mask region-
based convolutional neural network (Mask R-CNN) He et al. (2018) with a FPN-101
backbone. A PyTorch implementation of the Mask R-CNN network was downloaded
from Massa and Girshick (2018). In addition pre-trained weights were downloaded
and utilized for the training.

During the training of the network, the training data was augmented by doing
random flipping, rotation and crop of the image patches. In addition various random
noise were introduced in order to improve the generalization properties of the model.

The output of the Mask R-CNN network is a binary mask for every detected
vehicle instance. From each such binary mask a polygon describing the boundary
is extracted. By representing each vehicle with the centroid of the polygon, every
detected vehicle is mapped to the nearest road segment and counted.

3.3. Parked vehicles and other false detections

Since the aim is to estimate air pollution from traffic, parked vehicles are not to be
included in the vehicle count, and are thus regarded as false detections. In downtown
or residential areas where it is allowed to park along the side of the road, these false
detections are significant, and hence it is desirable to remove these detections.

However, since parked vehicles, especially when they are parked along the road-
side, look very similar to driving vehicles in a still image, these false detections have
proven difficult to eliminate. In fact, in some cases it is difficult also for humans to
distinguish if a vehicle is parked or driving. However, in most cases humans are able
to use knowledge about traffic rules, cultural habits, local information and so on in
order to accurately determine the parked/driving state of a vehicle. Unfortunately,
this is not easily converted into features applicable for a machine learning algorithm.
Currently, three schemes have been adopted in order to remove false detections:

• Firstly, we remove detected vehicles that are located above a maximum distance from the center
of the road link. This effectively removes detections on e.g. nearby parking lots or driveways.
By setting a strict maximum distance, for instance 40% of the road width, it is also possible to
remove detections located on the side of the road. However, since the georeference of the road
database is imprecise, this may remove correctly detected vehicles.

• Secondly, in order to remove vehicles which are parked along the side of the road, we utilize
the FKB-veg database that includes exact location of the edge of the roads. By shrinking these
polygons by 50 cm and remove all vehicles intersecting the shrunken polygons, a significant
ratio of the parked vehicles are removed from the traffic count.

• The third scheme for removing parked vehicles, is to estimate the direction of the detected
vehicle, and calculate the angle between the vehicle and the nearest part of the road link. A
vehicle moving along the road, is expected to have an angle difference of about 0◦ or 180◦, and
thus it is possible to impose a restriction on this angle difference, and thereby remove vehicles
far from parallel to the assigned road link. This is an effective way of removing parked vehicles
that are more perpendicular to the road.
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4. Traffic estimation

4.1. From vehicle counts to traffic

The vehicle detection and mapping produces a count of vehicle for each road segment
in the road database. An instantaneous traffic estimate for road segment i may then
be obtained by:

Ti = Ni ×
(
vi
li

)
, (1)

where Ni is the number of vehicles mapped to the road segment, vi is the speed of
the vehicle(s) and li is the length of the road segment. Both the number of vehicles
Ni and the road segment length li is known as the latter is easily calculated from
the road segment object from the road database. Unfortunately, the speed of the
vehicles is difficult to estimate based on a single still image. To obtain a speed
estimate based on still imagery, a time series of at least two images in a reasonable
temporal distance is required. Fortunately, the road database contain the speed limit
of most of the road segments. Using the speed limit as estimate for the vehicle speed
is far from perfect, but on the main roads this is believed to be a reasonable estimate
as long as the images are not obtained during the rush hours, which is true for the
test images used in this work.

Another problem is connected to the length of each road segment: a significant
portion of the road segments are relatively short, only a few metres in some cases.
For such very short road segments the traffic estimate will become either very high
or simply zero dependent on whether a vehicle is assigned to the road segment or
not. Using a time series of images acquired at the same time of day for several days,
would average out this effect. However, long time series of aerial photos are costly to
obtain. Hence, in order to remedy this effect, the use of graphs on the road network
is able to average out the traffic estimates by considering the whole road network.

In Equation (1) Ti is an estimate for the number of vehicles using road segment
i at a given time. A common metric for traffic is the AADT, which is the average
number of daily passes, i.e. the average number of vehicles passing each day. In
Larsen, Haug, and Aldrin (2008) a method of estimating the AADT based on very
sparse traffic counts was presented. The approach extrapolates the instantaneous
counts to a daily measure using an estimation of the daily traffic distribution which
describes how the traffic changes during the day. For a given time, the instantaneous
traffic count is converted to AADT by multiplying with a (time dependent) factor.
In the following we describe a Traffic Denoising approach which also automatically
finds this conversion factor.

4.2. Traffic graph denoising

4.2.1. Graphs, incidence matrices and graph Laplacian

A directed graph G = (N,E) consists of a node set N = {n1, n2, . . . , nN} of cardinal-
ity N , and an edge set E = {e1, e2, . . . , eE} of cardinality E. For a directed graph we
endow each edge e with an arbitrary reference orientation from its tail node t(e) to
its head node h(e). The node-to-edge incidence matrix of a directed graph is defined
as

Bi,j =


1, if h(ej) = ni,

−1, if t(ej) = ni,

0, otherwise.

(2)

The line graph of a graph G is a graph GLG whose nodes correspond to the edges
of G. Two nodes in GLG are connected if the corresponding edges in the original
graph G share an incident node. Given the incidence matrix B of the original graph,
the adjacency matrix of the line graph can be expressed as ALG = |BTB − 2I|,
where the absolute value is applied element-wise, T denotes the transpose, and I
denotes the identity matrix Schaub and Segarra (2018). The graph Laplacian of the
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Figure 1.: Illustration of a two-way graph with edges modelling the flow in both di-
rections between two given nodes.

line-graph is correspondingly defined as Schaub and Segarra (2018)

LLG = diag(ALG1)−ALG, (3)

where 1 denotes a vector of ones and diag(·) denotes the diagonal matrix.

4.2.2. Laplacian filtering on graphs

Consider a noisy signal vector y = µ+ ε ∈ RE defined on the edges of a connected
graph G (or the nodes of the line graph GLG), where µ is the signal of interest and
ε represent zero-mean additive noise. We often assume that the signal µ is smooth
with respect to the underlying graph. Then, we can define the following filtering or
denoising optimization problem

J = arg min
µ

{
‖y − µ‖22 + αµTLLGµ

}
, (4)

where α > 0 can be viewed as a regularization parameter that balances the influence
of the smoothing due to the structure of the graph µTLLGµ with the proximity to
the noisy signal ‖y−µ‖22. Please note that µTLLGµ is a measure of the variation of
the signal on the graph GLG and is minimized by a constant vector proportional to
1. The optimal solution of the optimization problem is given by Schaub and Segarra
(2018)

µ̂ = (I + αLLG)−1 y = Fy, (5)

where F = (I + αLLG)−1.

4.2.3. Traffic graphs and average annual daily traffic

We may use graphs to estimate the traffic flow along road segments in an area of
interest. However, two-way traffic is often common. One way to model this is to
use a directed graph, extended with an extra set of edges to model traffic in two
directions (Figure 1). The input data now contains vehicle counts for each direction.

In a road network, we typically have traffic high-quality estimates of some road
segments. These estimates are not obtained from EO data, but using other tech-
nologies like ground based counting stations. Let d = [d1, d2, . . . , dM ]T denote the
collection of these estimates. Then, we may constrain the graph estimates to these
traffic estimates by including the constraint

CTµ = d, (6)

7



where C = [ec1 , ec2 , . . . , ecM ], ek is an indicator vector equal to the kth column of
the identity matrix, and the set {c1, c2, . . . , cM} denotes the indices corresponding to
the road segments where high-quality traffic estimates are available. We now define
the cost function

J =
1

2
‖sy − µ‖22 +

α

2
µTLLGµ+

(
CTµ− d

)T
λ, (7)

where λ is a vector of Lagrange multipliers, and then find the values of µ and s that
minimize

ŝ, µ̂ = arg min
s,µ

J, (8)

where s is a scale factor that adjusts the satellite derived AADT to the same level
as the high-quality ones d. The estimate of the scale factor is

ŝ =
yTµ

yTy
, (9)

whereas to find the optimum value of µ we compute the derivatives

∂J

∂µ
= 0 and

∂J

∂λ
= 0. (10)

This gives us an equation system that may be organized as[
I + αLLG C

CT 0

] [
µ
λ

]
=

[
sy
d

]
(11)

By solving the equation system Scharf (1991), we find that the solution for µ̂ is

µ̂ = sF

(
I−C

(
CTFC

)−1

CTF

)
y + FC

(
CTFC

)−1

d. (12)

The matrix

PC = C
(
CTFC

)−1

CTF (13)

is an oblique projection matrix onto the subspace 〈C〉, i.e. the subspace spanned
by the columns of C. Let ⊥ denote the orthogonal complement, i.e. 〈C〉⊥ is the
orthogonal subspace of 〈C〉, and P⊥C = I−PC is an oblique projection matrix onto
〈C〉⊥. Then, since CTC = I, we may express µ̂ as

µ̂ = sFP⊥Cy + FPCdF, (14)

where dF = F−1Cd = (I+αLLG)Cd is the high-quality traffic estimates, d, filtered
by the Laplacian matrix.

The challenge is that the estimates for s and µ are not decoupled. We will there-
fore estimate s and µ by alternating between estimating s using the previous es-
timate of µ and estimating µ using the previous estimate of s. We initialize this
estimation procedure by setting s = 0 at the first iteration.

Please note that because of the scale factor s, the traffic estimates µ will be
calibrated towards the unit of the high-quality traffic estimates, d. If these estimates
are AADT estimates, the unit of µ will also become AADT estimates.

The regularization parameter, α, is determined by cross-validation. For a given
α, we subsequently remove one of the high quality AADT estimates, and estimate
it from the graph denoising and aerial observations (Equation (14)). Then from all
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Number of Number of
identified vehicles detected vehicles Precision Recall

Number of driving vehicles 123 109 0.74 0.66
Number of parked vehicles 1 584 1 187 N/A N/A

Table 1.: Precision and recall for driving and parked vehicles for the 2012 dataset.

high quality observations, we compute the root mean squared error (RMSE). The α
with lowest RMSE is selected.

5. Results

5.1. Vehicle detection

To evaluate the performance of the Mask R-CNN based vehicle detection module,
we computed the precision and recall for the driving vehicles for the city center part
of the 2012 dataset (Table 1). In total 1707 vehicles were manually identified, and of
them 1296 were detected. Among the 123 driving vehicles, 81 of them were correctly
detected, 28 were parked vehicles falsely detected as driving, and 42 driving vehicles
were falsely detected as parked. This resulted in precision and recall values of 0.74
and 0.66, respectively.

In Figure 2 and Figure 3 the vehicle detection and assignment are displayed.
The detections from the neural network is described by the outline of the output
segmentation colored in red in Figure 2 (a) and Figure 3 (a).

The further assignment of the detected vehicles to a road segment is shown in
Figure 2 (c) and Figure 3 (c). Each vehicle is assigned to maximum one road segment:
the nearest. As described in Section 3.3 this assignment is restricted both with
regard to distance from road center line, vehicle to road angle and the FKB-veg
database. In Figure 2 (c) and Figure 3 (c) the road segments are represented by
the center line from the NVDB database. The road segments without any assigned
vehicles are represented with a gray color, whereas the road segments with assigned
vehicles are given an individual color which is also used to fill the assigned vehicle
representations. Vehicles that are not assigned to any road segments are left unfilled
and are only represented by their outline polygon.

The detected vehicles were only assigned to a road segment if the distance from
the center line was more than the estimated width of the road segment and the
angle difference between the vehicle and the nearest portion of the road segment
was less than 20◦. The width of the road segments were estimated in a generous
manner based on type of road (European, municipality, etc). In addition, the FKB-
veg database were used to remove vehicles assumed to be parked along the side of
the roads by shrinking the outline of the roads by 0.5 m and removing any vehicles
intersecting the outline.

The vehicle detection was performed both on a dataset from Narvik 2012 and
2017, which enabled the calculation of an average count, thereby increasing the
effective length of each road link by a factor of two. A heatmap of the resulting traffic
estimation is shown in Figure 4 where road links with relative high traffic estimate
is represented in dark red, whereas the low traffic road links are represented in a
blue color.

5.2. Annual average daily traffic estimation

In Figure 4 we show an overview of the estimated traffic based on only the aerial
images. The heatmap show that the traffic in the residential areas are quite low,
whereas much of the traffic is located along the main road through the middle of
the figure.

For the graph based processing the regularization parameter α was estimated to

9



(a)

(b)

(c)

Figure 2.: Vehicle detections, city centre of Narvik, 2012. (a) Detected vehicles ex-
tracted from the output of the instance segmentation module (red). (b) Road links
from the NVDB database represented by their center line (blue) and FKB-veg database
road polygon outline (black). (c) Road segments without any assigned vehicles are rep-
resented with a gray color, and road segments with assigned vehicles are colored with
an individual color which is also used to fill the assigned vehicles. Unfilled vehicles are
not assigned to any road segment.
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(a)

(b)

(c)

Figure 3.: Vehicle detections, zoom-in on some streets in Narvik, 2012. (a) Detected
vehicles extracted from the output of the instance segmentation module (red). (b)
Road links from the NVDB database represented by their center line (blue) and FKB-
veg database road polygon outline (black). (c) Road segments without any assigned
vehicles are represented with a gray color, and road segments with assigned vehicles
are colored with an individual color which is also used to fill the assigned vehicles.
Unfilled vehicles are not assigned to any road segment.
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Figure 4.: Overview of traffic estimation in city centre of Narvik before graph smooth-
ing. Road links with high amount of traffic are represented in red, whereas road links
with low traffic are given a blue color.

RMSE Average bias

Proposed method 2 279 -383
Graph filtering applied to high quality traffic estimates 2 284 -411
No graph processing, only traffic estimates from aerial images 6 214 -4 170

Table 2.: RMSE and bias of AADT estimates.

200. By comparing the RMSE and bias of the proposed scheme with a scheme using
only high-quality counts and graph processing, and a scheme using only traffic esti-
mates from aerial images we observe that the proposed scheme slightly outperform
the high-quality traffic estimates + graph processing scheme, and clearly outper-
form the traffic estimates based on aerial images only (Table 2). By performing a
20-fold cross validation on the high quality traffic counts we observe that the graph
processing provides much smoother AADT estimates compared to the traffic esti-
mates from aerial images only (Figure 5). The smoothing of AADT estimates are
also reflected in the estimated heatmap (Figure 6).

6. Discussion

In Figure 2 (a) and Figure 3 (a) the vehicle detection is shown for a downtown area
and a residential area in Narvik respectively. The vehicle detection performance of
the neural network is good. For instance, the network is able to detect several vehicles
located in shadows from buildings, a difficult task which often times even humans
will struggle with. However, this was an area that was observed to benefit from
the normalization with regard to road pixels (see. Section 3.1). In order to further
improve the detection rate of vehicles in the shadow, it would be advantageous to
have even more examples and variations in the training data. There are some vehicles
that are not detected, however considering that the network is tested on a dataset
not seen during training, the performance is satisfactory and the impact of these
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Figure 5.: AADT estimates using proposed method and 20-fold cross validation (red
curve), AADT estimates based on only aerial images (green curve), and corresponding
high-quality AADT estimates (blue curve).

false negatives are not the biggest concern. When it comes to false positives due to
parked vehicles along the street, those have proved much more difficult to avoid, an
error which may have a larger affect on the end result, especially in residential areas.
Most of the vehicles detected in Figure 3 (a) seem to be parked along side the road,
and thereby may be considered false detections.

In Figure 2 (b) and Figure 3 (b) both the FKB-veg road outlines (black) and the
road link center lines (blue) from the NVDB database are depicted. It is apparent
from these figures that the center line from the NVDB database are quite inaccurate,
whereas the road edge is fairly well represented by the FKB-veg database. Note for
instance in the lower part of Figure 3 (b) where the center line almost intersects
the black outline polygon. Hence, using the FKB-veg outlines for removal of parked
vehicles yields a significant improvement of the performance.

The mapping of detected vehicles to a road segment is shown in In Figure 2 (c)
and Figure 3 (c). The road link segments are represented by their center line and
segments with assigned vehicles are given a unique color, whereas segments without
any assigned vehicles are shown in grey. Vehicles assigned to a road segment are filled
with the same color as their respective road segment while unassigned vehicles are
left unfilled. The mapping is fairly good; there are some falsely unassigned vehicles
left of the roundabout in Figure 2 (c), however most of the vehicles seem to be
correctly classified as moving or parked. Since the traffic estimation is to be used for
distributing the total amount of traffic pollution, an important aspect is whether
the parked vehicles in the residential areas are successfully filtered. The amount of
parked vehicles in these areas are usually high while the amount of moving vehicles
is nearly zero. Hence, an unsuccessful filtering of these vehicles, would erroneously
shift the traffic distribution towards residential areas. In Figure 3 (c), the amount
of parked vehicles are high, however, with the use of the FKB-veg procedure only
one vehicle is assigned to a road link. By a visual inspection, this vehicle may very
well in fact be a moving vehicle.

For many road links the number of counted vehicles was zero. The reason for
this is that many of these road links are very short (only a few hundred metres),
and we only have a time series of two aerial images covering the city. Hence, a given
vehicle will only be visible in the road link for a short time period. There is also the
problem of extremely short road segments receiving a very high estimated traffic
measure based on a single assigned vehicle. Both of these issues would be improved
by using a larger time series allowing an averaging of these noisy results. In effect,
a larger time series would increase the length of each road segment and thereby
increase the observation time of each road link, which in turn is expected to yield
an improved quality of the aerial based traffic estimation.
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(a)

(b)

Figure 6.: Road links with high amount of traffic are represented in red, whereas road
links with low traffic are given in a purple color. (a) Overview of AADT per road link
in Narvik for ground-based measurements. (b) Overview of AADT per road link in
Narvik obtained using the proposed graph smoothing method.
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Graph smoothing was necessary in order to provide consistent AADT estimates
for the road network, in particular with only two aerial observations of each road
link. Without graph smoothing, the RMSE was much higher (Table 2), and the
AADT estimates varies substantially between two consecutive road links (Figure 5).
The noisiness of the aerial based AADT estimates resulted in a high value of the
regularization parameter α, which again resulted in very smooth graph estimates.

For our case, we observed that the impact of the aerial based traffic estimates was
minor (Table 2). This is related to the noisy observations from the aerial images,
which resulted in a very large regularization parameter α. By constraining the graph
output estimations on the high quality road link AADT estimates, the strong reg-
ularization of the graph resulted in that these AADT estimates had a huge impact
to the graph estimates on all the other road links.

In Larsen et al. Larsen, Haug, and Aldrin (2008), the authors investigated whether
traffic observations of only a few minutes were sufficient to obtain acceptable esti-
mates of the AADT. By simulating traffic counts at 5 min resolution from a set of
ground-based traffic stations, they showed even with limited data, valuable informa-
tion may be provided despite the uncertainty involved. For an urban environment,
with a road link length of 300 m and a speed limit of 30 km h−1, at least 5 aerial
images are needed to provide a 5 min measurement interval.

7. Conclusions

With the introduction of deep learning into remote sensing, we have demonstrated
that estimating AADT from VHR optical remote sensing images is possible. How-
ever, in order for this to be achievable there are some requirements: Firstly, a high
quality road mask (like our FKB-veg road mask) is necessary in order to separate
driving vehicles from parked ones. Secondly, depending on the length of the road
links, several remote sensing images are necessary in order to increase the observa-
tion time of each road link, and finally, graph smoothing is necessary in order to
obtain consistent and less noisy estimates across the road network. The advantage of
the proposed methodology is automatic AADT estimation from VHR optical remote
sensing images, which at the same time utilizes high-quality ground-based AADT
estimates for road links where such estimates exist.

For future work we will focus on further improve the separation of driving vehicles
from parked ones, and improving the graph processing by considering other data
distributions that are able to model zero-inflated observations.
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