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Abstract6

Rank histograms are popular tools for assessing the reliability of meteorological7

ensemble forecast systems. A reliable forecast system leads to a uniform rank his-8

togram, and deviations from uniformity can indicate miscalibrations. However, the9

ability to identify such deviations by visual inspection of rank histogram plots cru-10

cially depends on the number of bins chosen for the histogram. If too few bins are11

chosen, the rank histogram is likely to miss miscalibrations; if too many are cho-12

sen, even perfectly calibrated forecast systems can yield rank histograms that do not13

appear uniform. In this paper we address this trade-off and propose a method for14

choosing the number of bins for a rank histogram. The goal of our method is to select15
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a number of bins such that the intuitive decision whether a histogram is uniform or16

not is as close as possible to a formal statistical test. Our results indicate that it is17

often appropriate to choose fewer bins than the usual choice of ensemble size plus18

one, especially when the number of observations available for verification is small.19

Keywords: forecast verification, rank histograms, statistical testing20

1 Introduction21

Rank histograms are widely used diagnostic tools for calibration assessment of forecasts22

in meteorology. The underlying idea to consider the rank of the observation within a23

predictive ensemble was proposed independently by Anderson (1996), Hamill and Colucci24

(1997) and Talagrand et al. (1997). If the prediction system is well-calibrated (or reliable),25

the rank of the observation within the ensemble is approximately uniformly distributed.26

Deviations from uniformity indicate different types of miscalibration, for example, sloped27

histograms indicate bias, and ∪- or ∩-shaped histograms indicate under- and overdispersion,28

respectively. Rank histograms were originally applied to univariate forecasts, however,29

several generalizations towards multivariate forecasts exist (Wilks, 2004; Thorarinsdottir30

et al., 2016; Ziegel and Gneiting, 2014).31

As pointed out by Wand (1997) in a different context, choosing the number of bins in32

a histogram is generally a trade-off: More bins lead to a more detailed histogram while33

also making it more susceptible to random fluctuations. In particular, when the available34

number of forecast-observation pairs is small, the appearance can change quite dramatically35

with different bin numbers, see Figure 1. The goal of this work is to address this trade-off36

and provide guidance regarding the choice of a bin size in a rank histogram. We focus on the37

case where only a relatively small number of forecast-observation pairs are available, say less38

than 200. In this case, too many bins can lead to an over-interpretation of the histogram’s39

appearance. This situation occurs, for example, frequently in seasonal forecasting where40
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variables are averaged over long time-spans, leading to a drastically reduced number of41

available observations, see Van Schaeybroeck and Vannitsem (2018).42

When an ensemble forecast with m ensemble members is considered, the observation43

rank can take values between 1 and m + 1. It is therefore intuitive and common practice44

to use m+ 1 bins for rank histograms, each bin corresponding to a single rank (e.g. Wilks45

(2019)). We show how to construct rank histograms with any bin number such that every46

bin accounts for the same number of ranks. This is necessary in order to address the above-47

mentioned trade-off, and useful in its own right. It can, for example, be quite difficult to48

compare histograms with different bin numbers. Therefore, when forecast systems with49

different ensemble sizes are compared, it is useful to choose the same bin number for all of50

them.51

Our approach to finding ‘good’ bin numbers acknowledges that rank histograms are first52

and foremost used for exploratory data analysis. They are typically generated and inspected53

by scientists who then intuitively decide whether they look sufficiently uniform or not.54

This implies, in particular, that good bin numbers are not an inherent statistical property55

of the data, but require assumptions on scientists’ intuitive decisions. We will assume56

that such decisions directly depend on the distance between the observed histogram and a57

perfectly flat histogram, and that larger distances are more likely to lead to a rejection. This58

constitutes a necessary oversimplification, which in particular does not take characteristic59

shapes such as slopes or ∪-shapes into account. An empirical study is conducted where60

several statisticians label more than 400 histograms as uniform or not, in order to assess61

to what extent our assumption is justified.62

Subject to this assumption, the bin number can be chosen to make the scientists’ de-63

cision approximate the decision of a formal statistical test for uniformity. The underlying64

intuition is that, when based on uniformly distributed data, histograms with fewer bins65

tend to look flatter than those with many bins. Therefore, reducing the number of bins re-66

duces the probability of an intuitive false reject (type I error). At the same time, it reduces67
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the amount of detail depicted by the histogram and therefore increases the probability of68

a false accept (type II error). In this sense the trade-off in choosing the number of bins di-69

rectly relates to the trade-off made in statistical testing when choosing a significance level,70

which balances the probabilities of the two types of errors. We formalize this intuitive link,71

which then allows us to associate a chosen number of bins with a probability for a false72

reject. Establishing this link requires the selection of a subjective ‘acceptance threshold’,73

indicating how large deviations from uniformity are deemed acceptable by the inspecting74

scientist. We use the results from our empirical study to provide approximations for the75

average scientists’ acceptance threshold.76

There are several different tests for uniformity that have been applied in the context of77

rank histograms. Besides the classical χ2-test, Delle Monache et al. (2006) considered a test78

based on the so-called reliability index, and Taillardat et al. (2016) used a test based on an79

entropy test statistic. These three tests have recently been compared by Wilks (2019). For80

all three of them, the test statistic can be interpreted as a distance between the observed81

and a perfectly flat histogram. This allows us to establish and analyze the above-mentioned82

link between the choice of bin number and a statistical test for any of the three tests.83

Given a significance level α and the number of available observations n, our methodology84

selects a bin number k such that, when inspecting a histogram with k bins, a scientists’85

intuitive decision closely approximates the test at significance level α. This bin number is86

in most cases similar (and often identical) for the three different tests, which provides a87

sanity check for our methodology: The selected bin number should lead to a false rejection88

by the scientist with probability α, regardless of the test used in the derivation.89

Our results show that when only few observations are available, even histograms with a90

moderate number of bins lead to high probabilities of an intuitive false reject. For example,91

when 100 observations are available, choosing more than 9 bins results in a probability of92

more than 33% of a false reject; for 60 available observations, this probability is exceeded93

when more than 6 bins are chosen.94
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Optimality criteria for histogram bin numbers and bin widths have been widely dis-95

cussed in the literature, see e.g. Scott (1979); He and Meeden (1997); Muto et al. (2019)96

and Knuth (2019). However, these criteria have generally been developed in a different97

context and under assumptions that make them inappropriate for rank histograms. They98

mostly focus on histograms as tools for estimating probability densities with the aim of99

finding the number of bins that minimizes a distance (often the mean integrated squared100

error) between the underlying density and the histogram of the data. In this context it is101

commonly assumed that the density is continuous and sufficiently smooth over an inter-102

val. Some early work even assumes approximately normally distributed data (Scott, 1979;103

Sturges, 1926). These assumptions are not met for rank histograms based on discrete data.104

Moreover, the vast majority of results derived in this strand of literature are of asymptotic105

nature and therefore assume n to be large, in contrast to our assumptions. Thirdly, the106

derived binnings are often data driven, i.e. the bin number depends on properties of the107

data beyond the sample size n, such as for example the sample variance. In the context108

of rank histograms, which are commonly used to compare different forecast systems this is109

not desirable as all the histograms should have the same number of bins.110

The remainder of the paper is organized as follows. In Section 2 we show how histograms111

with any bin number can be derived from an m-member ensemble forecast. Section 3112

describes the approach we take to relate the bin number to statistical tests. The optimal113

bin number requires the choice of a subjective acceptance threshold. In Section 4 we present114

an empirical study and use it to derive an approximation of this acceptance threshold. In115

Section 5 we use the developed algorithm to find good bin numbers for a range of different116

data sizes. Section 6 analyzes the rejection probability for histograms with the optimal bin117

number under non-uniform distributions. Section 7 provides a discussion of the results and118

Section 8 concludes.119
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2 Changing the bin number for rank histograms120

When computing rank histograms for an ensemble forecast with m members the observation121

ranks r1, ..., rn take values in {1, ...,m + 1}. Therefore, the default is to use a histogram122

with m + 1 bins, each bin containing the counts for one rank only. It is straightforward123

to instead generate a rank histogram with k < m + 1 bins, as long as k divides m + 1.124

Then, the first bin accounts for the first (m+ 1)/k ranks, and so on. However, this is quite125

restrictive, especially as m+ 1 is prime for some popular ensemble sizes such as 10, 30 and126

100. As argued in the introduction, free choice of the bin number k is desirable and we127

show in the following how this can be achieved.128

The problem that arises when k does not divide m + 1 is that some bins get assigned129

more ranks than others. Take the simple example of m = 2 where the observed ranks take130

the values 1, 2, 3, and assume we want to plot a histogram with only two bins. Then, the131

question arises whether the counts of rank 2 should be placed in the first or the second132

bin. Both options lead to skewed histograms even if the ranks are perfectly uniformly133

distributed. This issue can be resolved by randomization. For each count of rank 2 we134

simply flip a coin and place it in the first bin if the coin shows tails, and in the second bin135

otherwise. When moving beyond this simple example, the randomization becomes more136

involved, as it needs to account for the fraction of overlap between bins and ranks: Say,137

for example, we have ranks 1, ..., 5 and want to consider 4 bins, then the first bin should138

account for all counts of rank 1 and 1
4
− 1

5
= 1

20
th of the counts for the second bin. For each139

count of rank 2 we should, therefore, flip a ‘skewed’ coin showing heads with probability140

1/20, and place it in the first bin if heads comes up, and in the second bin otherwise.141

This procedure can be simplified as follows. Consider ranks r1, ..., rn ∈ {1, ...,m + 1}
and compute the transformed ranks

r̃i :=
ri − 1 + Ui

m+ 1
, (2.1)

where U1, ..., Un are independent random variables, uniformly distributed on the interval142
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[0,1]. The transformed ranks can take any value between 0 and 1, and we can now generate143

a histogram with any number of bins k in the usual way, i.e. the jth bin counts the number144

of transformed ranks in the interval [ j−1
k
, j
k
). The random variables Ui take the roles of the145

coinflips above, however, since they are uniformly distributed on [0,1] they automatically146

account for the fraction of overlap between the k bins and the m+ 1 ranks.147

The histogram of the modified ranks can be interpreted exactly as the original rank148

histogram. In fact, the randomization only has an effect if a bin number that does not149

divide m+ 1 is chosen, otherwise the two histograms are identical. After this replacement,150

histograms with any number of bins can be considered. Flatness is preserved and if the151

original ranks are uniformly distributed so are the transformed ranks. Note that this also152

allows us to consider histograms with more than m + 1 bins. If we, for example, consider153

k = 2(m + 1) bins, each count of rank 1 is simply assigned either to the first or to the154

second bin with equal probability.155

This randomization is closely related to randomized versions of the probability integral156

transform (PIT), see e.g. Smith (1985). When a probability forecast with distribution157

function F is issued and observation y materializes, the PIT simply considers F (y). If158

the forecast system is reliable and F is continuous, F (y) follows a uniform distribution.159

Therefore a histogram of F1(y1), ..., Fn(yn), for a sequence of observations and associated160

predictions, is a diagnostic tool for assessing the calibration of a probability forecast system,161

very similar to rank histograms for ensemble forecast systems. If the probability forecast162

F is not continuous, Smith (1985) suggested to modify the PIT by randomly filling in the163

jumps: That is, whenever the observation y is at a discontinuity of F , the PIT value F (y)164

is replaced by F−(y) + U(F+(y)− F−(y)), where F−(y) and F+(y) are respectively the left165

and right limits of F at y. This modification allows in particular to consider the PIT for166

ensemble forecast systems by interpreting the ensemble forecast as its empirical distribution167

(resulting in a discontinuous distribution function with m jumps). The resulting PIT168

histogram is then identical to the modified rank histogram suggested above.169
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As mentioned in the introduction, having with (2.1) a simple way of changing the170

number of bins in a histogram is useful in its own right. Especially when rank histograms171

are calculated on the same observations for competing forecast systems (with potentially172

different ensemble sizes), it is useful to make them comparable by creating histograms with173

the same bin number for both systems. Such a direct comparison can for example reveal174

if one of the two models is substantially more biased or underdispersed than the other.175

However, it is important to recognize that rank histograms are diagnostic tools and not176

designed for model comparison. As pointed out by Hamill (2001), flatness of histograms177

may result from mutual compensation between situations where the ensemble system is178

not reliable, and observed flatness must be interpreted with caution.179

3 Tests for uniformity depending on the bin number180

In this section we review three tests for uniformity of the distribution of observation ranks,181

and consider the number of bins as an additional parameter in the test. This will allow182

us to adjust the bin number such that the test is approximated by a scientists’ intuitive183

decision. It should be stressed that considering the bin number as a parameter is not184

useful from a data-analytic point of view: Reducing the number of bins by aggregating185

multiple observation ranks into the same bin constitutes a loss of information that generally186

reduces the power of a test for uniformity. Therefore, for assessing whether the observation187

ranks are uniformly distributed, statistical tests such as the χ2-test should be applied to188

the observation ranks directly, without aggregating them into fewer bins. Adjusting the189

number of bins used in a rank histogram is mostly relevant when histograms are used for190

intuitive inspection, i.e. as tools for visual diagnostics.191

The three tests we consider are the classical χ2-test, a test based on the so-called192

reliability index (Delle Monache et al., 2006), and a test considered by Taillardat et al.193

(2016) based on an entropy statistic. We will refer to the latter two as RI-test and entropy194
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test, respectively. For their formal definition, as well as a comparison of their performance,195

we refer to Wilks (2019). The tests are conceptually similar in that the test statistic is196

always a distance between the observed histogram and a perfectly flat histogram. The197

hypothesis of uniformity is rejected when this distance exceeds a threshold value, which is198

determined by the significance level of the test. However, the tests differ in their definition199

of distance: the χ2-test is based on the L2-distance, the RI-test is based on the L1-distance,200

and the entropy test is based on the Kullback-Leibler-divergence.201

In our context, it is convenient to rescale histograms such that their domain is the

interval [0, 1] and integrate to a total area of one. In particular, we interpret rank histograms

as histograms for data points distributed in the interval [0, 1], with the transformation (2.1)

in mind. This simplifies notation greatly when considering different bin numbers for the

same underlying data. We generally denote the number of bins by k and the height of the

bins by h1, ..., hk. Consequently, the frequency of the observation falling into the jth bin is

hj/k, and for a perfectly flat histogram we have h1 = · · · = hk = 1. For a histogram Hk

with k bins we then consider the three test statistics, or distances,

DL2 :=
1

k

k∑
i=1

(hi − 1)2, DL1 :=
1

k

k∑
i=1

|hi − 1|, and DKL :=
1

k

k∑
i=1

hi log(hi),

where for DKL we follow the convention that 0 log(0) = 0. The first two are the L2-202

and L1-distance between Hk and a flat histogram, respectively. The third statistic is the203

Kullback-Leibler divergence from P (Hk) to U , where P (Hk) is the probability distribution204

defined by the bin frequencies of Hk, and U is the uniform distribution.205

For each of these distances, a statistical test is obtained for the null hypothesis that the

underlying data is uniformly distributed. That is, the null hypothesis is rejected if

D(Hk) > c(α, k, n), (3.1)

where α is the significance level of the test. The threshold c(α, k, n) is defined as the smallest206

value c satisfying P [D(Hk) > c] ≤ α, when Hk is a histogram (with k bins) generated from207
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n independent uniformly distributed random variables. If we choose D = DL2 , we recover208

the classical χ2-test, for D = DL1 we obtain the RI-test from Delle Monache et al. (2006),209

and, for D = DKL, the entropy test from Taillardat et al. (2016).210

We now aim to choose the bin number k such that a scientist’s intuitive decision ap-211

proximates such a formal statistical test. To this end we make the following assumption,212

for all three distances, i.e. D ∈ {DL2 , DL1 , DKL} :213

(A) There is an ‘acceptance threshold’ cacc such that the scientist’s intuitive decision is214

well-approximated by rejecting whenever D(Hk) > cacc. The acceptance threshold215

may depend on the chosen distance D.216

Note that this assumption can be satisfied to different degrees for the different distances.217

It is, for example, possible that the use of an acceptance threshold constitutes a decent218

approximation to human behavior for D = DL2 , but not for D = DL1 . To what extent this219

assumption is satisfied by the different distances is assessed in the next section, where we220

also use the results of an empirical study to derive reasonable values for cacc.221

Subject to Assumption (A) being satisfied for one of the three distances D0, we can222

choose the bin number such that the scientist’s intuitive decision approximates the formal223

test based on D0. To this end, we choose a bin number k such that cacc ≈ c(α, k, n) from224

equation (3.1). Then, by Assumption (A), the scientist’s decision is close to the statistical225

test. The derived bin number then depends on the number of available observations n226

and on the significance level α of the test that is approximated. For a fixed number of227

observations n, the threshold c(α, k, n) is generally increasing in k and decreasing in α,228

see Section 5. Consequently, if α is chosen small, k needs to be chosen small as well in229

order to achieve cacc ≈ c(α, k, n). This is intuitive, since for a small significance level only230

a small probability of a false reject is allowed. Reducing the bin number generally leads231

to flatter histograms if the underlying data is uniformly distributed, and therefore reduces232

the chance of an intuitive false reject by the scientist.233
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To sum up, in our proposed framework the optimal bin number kopt is the one that234

minimizes |c(α, k, n) − cacc|. It depends on the number of available observations n, the235

selected significance level α, and the acceptance threshold cacc. Such an optimal bin number236

can be derived for each of the three distances DL1 , DL2 and DKL. Subject to Assumption237

(A), selecting this number of bins ensures that scientists’ intuitive decisions are as close as238

possible to the statistical test associated with the corresponding distance.239

4 The acceptance threshold240

In this section we present the results of an empirical study assessing the validity of As-241

sumption (A) for the three different distances and derive approximations of the acceptance242

threshold. In this study several statisticians labeled histograms according to whether they243

believe them to be generated from uniform data or not. The histograms were in fact not244

based on underlying data at all, but were designed to have varying distances from uni-245

formity. Further details of the study design are given in the appendix. More than 15246

statisticians participated and 432 histograms were labeled.247

For D ∈ {DL2 , DL1 , DKL} we consider the binary classifier248

Cc(D(Hk)) =

accept if D(Hk) ≤ c,

reject if D(Hk) > c

and compare the decision of this classifier to the intuitive decisions made by the statisticians.249

For a range of different c, we compute the misclassification rate of Cc, i.e. the proportion250

of cases where Cc decided differently than the statistician. The value c minimizing the251

misclassification rate then constitutes a good choice for cacc, and the misclassification rate252

at this value provides a measure for the extent to which Assumption (A) is satisfied. The253

results for all three distances are shown in Figure 2. The lowest overall misclassification254

rate of 0.2 is achieved for D = DL2 and c = 0.1. In other words, rejecting a histogram255
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cacc mcr c− mcr c+ mcr

DL2 0.1 0.20 0.05 0.25 0.2 0.24

DL1 0.25 0.24 0.15 0.31 0.35 0.30

DKL 0.05 0.21 0.02 0.27 0.09 0.26

Table 1: The three different values cacc, c− and c+ considered as acceptance thresholds

in Section 5, and their corresponding misclassification rates. The value cacc is chosen to

minimize the misclassification rate (mcr).

whenever its L2-distance exceeded 0.1 led to the same decision as the intuitive labeling256

for 4 out of 5 histograms. For DKL a similarly small misclassification rate was achieved,257

whereas the misclassification rate for DL1 was slightly higher, see Table 1 for details.258

Different scientists have different preferences, and a histogram considered uniform by259

an optimist might be rejected by a pessimist. For the analysis in our next section we260

will therefore consider three different acceptance thresholds. The threshold minimizing the261

misclassification rate cacc, which provides the best fit to the results of our empirical study,262

as well as thresholds c− and c+, representing a pessimist and an optimist, respectively. For263

all three distances, c− and c+ were chosen such that the misclassification rate of Cc with264

respect to our study results was approximately 5% higher than for cacc. The acceptance265

thresholds for the different distances and their corresponding misclassification rates are266

given in Table 1.267

In practice, the decision of an expert to accept or reject can depend on an interplay268

between a distance from uniformity and the number of bins k. For example, an L1-distance269

of 0.25 for a histogram with 2 bins may be perceived as uniform, while the same distance270

of a histogram with 10 bins may be perceived as unacceptable. Such effects are unwanted271

in our context, since they are not accounted for by Assumption (A). In order to control for272

this effect, the 432 histograms labeled in the study had different bin numbers, namely 5,6,8,273
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or 10 bins. Figure 3 shows the acceptance rate of the scientists as a function of D(Hk),274

for all three distances, and for each bin number k separately. The figures suggest that,275

at the same distance from uniformity, histograms with fewer bins tend to have a slightly276

higher acceptance rate. This is also supported by the correlation between bin number and277

scientist’s decision, which was -0.16 if acceptance by the scientist got assigned the value 1278

and rejection got assigned the value 0. This effect is particularly clear for large values of279

DL2 and DKL and for 5 bins. An explanation for this could be that both DL2 and DKL put280

a higher penalty on outlier-bins than DL1 , which could indicate that the labeling scientists281

found outlier-bins more likely to occur when few bins were used. Overall, however, the282

effect of the bin number on the decision is small compared to the effect of the distance.283

5 Results284

Here we present optimal bin numbers for a range of significance levels α and sample sizes285

n. As argued in the introduction, the results are mostly relevant for small data sizes n,286

and we restrict our analysis to n ≤ 200. We compute the optimal bin number for all three287

distances and the acceptance thresholds c−, cacc and c+ given in Table 1. For α we consider288

the classical choice of 5%, as well as the more relaxed choices α = 10% and α = 33%. While289

in most scenarios a statistical test with a false rejection probability of 33% is rather useless,290

such a threshold is not unreasonable in our informal setting where the test is approximated291

by scientists’ intuitive decisions.292

For given values of n, α, c and any of the distances DL2 , DL1 , DKL, the optimal number k293

is then derived as follows. For all k in the range k = 2, ..., 12 we compute c(α, k, n) from (3.1)294

and choose k such that |c(α, k, n)−c| is minimized. For the derivation of c(α, k, n) we do not295

rely on closed-form formulas (as in the original formulations of the tests), but use Monte-296

Carlo approximation with N = 1.000.000 samples. To be precise, we generate histograms297

H1, ..., HN with k bins, each of which is based on n independent uniformly distributed data298
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points on [0, 1]. For each histogram we compute D(Hk) and obtain c(α, k, n) as the minimal299

value such that the fraction of histograms with D(Hk) > c(α, k, n) is smaller or equal to α.300

The results are presented in Figure 4. It is clear to see that the bin number tends301

to increase in the sample size n which is intuitive, since larger values of n reduce the302

sample variability and therefore allow for separating the data into more bins. This effect303

is, nevertheless, remarkable since it is not obvious from the way the optimal bin number is304

derived. Indeed, the occasional dips of the red curves in Figure 4 show that the increasing305

behavior in n constitutes a tendency rather than a mathematical necessity. The increasing306

behavior can be explained by properties of the three distances used in the derivation. When307

the underlying data is uniformly distributed, the distance from uniformity of a histogram308

with fixed bin number k tends to decrease when the number of data points n increases. On309

the other hand, the distance from uniformity tends to increase if the number of bins k is310

increased for a fixed sample size n. While this behavior is not directly shown in the figure,311

it implies that larger sample size n is balanced by larger k, in order to keep the probability312

that the distance from uniformity exceeds the acceptance threshold at approximately α,313

and therefore that the optimal bin number tends to increase in n.314

The results differ strongly between the different acceptance thresholds c−, cacc and315

c+, highlighting that the optimal bin number depends substantially on the preferences of316

the inspecting scientist. We will focus on the results for cacc, which provides the best317

approximation to our empirical study. Moreover, the study suggests that DL2 and DKL318

are better suited to approximate human behavior than DL1 , which suggests to focus on the319

results for these two distances. Furthermore, Wilks (2019) concludes from his comparative320

analysis of the three tests that ‘the traditional χ2 test is recommended as a consequence321

of its generally superior power, particularly for the underdispersed ensembles that are most322

commonly encountered, and the relative ease of obtaining the necessary critical values.’323

This suggests putting most emphasis on the bin numbers derived by using the L2-distance.324

There is remarkable similarity between the optimal bin numbers for DL2 and DKL when325
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c = cacc, which provides a sanity check for our approach: Even though the derivation of326

the optimal bin number is based on different test statistics for different distances, the goal327

remains the same. Namely, to find a bin number that leads to an intuitive rejection of328

histograms of uniform data with probability α.329

As we would expect, the bin number k increases not only in n but also in c and α.330

The increase in α highlights that, if one is willing to accept large probabilities of a false331

reject, one should consider rank histograms with many bins, since this also tends to increase332

the probability of a correct reject (the power of the associated test) when the data is not333

uniformly distributed. The variability in c mainly provides insight to what extent the334

results depend on the personal preferences of the scientist, but it should be mentioned that335

the selection of c− and c+ in Section 4 is rather arbitrary.336

Overall, the bin numbers suggested by this approach are relatively small, especially337

for small sample sizes n. For n = 100, our approach suggests to choose only 5 bins in338

order to approximate a conservative test with significance level of 5% (focusing on cacc339

and either DL2 or DKL). If we relax the significance level to 10% (33%), the algorithm340

selects 6 bins (9 bins) instead. In particular, if we have 100 forecast-observation pairs341

available, and we choose to print a histogram with 9 bins, we need to expect a roughly342

33% chance for an intuitive false reject if the ensemble forecast system is well-calibrated.343

If only 50 observations are available, the bin numbers drop to 2 (5%), 3 (10%) and 5344

(33%), respectively. Such bin numbers constitute a stark contrast to the common practice345

of choosing m+ 1 bins which typically results in 11 bins or more.346

Instead of focusing on the theoretically optimal number of bins, we may analyze the347

false rejection rate of the classifier Cc as a function of the bin number k. Figure 5 shows348

the results for the bin numbers k = 4, 6, 8 and 10. Again, we observe that the differences349

between the distances DL2 , DL1 and DKL are small. Especially for the pessimistic threshold350

c− the false rejection probabilities are very large, even for small number of bins. This can be351

interpreted as a warning not to be too pessimistic when visually inspecting rank histograms352
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based on few observations, but rather acknowledge that the natural variability is likely to353

result in histograms that may not look approximately flat, even when the underlying data354

is uniformly distributed.355

6 Rejection probabilities under non-uniform distribu-356

tions357

In this section we analyze the rejection probability of the considered tests under non-358

uniform distributions. We consider two distributions representing the most prominent359

characteristic shapes that are important in rank histogram analysis. The first distribution360

is sloped, with a density linearly increasing from 2/3 at 0 to 4/3 at 1, representing rank361

histograms based on a biased prediction system. The second distribution is U-shaped362

representing rank histograms based on an underdispersed prediction system. The U-shaped363

distribution has density f(x) = 3(x − 1/2)2 + 3/4, which is symmetric around 1/2 where364

it reaches its minimum value of 3/4. Figure 6 shows histograms of the two distributions365

based on 200.000 samples.366

We obtain rejection probabilities for the three distributions by generating, for a range367

of n and k, 1000 histograms with k bins based on n data points with the corresponding368

distribution, and computing the distances DL1 , DL2 and DKL for these histograms. The369

rejection probability for one of these distances and a given acceptance threshold c is then370

the fraction of histograms for which the distance exceeds c. As acceptance thresholds we371

consider the three values c−, cacc and c+ specified in Table 1. Figure 7 shows the rejection372

probabilities for these acceptance thresholds under the three distributions, for a range of373

bin numbers and sample sizes. The figure only shows the results for the L2-distance, the374

other distances lead to very similar results (not shown). Generally, the rejection probability375

increases in the bin number, showing that histograms based on more bins tend to have a376
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higher distance from uniformity under all three considered distributions. The uniform377

distribution gets rejected with the lowest probability, which indicates that the considered378

tests are unbiased. However, when k = 2, the U-shaped histogram gets rejected with the379

same probability. This highlights that histograms based on two bins are essentially useless380

in practice, since they cannot indicate misspecified dispersion in the ensemble forecast381

system.382

The figure clearly visualizes the trade-off that is made in choosing the number of bins:383

While a low rejection probability is desirable when the data is uniformly distributed, high384

rejection probabilities are desirable for the two alternative distributions. Figure 7 shows385

that using c+ generally leads to very low rejection probabilities, even for non-uniform386

data. The pessimistic threshold c−, on the other hand, generally leads to much lower387

rejection probabilities for uniformly distributed data than for data generated from the388

alternative distributions. However, the probability for a false reject is generally very large389

when c− is used, for example it is more than 75% when 12 bins are chosen, even for390

n = 180. The threshold cacc suggested by our empirical study leads to a large difference391

in acceptance probabilities between uniform and non-uniform distributions and, at the392

same time, allows for reasonably small false rejection probabilities. It can generally be393

observed that the differences in rejection probabilities between uniform and non-uniform394

distribution are getting more clearly pronounced as n increases. This highlights the fact395

that with more available data it becomes easier to differentiate between uniform and non-396

uniform distributions. It is also worth mentioning that the optimist’s acceptance threshold397

c+ performs reasonable well for n < 100. Consequently, for very small n, one should be398

careful not to expect too uniform histograms.399

Figure 8 shows the rejection probability for the three distributions when the optimal400

bin number is used. Here, the optimal bin number is derived using the L2-distance, the401

acceptance threshold cacc and the significance level α = 5%. The significance level is shown402

in the figure as dashed line. The plot in the middle shows that the bin number is selected in403
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order to align the blue line with the 5% significance level. Note that approximately n = 40404

is required in order to achieve a false rejection rate of only 5%, even when only two bins405

are used. The left hand side and right hand side plot show the rejection probabilities for406

pessimist and optimist, respectively, when they inspect histograms based on the optimal407

number of bins derived with the acceptance threshold cacc.408

7 Discussion409

Our study indicates that, when visually inspecting forecast calibration with rank his-410

tograms, choosing a small number of bins can substantially lower the risk of wrongfully411

rejecting the hypothesis that the underlying data is uniform.412

In practice, rank histograms are applied to identify characteristic shapes indicating413

certain miscalibrations of the ensemble forecast. This has several implications. The most414

common characteristic shapes in the appearance of rank histograms are slopes (indicating415

bias) as well as ∪- and ∩-shapes (indicating under- and overdispersion, respectively). In416

particular, it is never advisable to only use two bins (as our approach suggests in some417

cases for very small sample sizes), since such a histogram is unable to pick up on dispersion418

misspecification. At the same time, these simple shapes are equally well captured by a419

histogram with three bins than by histograms with many bins. More involved characteristic420

shapes (e.g. S-shapes) can indicate misspecified skewness or combinations of bias and421

misspecified dispersion. However, they often require a large sample size n to become clearly422

visible, see Thorarinsdottir and Schuhen (2018). Such shapes are generally captured by423

histograms with six or eight bins, and it is difficult to imagine any informative characteristic424

shape that would require more than 10 bins in order to become visible. On the contrary, our425

results indicate that increasing the bin number puts more emphasis on random fluctuations426

in the data which can distract from characteristic shapes. Based on these considerations427

we recommend to generally limit the number of bins in histograms to about 10. When the428
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number of available forecast-observation pairs is limited one should not hesitate to consider429

histograms with fewer bins. Histograms with three bins might look somewhat unusual, but430

may be more appropriate when n is very small in order to mitigate effects of sampling431

uncertainty.432

At the same time, choosing a very small number of bins increases the risk of not rec-433

ognizing deviations from uniformity, as shown in Section 6. Moreover, in situations where434

the size of the verification data set is not known to the inspector, a larger number of bins435

can help the inspector to estimate how many forecast-observation-pairs were used and thus436

to avoid false acceptance or rejection of uniformity.437

We assumed throughout this paper that the ranks of the different forecast-observation-438

pairs are independent. This assumption is commonly made when rank histograms are439

constructed, but is violated in some applications, in particular when multiple spatial grid440

points are considered as samples. Such complex dependence structure can make the his-441

togram much harder to interpret and, in particular, prevent formal testing for uniformity.442

See Hamill (2001) for an in-depth discussion of this topic.443

8 Conclusion444

We introduce a criterion for choosing the number of bins in a rank histogram. The crite-445

rion attempts to make the intuitive decision of scientists regarding calibration close to a446

statistical test. It addresses the trade-off that adding more bins leads to a more detailed447

histogram but at the same time decreases statistical robustness, and attempts to optimize448

intuitive decision making based on the histogram. Our results highlight that the probability449

for intuitively rejecting a histogram tends to increase with the number of bins, even if the450

underlying data is uniformly distributed. This generally questions the current practice of451

choosing as many bins as possible. We showed that reducing the bin number can, to some452

extent, be used to appropriately balance the probability of an intuitive false reject, which453
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also depends on the sample size n. This probability further depends on the preferences454

and experience level of the inspecting scientist. The bin numbers derived in the previous455

section are therefore merely suggestions based on our empirical study and do not constitute456

theoretical optima that ought to be followed under all circumstances.457

Our results indicate that, especially for small verification samples with less than 100458

data points, histograms with five bins or fewer are preferable. If histograms with more bins459

are considered, their appearance should not be over-interpreted, and rather large deviations460

from flatness should be expected, even for histograms based on uniformly distributed data.461

Moreover, for very small sample sizes of 50 or less, the probability for an intuitive false462

reject is generally rather large (often 50% or higher), for any reasonable bin number (k > 2).463

This highlights the large uncertainty associated with such small sample sizes and shows464

that rank histograms should in such situations be interpreted very carefully. Generally, and465

particularly in this case, rank histogram analysis should rely on the results of statistical tests466

for uniformity rather than on intuitive inspection of the histogram plot. The importance of467

this is highlighted by our study that showed that intuitive decisions are strongly dependent468

on the selected number of bins, which is a property of the histogram plot only, not of the469

distribution of observation ranks in the predictive ensemble.470

This article is accompanied by the R-package RankHistBins which is available on the471

authors github account github.com/ClaudioHeinrich/RankHistBins. The package in-472

cludes functionality to generate histograms with any bin number from observed ranks473

using the transformation (2.1), and to compute the optimal bin number for any sample474

size n, acceptance threshold c and test size 1−α. Moreover, it provides tools and guidance475

that allow the reader to conduct the empirical study described in Section 4. By person-476

ally labeling histograms you can derive your personal acceptance threshold cacc, and derive477

optimal bin numbers for histograms inspected by yourself.478
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Appendix: Details on the Empirical Study479

Here we give more details about the design of the empirical study presented in Section 4.480

An early version of this paper only considered the L1-distance from uniformity. Therefore,481

the study originally focused on analyzing the effect of different L1-distances only. The482

analysis of L2-distance and Kullback-Leibler divergence was added later and not taken483

into account for study design. For the study, 1000 histograms were created with 5,6,8484

or 10 bins, and with L1-distance in {0.1, 0.15, ..., 0.45, 0.5, 0.6}. The histograms were not485

based on underlying data, but were sampled by an algorithm described below that allows486

to generate histograms with pre-specified number of bins and L1-distance. Considering487

4 different bin numbers and 10 different L1-distances resulted in 40 categories, for each488

of which 25 histograms were created. The created histograms were shuffled, printed out489

and laid out in the break room of the statistics and data science group of the Norwegian490

Computing Center in Oslo, Norway, with a call to the group to label as many histograms491

as possible. The participants labeled the histograms according to whether they believe492

them to be based on uniform data or not, and were left unaware that the histograms493

were not based on underlying data at all. The labeling of histograms was anonymous and494

participants could label as many histograms as they wanted. More than 15 Statisticians495

confirmed that they participated, and 432 out of the 1000 printed histograms were labeled.496

In all 40 categories the number of labeled histograms was between 7 and 16 (out of 25),497

except for one category where only three histograms were labeled. A detailed key of how498

many histograms were labeled in which category is shown in Figure 9.499

The following algorithm was used for creating a random histogram with pre-specified500

bin number k and L1-distance from uniformity D.501

1. Choose a number of steps n (in the study n = 50) for the algorithm. Start out with502

a perfectly uniform histogram with k bins. Mark all the bins with a 0.503

2. Randomly select one of the bins marked 0 or 1, and increase its height by Dk
2n

. If the504
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bin was marked 0, change its mark to 1.505

3. Randomly select one of the bins marked 0 or -1, and decrease its height by Dk
2n

. If the506

bin was marked 0, change its mark to -1.507

4. Repeat steps 2 and 3 in total n times.508

In this algorithm, both steps 2 and 3 increase the L1-distance from uniformity byD/2n, and,509

since they are both repeated n times, the final histogram has L1-distance from uniformityD.510

The marking is important to ensure that bins that have been increased (decreased) in height511

will only ever be increased (decreased), which ensures that the distance in fact increases in512

each step. The alternation between increasing and decreasing bin heights ensures that the513

total integral of the histogram remains 1. The algorithm needs an additionally constraint514

that prevents that bin heights are decreased beyond zero.515
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Figure 1: Three histograms based on the same data with different number of bins. The
data is a sample of 30 numbers, uniformly and independently distributed on [0,1]. The
middle plot shows an example for a distance from uniformity considered in this paper: The
size of the hatched area is the L1-distance DL1 between the considered histogram and a
perfectly flat histogram. Clearly, the distance varies with the number of bins.
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Figure 2: The misclassification rate of the binary classifier Cc for the three distances DL2 ,
DL1 and DKL, as a function of the acceptance threshold c. The low values all three curves
attain at their minimum indicate that the classifier Cc is a decent approximation for a
scientist’s intuitive decision, with DL2 and DKL providing slightly better approximations
than DL1 . The misclassification rate of DL1 is a step function due to the design of the
empirical study: In a first version of this paper only the L1-distance was considered, and the
participants were therefore presented histograms that were generated to have a predefined
L1-distance, namely {0.1,0.15,...}. The distances DL2 and DKL of the labeled histograms
were computed later on.
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Figure 3: The acceptance rate of the statisticians as a function of the distance, separately
for different bin numbers k. For DL1 and DL2 the histograms are aggregated over intervals
of length 0.1. As an example, the value shown at D = 0.2 is the acceptance rate over
all histograms with a distance in the interval (0.1, 0.2]. For DKL the same aggregation is
applied over intervals of length 0.05.
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Figure 4: The optimal bin number as a function of the data size n, for three different
significance levels α, and the three choices of acceptance threshold c, specified in Table 1.
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Figure 5: The probability of a false rejection as a function of the data size n, for k = 4, 6, 8
and 10 bins. Increasing the bin number leads to a higher probability for a false reject, but
at the same time increases the probability for a correct reject if the underlying data is not
uniformly distributed, cf. Figure 6.
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Figure 6: Histograms of the two non-uniform distributions considered in Section 6.
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Figure 7: Rejection probabilities for a range of n and k for the uniform distribution, and
the sloped and the U-shaped distribution described in Section 6. The results are only shown
for the test based on the L2-distance, and for the three acceptance thresholds c−, cacc, c+
given in Table 1.
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Figure 8: Rejection probabilities for a range of n when the optimal bin number is used.
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Figure 9: How many histograms (out of 25 possible) were labeled in each category in the
empirical study.
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