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Abstract
In many statistical regression and prediction problems, it is reasonable to assume
monotone relationships between certain predictor variables and the outcome. Ge-
nomic effects on phenotypes are for instance often assumed to be monotone. How-
ever, in some settings, it may be reasonable to assume a partially linear model,
where some of the covariates can be assumed to have a linear effect. One exam-
ple is a prediction model using both high-dimensional gene expression data, and
low-dimensional clinical data, or when combining continuous and categorical co-
variates. We study methods for fitting the partially linear monotone model, where
some covariates are assumed to have a linear effect on the response, and some are
assumed to have a monotone (potentially nonlinear) effect. Most existing methods
in the literature for fitting such models are subject to the limitation that they have
to be provided the monotonicity directions a priori for the different monotone ef-
fects. We here present methods for fitting partially linear monotone models which
perform both automatic variable selection, and monotonicity direction discovery.
The proposed methods perform comparably to, or better than, existing methods
for estimating the partially linear monotone model, in terms of estimation, pre-
diction, and variable selection performance, in simulations experiments in both
classical and high-dimensional data settings.
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1 Introduction
It is often reasonable to assume a monotone relationship between a predictor vari-
able and the response, especially in medicine and biology. For instance, genomic
effects on phenotypes are often assumed to be monotone [1, 2]. Dose-effect re-
lationships are also often assumed to be monotone [3]. Multivariate monotone
regression methods have recently been of great research interest, and some exam-
ples of methods developed are [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
see also [19] for an overview of such methods. Sometimes, it is reasonable to as-
sume monotone effects for some covariates, and linear effects for some covariates,
that is, a partially linear monotone model. Though the methods are able to esti-
mate linear effects also when they are specified as monotone, it is advantageous
to provide the method with all the prior information available, as a less flexible
method in general exhibits less variance. Frequentist methods that can be used to
fit partially linear monotone models are developed in [4, 5, 6, 7], and we will de-
note them by the cgam method, mboost method, scam method, and scar method,
respectively. Mboost [5], scam [6], and scar [7] rely on a priori information about
the monotonicity directions of the nonlinear effects, while cgam [4] can estimate
the monotonicity directions. In this paper, we extend the monotone splines lasso
method developed in [9] to the partially linear monotone setting. The proposed
new methods have the advantage that they perform automatic monotonicity direc-
tion discovery, and can be applied in the high-dimensional data setting, as well as
in standard, classical regression situations.

Let d1 be the number of covariates with linear effect on the response, d2 be the
number of covariates with nonlinear effect on the response, and n be the number
of observations. The partially linear model is given by

Y = Xβββ +
d2

∑
k=1

gk(Z(k))+εεε, (1.1)

where Y is the response variable, X denotes the n× d1 design matrix for the co-
variates assumed to potentially have a linear effect on the response, Z denotes the
n× d2 design matrix for the covariates assumed to potentially have a nonlinear
effect on the response, Z(k) is the kth column of Z, and g1,g2, . . . ,gd2 are un-
known smooth functions, assumed to have mean zero for unique identification of
the functions. In the partially linear monotone model, the functions g are assumed
to be monotone. The nonlinear functions in a partially linear model are commonly
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estimated by kernel regression, spline approximation, piecewise polynomials, or
local polynomials [20]. All the methods considered in this study rely on spline
approximations. More specifically, scar is based on step functions, scam relies on
P-splines, mboost combines P-splines with boosting, and cgam and the methods
proposed in this paper rely on I-splines.

In the low-dimensional setting, there are several methods which can fit par-
tially linear models without monotonicity constraints, and an overview can be
found in for instance [20]. Methods for fitting partially linear models in the high-
dimensional setting have also been developed, see for instance [21, 22, 23, 24, 25].
However, we will focus on the partially linear monotone model in this paper.

In recent years, exploiting gene expression data for prediction of clinical out-
comes has become immensely popular, see for instance [26, 27, 28, 29, 30]. This
requires methods which can handle high-dimensional data, where the number of
parameters exceeds the number of observations. Predictive modelling with use
of genomic data has however been subject to some criticism [31, 32], and it has
been suggested that including clinical covariates can improve the predictive per-
formance [33, 34, 35, 36, 37, 38]. The partially linear monotone model can be
used for this purpose. We know from the literature that genomic effects are typi-
cally modelled as general monotone functions, while the clinical variables can be
modelled as linear functions. The latter is particularly relevant when the clinical
covariates are categorical. In the high-dimensional data setting, mboost is the only
method existing for fitting partially linear monotone models. The application of
mboost to the high-dimensional setting was mentioned, but not carried out, in the
original proposing paper [5].

Another situation calling for the partially linear monotone model is when there
are some covariates for which one is particularly interested in inspecting the rela-
tionship with the outcome, and some variables which are less of interest, but that
one wishes to adjust for. Then the variables of greatest interest could enter the
monotone part of the model, while the remaining variables to adjust for could en-
ter the linear part. This could typically be the case with genomic data and clinical
covariates above.

As mentioned, most of the existing methods in the literature for fitting par-
tially linear monotone models assume correct information about the monotonicity
direction for each covariate. However, such information is not always available.
In particular, in a high-dimensional data setting, intuition about monotonicity di-
rections is difficult–imagine fixing the monotonicity direction for 20 000 different
genes. It can also be difficult to fix monotonicity directions in the classical setting,
in particular if there is strong collinearity between the variables. Both unmeasured
and measured confounders can affect the directions of the effects. In particular,
it might be that the direction of the effect is of key interest to the study, for in-
stance when testing the efficacy of a certain treatment. Our proposed methods and
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cgam are the only ones, to our knowledge, which can estimate the partially linear
monotone model without specifying the monotonicity directions. Moreover, in a
high-dimensional data setting, the methods presented in this paper are the only
methods which can estimate the monotonicity directions.

We propose two methods for fitting a partially linear monotone model, and ex-
tend them with an adaptive step. The methods build upon monotone splines lasso
[9]. Monotone splines lasso is a penalised regression method, with a specific type
of penalty term favouring monotone solutions. The first method proposed, which
we have named PLAMM-1, has a common penalty parameter for the linear and
the nonlinear monotone effects. The second method, named PLAMM-2, has two
separate penalty parameters. The idea behind using two separate penalty parame-
ters is to avoid the possibility that the clinical data, which typically contain more
information than genomic data, are not included in the final model, due to the
high-dimensionality of the genomic data, as discussed in [33, 39, 40]. These two
methods can be used in the high-dimensional setting as well as in the classical set-
ting. In the method with two penalty parameters, estimation has to be performed
iteratively.

The structure of the paper is as follows. We start by introducing the proposed
new methods, PLAMM-1 and PLAMM-2, in sections 2 and 3, respectively. We
then compare the performance of the methods to the existing methods in the lit-
erature, by assessing the estimation, selection, and prediction performances in
simulation experiments in both low- and high-dimensional settings, in section 4.
In section 5, the methods are applied to two medical data sets. We illustrate the
methods on a low-dimensional prostate cancer data set, with categorical variables
included in the linear part of the model, and continuous variables modelled as
monotone. We also apply the methods to a high-dimensional genomic dataset with
bone mineral density measurements as the response variable, assuming that the
clinical covariates have linear effects, and that the gene expressions have mono-
tone effects. We end with discussion and concluding remarks in section 6.

2 PLAMM-1
PLAMM-1 is a straightforward extension of monotone splines lasso [9] to the
partially linear setting. PLAMM-1 stands for partially linear additive monotone
method 1. The PLAMM-1 framework was also briefly sketched in [19], however,
the method was not explored in practice. The idea is to approximate the monotone
effects by I-splines, which are monotone spline basis functions, introduced in [18].

The I-spline approximations are given by

g̃ j(x) =
m

∑
k=1

γ jkI(l)k (x), (2.1)
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where g̃ j is a spline approximation of g j, I(l)k is an I-spline basis function of order
l, with corresponding coefficients γ jk, k = 1, . . . ,m, and m is the number of I-
splines used in the approximation. The number of basis splines is related to the
number of knots, K, as m = K + l. In this paper, we will for simplicity use I-
spline basis functions of order two and knots based on uniform quantiles. As
in [9], the I-spline basis functions are centred, to ensure unique identification of
the functions.

The I-splines are monotonically increasing, and hence the spline approxima-
tion for g j is monotone as long as all the basis coefficients are either nonnegative
or nonpositive. A cooperative lasso penalty [41] is used to favour sign-coherence
for the coefficients.

Let Z′ be the design matrix with the nonlinear explanatory variables, evaluated
in the I-spline basis. The dimension of Z′ is thus n ·md2, since there are d2 such
variables, and m spline basis functions per covariate. Further, let X′ = (X,Z′) be
the full design matrix, with the linear variables in X, and the nonlinear monotone
variables represented in the I-spline basis. The columns of X′ are thus grouped,
such that the first d1 columns consist of singleton groups, while the latter md2
columns are grouped into groups of size m, one per covariate. We let these
groups be denoted by G j, j = 1, . . . ,d1,d1 + 1, . . . ,d1 + d2. Let ϕϕϕ = (βββ ,γγγ) be
the corresponding vector of coefficients. We further use the notation ϕϕϕG j = β j for
j = 1, . . . ,d1 and ϕϕϕG j = (γ j1, . . . ,γ jm) for j = d1 + 1, . . . ,d1 + d2. The estimated
parameters for PLAMM-1 are then given by

ϕ̂ϕϕ = argminϕϕϕ ||y−X′ϕϕϕ ||22 +λ ||ϕϕϕ ||coop. (2.2)

The parameter λ is a tuning parameter controlling the regularisation, and can be
chosen by cross-validation. The cooperative penalty term is given by

||ϕϕϕ ||coop =
d1+d2

∑
j=1

w j

(
||ϕϕϕ+

G j
||2 + ||ϕϕϕ−

G j
||2
)
, (2.3)

where ϕϕϕ+
G j

= max(ϕϕϕG j ,0) and ϕϕϕ−
G j

= max(−ϕϕϕG j ,0). Note that the penalty term
corresponds to an L1 penalty for the linear covariates. As usual, the covariates are
assumed to be standardised, to avoid scaling dependency in the penalty terms.

Since the group sizes are not equal, we use weights w j on the penalty terms.
The standard group lasso weights are square root of group size. However, the
spline basis functions for each covariate are not independent, and hence the stan-
dard group lasso weights are not the most appropriate for this setting [42]. We
therefore let the weights be chosen by a (nested) cross-validation procedure. Hence,
w j = 1 for the linear covariates, and w j = mα for the nonlinear, monotone covari-
ates, where α is chosen by cross-validation.
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Since the cooperative lasso penalty has the variable selection property, PLAMM-
1 performs automatic variable selection in both the linear and nonlinear covariates.
The resulting estimated functions are not guaranteed to be monotone, but non-
monotone solutions are penalised more. While this can be seen as a limitation
of the method, as monotone solutions are sought, it makes the method more ro-
bust to violation of the monotonicity assumption. If nonmonotone solutions are
not accepted, the penalty parameter can be increased until a monotone solution is
obtained.

Like monotone splines lasso and lasso, PLAMM-1 can be extended by an
adaptive procedure. The adaptive version will in the following be denoted by
APLAMM-1. Let ϕ̂ϕϕ init

be the initial fit for the linear coefficients and the basis
coefficients. Then let

m j =

{
∞, if ||ϕ̂ϕϕ init

G j
||2 = 0,

1/||ϕ̂ϕϕ init
G j

||2, otherwise.
(2.4)

The APLAMM-1 solution is then given by

ϕ̂ϕϕ = argminϕϕϕ ||y−X′ϕϕϕ ||22 +λ
d1+d2

∑
j=1

m jw j

(
||ϕϕϕ+

G j
||2 + ||ϕϕϕ−

G j
||2
)
, (2.5)

where, for simplicity, we let w j be the same group size weights as for the initial
PLAMM-1 fit.

By assuming that the true, underlying g-functions can be represented exactly
as a linear combination of m I-spline basis functions, it follows directly from the
properties of cooperative lasso (and the monotone splines lasso) that PLAMM-1
is asymptotically unbiased, and has the property of exact support recovery, under
certain conditions provided in [41].

3 PLAMM-2
Though the parameter α of PLAMM-1 allows for different penalties on the linear
and nonlinear terms, an alternative and possibly more flexible method is obtained
with a separate penalty for the linear and the nonlinear terms. We call this method
PLAMM-2 (partially linear additive monotone method 2). For example in the
setting of including clinical covariates in the linear part, and genomic variables in
the nonlinear part, the genomic variables are typically of much higher dimension
than the clinical variables. By using two separate penalty parameters, the clinical
and high-dimensional covariates are handled in different ways, taking care of the
risk for the clinical predictors to disappear due to the vast amount of genomic
features, as discussed in [33, 39, 40].
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In order to perform variable selection, we use an L1 penalty on the linear
coefficients, and a cooperative lasso penalty on the basis coefficients. As will
become clear, the method is quite general, and could be used with other (or no)
penalties on the linear coefficients. The PLAMM-2 solution is given by

(β̂ββ , γ̂γγ) = argmin(βββ ,γγγ)||y−Xβββ −Z′γγγ||22 +λ1||βββ ||1 +λ2||γγγ||coop. (3.1)

The solution is found by an iterative scheme, similar to the approach of [22].

We start with an initial guess for βββ (e.g. zero), and denote it by β̂ββ
(0)

. We use β̂ββ
(k)

to find γ̂γγ(k+1) by

γ̂γγ(k+1) = argminγγγ ||y−Xβ̂ββ
(k)

−Z′γγγ||22 +λ2||γγγ||coop. (3.2)

Similarly, γ̂γγ(k+1) is used to find β̂ββ
(k+1)

, by

β̂ββ
(k+1)

= argminβββ ||y−Xβββ −Z′γ̂γγ(k+1)||22 +λ1||βββ ||1. (3.3)

The updating is repeated until convergence is reached in both β̂ββ and γ̂γγ , in terms of
change in the squared distance between the current and the previous estimate. The
optimal penalty parameters λ1 and λ2 are estimated for each iteration, by use of
cross-validation. We show convergence of the iterative algorithm for fixed penalty
parameters in the online supplementary information.

PLAMM-2 can easily be extended with an adaptive step, in the same manner
as e.g. PLAMM-1. We denote the adaptive PLAMM-2 method by APLAMM-2.

Let β̂ββ
init

and γ̂γγ init be the initial PLAMM-2 parameter estimates. Then let

m j =

{
∞, if |β̂ init

j |= 0,
1/|β̂ init

j |, otherwise,
(3.4)

for j = 1, . . . ,d1, and

m j =

{
∞, if ||γ̂γγ init

G j
||2 = 0,

1/||γ̂γγ init
G j

||2, otherwise,
(3.5)

for j = d1 +1, . . . ,d1 +d2, where γγγG j = (γ j1, . . . ,γ jm).
The APLAMM-2 solution is given by

(β̂ββ , γ̂γγ) = argmin(βββ ,γγγ)||y−Xβββ −Z′γγγ||22 +λ1

d1

∑
j=1

m j|β j|+λ2

d1+d2

∑
j=d1+1

m j(||γγγ+G j
||2 + ||γγγ−G j

||2).(3.6)

This is solved by an iterative scheme, similar to the nonadaptive method.
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4 Simulation experiments
To assess the estimation, prediction, and variable selection performance of the
proposed methods, we perform simulation experiments in different settings. The
simulation set-up is similar to the set-up in [43, 9, 19]. We will study the perfor-
mance in both low-dimensional and high-dimensional settings, with both depen-
dent and independent covariates, varying the amount of noise. We are interested
in the variable selection performance of the methods, and we thus also include
some noise covariates in all but one setting. Though variable selection may be
most important in high-dimensional data settings, parsimonious models can also
be attractive in the classical setting, as they are easier to interpret [44, 45].

The true model is the same in all simulation settings, given by

yi = β1xi1 +β2xi2 +β3xi3 +β4xi4 +g1(zi1)+g2(zi2)+g3(zi3)+g4(zi4)+ εi (4.1)

where εi ∼ N(0,σ2), and σ is chosen to control the signal to noise-ratio (SNR),
that is, the ratio between the standard deviation of the signal and σ .

We let the true linear coefficients be (β1,β2,β3,β4) = (2,2,−2,−2). The
monotone functions are the same as in [9], and are given as

g1(x) =−exp(x2), g2(x) =− log(x+0.1), (4.2)

g3(x) = 2tanh(20x2)+0.5exp(x3), g4(x) =
2exp(10x−5)

1+ exp(10x−5)
.

The g-functions are centred.
We let

xi j =
wi j + tui

1+ t
, zi j =

ai j + tui

1+ t
for j = 1, . . . ,4, (4.3)

xi j =
wi j + tvi

1+ t
, zi j =

ai j + tvi

1+ t
for j = 5, . . . ,d2,

where ui, vi, wi j, and ai j are drawn from a truncated normal distribution with mean
0.5 and standard deviation 1. The variable t controls the correlation between the
covariates, and they are independent for t = 0. We will also work with t = 1,
corresponding to a within-set correlation of 0.5, in the set of signal covariates and
that of noise covariates. We vary the amount of noise covariates such that d1 = 4,
10 or 100, and d2 = 4, 10, 100 or 500. We consider n = 50 and n = 80, and an
SNR of 2 or 4.

We compute the mean squared error for the estimated functions for the dif-
ferent methods, by the distance between the true function and the estimated func-
tion in the observation points. We also compute the prediction error. This is
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done by generating 500 new observations from the true model, predict their val-
ues based on the estimated models with the different methods, and measure the
mean squared distance between the true values and the predicted values. In addi-
tion, the methods are compared through the estimation of the linear coefficients,
the number of true positives, and the number of false positives, where applicable.
We simulate 100 times and draw different random variables in each simulation.
We report averages over the 100 simulations.

4.1 Compared methods and parameter choices
The new methods PLAMM-1, PLAMM-2, APLAMM-1, and APLAMM-2 are
compared to the appropriate existing methods for the different settings. In the
low-dimensional setting without any noise covariates, the methods are compared
to cgam, scam, scar, and mboost, using the R-packages cgam, scam, scar, and
mboost. Cgam has an option of variable selection discovery for each covariate,
and we include this option, in order to compare the variable selection performance.
In the low-dimensional settings with noise covariates, the methods are compared
to cgam, scam, and mboost. Scar cannot be used in this setting, as it requires the
user to specify monotonicity directions for all the nonlinear covariates, and we do
not know which directions to put on the noise covariates. For scam and mboost,
this is solved by not imposing monotonicity restrictions on the noise covariates.
We let cgam select the monotonicity direction for each nonlinear covariate. Fi-
nally, in the high-dimensional setting, the methods are compared to mboost. Both
our proposed methods and mboost perform automatic variable selection.

The tuning parameters of PLAMM-1, APLAMM-1, PLAMM-2, and APLAMM-
2 are chosen by 10-fold cross-validation. The group penalty parameter α is chosen
by a nested cross-validation procedure using a coarse grid-search for values in the
range from 0.5 to 2.0, with increment 0.25. Applying the different methods re-
quires different choices, and we refer to [4, 46] for details on cgam, [6] for details
on scam, [5] for details on mboost, and [7] for details on scar. We use the default
number of knots for cgam, of the order n1/7, and equal spacing (default option).
The penalty parameter of scam is chosen by the default GCV-option. For scam,
it is in general recommended to use a large number of knots, and let the penalty
smooth the fitted functions to avoid overfitting. However, we easily run into the
problem of having too many parameters compared to observations, hence we use
15 interior knots in the setting with no noise covariates, 6 knots in the settings
with n = 80, and 4 interior knots in the setting with n = 50. For mboost, 10-fold
cross-validation is used as a stopping criterion for the boosting iterations, and a
maximum number of 20 interior knots is used. Scar has the advantage that there
are no tuning parameters or other method choices that have to be specified. Scam,
mboost, and scar are provided with the (correct) monotonicity directions for the
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true covariates.

4.2 Simulations in the low-dimensional data setting
4.2.1 No noise covariates

In the setting with no noise covariates, we also use independent covariates (t = 0),
SNR = 4, n = 80, and d1 = d2 = 4. The results are provided in Table 1. In
this simple setting, all the methods seem to perform well. For the estimation
errors for the monotone functions and the linear coefficients, scam and cgam have
the smallest estimation errors, however the errors for our four proposed methods
and mboost are only slightly higher. Regarding prediction performance, scam
and cgam again perform the best, while our proposed methods and mboost have
slightly higher prediction errors. None of the methods which perform variable
selection had any problems selecting all the variables in this setting. Scar was
clearly inferior to the other methods here.

4.2.2 Low-dimensional settings with noise covariates

We now consider different low-dimensional settings where d1 = d2 = 10, hence
there are six noise covariates in each group. The results with a strong signal (SNR
= 4), independent covariates and n = 80 are provided in Table 2. As expected,
all the methods perform worse when we include noise covariates. Our methods
have slightly lower estimation errors for the monotone functions than the other
methods, and the two adaptive versions perform the best. Scam and cgam perform
the best in estimating the linear coefficients, but APLAMM-1 and APLAMM-2
also perform well. Regarding prediction, APLAMM-1 performs the best among
all methods, and all the four proposed methods perform better than scam, mboost,
and cgam in this setting, but they only have slightly lower prediction errors. All
the methods select all the true variables. APLAMM-1 selects the fewest false
nonlinear covariates (i.e. noise covariates that are modelled as nonlinear), and
APLAMM-2 selects the fewest false linear covariates (i.e. noise covariates that
are modelled as linear). Mboost selects almost all the false nonlinear covariates.

The estimated functions for g3 and g4 are provided in s 1 and 2 for the differ-
ent methods. The monotone functions seem to be well-captured by the different
methods. It is difficult to visually judge the relative performances.
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Figure 1: Estimated functions for g3 with n = 80, d1 = d2 = 10, SNR ≈ 4 and
t = 0, for all the different methods. The true function is given in black.

12



0.0 0.2 0.4 0.6 0.8 1.0

−
1
.5

−
0
.5

0
.5

1
.5

x4

g
4

PLAMM−1

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.5

−
0
.5

0
.5

1
.5

x4

g
4

APLAMM−1

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.5

−
0
.5

0
.5

1
.5

x4

g
4

PLAMM−2

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.5

−
0
.5

0
.5

1
.5

x4

g
4

APLAMM−2

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.5

−
0
.5

0
.5

1
.5

x4

g
4

Scam

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.5

−
0
.5

0
.5

1
.5

x4

g
4

Mboost

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.5

−
0
.5

0
.5

1
.5

x4

g
4

Cgam

Figure 2: Estimated functions for g4 with n = 80, d1 = d2 = 10, SNR ≈ 4 and
t = 0, for all the different methods. The true function is given in black.
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Figure 3: Prediction errors for the different methods, in the setting with n = 80,
d1 = d2 = 10, SNR ≈ 4 and t = 0.

A box plot of the prediction error in this setting is given in Figure 3. Again,
we can see that the methods perform similarly. The four proposed methods have
slightly lower prediction errors than the other methods. Scam seems to be slightly
less stable (i.e. higher variance) than the other methods. A box plot with mean
squared errors for g1 and g2, and the estimated β1 and β3 for the different methods,
is provided in Figure 4. The methods perform similarly also in terms of estimation
error. Mboost seems to have larger estimation errors for the linear coefficients than
the other methods, while scam and cgam have the smallest estimation errors for
the linear coefficients.

Fewer observations We consider the more difficult problem of estimating the
model with only n = 50 observations, with SNR = 4 and t = 0. The results are
provided in Table 3. The estimation errors for the monotone functions are small-
est for PLAMM-1 and APLAMM-1. As before, scam and cgam perform the
best in estimating the linear coefficients, followed by APLAMM-1. APLAMM-
1 and PLAMM-1 perform the best in terms of prediction, and all the suggested
methods outperform scam. Mboost and cgam perform similarly to PLAMM-2
and APLAMM-2. In terms of selection, APLAMM-1 performs the best, while
mboost again selects almost all the false nonlinear covariates.

Dependent covariates We consider dependent covariates, that is, t = 1. The
results for the setting with n = 80, SNR = 4 and t = 1 are provided in Table 4.
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Figure 4: Mean squared errors for the estimated g1 and g2, and the estimated β1
and β3 for the different methods, in the setting with n= 80, d1 = d2 = 10, SNR≈ 4
and t = 0.
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APLAMM-1 obtains the smallest estimation errors for the monotone functions in
this setting. Cgam, mboost, and scam outperform PLAMM-2 and APLAMM-2
in estimation in this setting. For the linear coefficients, the estimates with scam
and cgam are closest to the true values, followed closely by the APLAMM-1
estimates. APLAMM-1 has the smallest prediction errors, and APLAMM-2 has
the largest prediction errors. APLAMM-1 selects all the true covariates, while
APLAMM-2 selects fewer true linear covariates in this setting. Mboost selects
almost all the false nonlinear covariates. APLAMM-1 selects the fewest false
nonlinear covariates, and APLAMM-2 selects the fewest false linear covariates.

Weak signal We explore the situation with more noise, that is, SNR = 2. The
results for the setting with n = 80, SNR = 2 and t = 0 are provided in Table 5.
The estimation errors for the nonlinear functions are similar for all the methods
in the setting with a weaker signal, and they are larger than for the other low-
dimensional settings considered. The lowest estimation errors for the nonlinear
functions were obtained with mboost. Cgam and scam again perform the best in
terms of estimating the linear coefficients, followed by APLAMM-2. None of the
methods perform particularly well in terms of prediction, but our proposed meth-
ods perform similarly, and better than cgam, scam, and mboost. All the methods
are good at selecting the true covariates. APLAMM-2 selects the fewest false
covariates, while mboost again selects almost all the false nonlinear covariates.

4.3 High-dimensional settings
We consider the performance of our proposed methods in three high-dimensional
data settings. The first one is n = 50, d1 = 100, d2 = 100, SNR = 4 and t = 0.
In the second setting, we assume more noise covariates in the nonlinear part, as
this is typically the setting when combining clinical data with molecular data, like
for instance gene expressions. Hence, for the second setting, all the variables are
the same as in the first high-dimensional setting, except d2, which is increased to
d2 = 500. The third example is the same as the second, but with more information,
increasing the number of observations to n = 100.

The results in the setting with d1 = d2 = 100 are given in Table 6. In terms of
estimation for both the monotone functions and the linear coefficients, APLAMM-
1 is clearly better than the other methods, and mboost is clearly inferior. APLAMM-
1 is also the best method in terms of prediction and selection. Mboost has the
largest prediction errors. Though APLAMM-1 selects fewer true covariates than
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PLAMM-1, the number of false positives is clearly reduced in the adaptive step.
The nonlinear covariates are clearly favoured for both PLAMM-2, APLAMM-2,
and mboost.

The results in the setting with d1 = 100 and d2 = 500 are given in Table 7. The
methods perform worse when including more noise covariates. In terms of selec-
tion, all the methods select too many false covariates in this setting. APLAMM-1
performs the best in terms of estimation of the linear coefficients, and APLAMM-
2 obtains the smallest estimation errors for the monotone functions. Mboost again
has the largest prediction errors, while PLAMM-1 obtains the lowest prediction
error in this setting.

By increasing the number of observations to 100, the methods perform a lot
better, see Table 8. All the methods perform well in selecting the true covariates in
this setting. APLAMM-1 performs the best in terms of selection and estimation.
APLAMM-1 also outperforms all the other methods in terms of prediction, while
APLAMM-2 has the largest prediction errors in this setting, and mboost performs
the second worst.

5 Medical data examples
We illustrate the methods on a low-dimensional data set on prostate cancer pa-
tients and on a high-dimensional bone mineral density data set. For technical
details on modelling choices and specifications, see section 5.3.

5.1 Low-dimensional data example: prostate cancer
We illustrate the methods on a low-dimensional data set on prostate cancer pa-
tients, previously analysed for instance in [47] and with lasso in [48], and origi-
nally published in [49]. The setting is quite simple, with a relatively large number
of observations compared to the number of covariates. The data contain measure-
ments of a prostate specific antigen, which is our response variable, for 97 men
who are having a radical prostatectomy. The available explanatory variables are
cancer volume, prostate weight, age, benign prostatic hyperplasia amount, capsu-
lar penetration, indicator of seminal vesicle invasion (svi), the Gleason score, and
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the percentage Gleason scores 4 or 5 (pgg45). The Gleason score is a categorical
variable. We categorise it into two groups, those with Gleason scores of 6, and
those with scores 7 or higher, as only a few patients had Gleason scores above
7. We let the categorical variables svi and Gleason score enter the linear part of
the model, and the continuous variables enter the monotone nonlinear part of the
model.

5.1.1 Results

The estimated effects of svi and Gleason score are provided in Table 9. The esti-
mates vary considerably for the different methods. For scam, the direction of the
effect of svi is opposite to that of the other methods, and hence likely incorrect, in
particular since it is reasonable to assume a positive effect of svi. For mboost, the
effect of Gleason is a lot smaller than for the other methods. Comparing with the
lasso analysis in [48], the Gleason score was not selected, while svi had a positive
estimated effect.

The estimated effects for the continuous predictors are provided in Figure 5.
Cancer volume and prostate weight are selected by all the methods, while age and
benign prostatic hyperplasia are only selected by cgam, scam, and mboost, and
pgg45 is only selected by scam and mboost. None of the methods estimated an
effect of capsular penetration. The estimated effect of cancer volume seems to be
largest for high and low cancer volume. Scam and cgam seem to be more sensitive
to influential observations than the other methods. Out of these continuous vari-
ables, the lasso variable selection [48] also ended up selecting only cancer volume
and prostate weight, in agreement with the new proposed methods. The directions
of the effects with lasso are also in agreement with the monotone methods.

5.1.2 Prediction performance

To assess the prediction performance of the methods on this data set, we randomly
split the data into a training and a test set, consisting of two-thirds and one-third of
the observations, respectively. We fit the model to the training set, and estimate its
prediction performance on the test set, in terms of mean squared prediction errors.
In order to avoid sensitivity to the particular training and test set split, we repeat
the procedure 50 times, and report the average prediction error. The monotonicity
direction estimation for mboost and scam is performed for every training set split,
and all the tuning parameters for the different methods are re-estimated.
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Figure 5: Estimated effects of the different explanatory variables selected by the
different methods, on log prostate specific antigen. The estimated α for PLAMM-
1 was 1.5.
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The prediction performances are also provided in Table 9. In general, the
methods seem to perform similarly to each other, but cgam obtained a larger pre-
diction error than the other methods. PLAMM-2 obtained the lowest prediction
error, and mboost performed second best.

5.2 High-dimensional data example: bone mineral density
We illustrate the methods using a bone mineral density data set from [50], con-
sisting of 84 menopausal women who have had a transiliacal bone biopsy. The
data consist of bone mineral density measurements, which is our response vari-
able, gene expressions, age, body mass index (BMI), parathyroid hormone values
(pth, measured in pmol/L), vitamin D values (measured in nmol/L), and carboxy-
terminal telopeptide of type 1 collagen (ctp, measured in µg/L), measured in blood
samples. For simplicity and computational efficiency, we only use the 1000 genes
with the largest variance in the analysis, based on the implicit assumption that
the response will vary the most with the genes that vary the most. The data also
contain other clinical measurements, but we have chosen these variables, as there
is only one missing observation, while the rest of the data have multiple miss-
ing values. We remove the one observation with missing data for these variables,
and work with 83 out of the 84 observations. We used DAVID bioinformatics
resources 6.8 [51] to get the gene names from the affymetrix IDs. For illustration,
we also compare with a linear lasso model. We let the clinical covariates enter the
linear part of the model, and the gene expression covariates enter the monotone
part of the model.

5.2.1 Results

The estimated parameters for the clinical variables are given in Table 10. BMI is
the only covariate which is selected by all the monotone methods, and it has a pos-
itive estimated effect, as expected. Age and pth are selected by all the monotone
methods except mboost, which only selects one linear covariate. The estimated
linear effects for PLAMM-1 and APLAMM-1 are much larger than the estimated
coefficients for the other methods. APLAMM-1 selected the fewest linear co-
variates among the new proposed methods. Lasso selected age, BMI, and pth,
while adaptive lasso, as mboost, only selected BMI. The estimated coefficients
with lasso are smaller than for the other methods.

All the methods estimated a sparse model, with relatively few genes selected,
out of the 1000 possible genes. PLAMM-1 selected the most genes, 15. PLAMM-
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2 selected 11, mboost selected 8, APLAMM-2 selected 7, and APLAMM-1 se-
lected 4. The selected genes and their effects are provided in Figures 6 and 7. The
total number of different genes selected by the methods is 20. Considering that
there were 1000 possible different genes, and that the gene expressions are corre-
lated, the set of selected genes were similar for the different methods. Eight genes
were only selected by one method. All the methods selected the genes SOST
and AFFX-M27830-M-AT (uncharacterised), and these genes were also found to
be important in [50]. COL3A1 is selected by all methods except mboost, and
PLGLB2 is selected by all methods except APLAMM-1. The effect of PLGLB2
is clearly nonlinear, and seems to have a threshold-type effect. Lasso selected 35
genes, and adaptive lasso selected 23, including most of the genes selected by the
different monotone methods.

5.2.2 Prediction performance

We also assess the prediction performance of the methods on the bone mineral
density data set in the same way as before, by randomly splitting the data in a
test and a training set, repeated 50 times, containing one-third and two-thirds of
the observations, respectively. The monotonicity direction estimation for mboost
is performed for every training set, and all the tuning parameters for the different
methods are re-estimated. The results are provided in Table 10. PLAMM-1 ob-
tained the smallest prediction errors, and PLAMM-2 performed second best. The
two adaptive methods performed the worst among the methods.

5.3 Modelling choices and specifications
For PLAMM-1, PLAMM-2, APLAMM-1, and APLAMM-2, we used 10-fold
cross-validation to estimate the penalty parameters, as in the simulations. The
penalty parameter α of PLAMM-2 was estimated by the same coarse grid search
as in the simulations, ranging between 0.5 and 2.0. We let cgam discover which
covariates should be included in the final model, and the monotonicity directions
for the nonlinear variables. For mboost and scam, we had to provide the mono-
tonicity directions for all the nonlinear variables. We did this by fitting an initial
ridge regression model with linear effects, and letting the monotonicity directions
correspond to the signs of the estimated linear coefficients. The default number
of equally spaced knots was used for cgam. 10-fold cross-validation was used as
a stopping criterion for the boosting iterations for mboost, and a maximum num-
ber of 20 interior knots was used. For scam, 10 interior knots were used, and the
penalty parameters were chosen by the default GCV option.
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Figure 6: Estimated effects on bone mineral density of the different genes selected
by the different methods. The estimated α for PLAMM-1 was 0.75.
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Figure 7: Estimated effects on bone mineral density of the different genes selected
by the different methods. The estimated α for PLAMM-1 was 0.75.
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6 Discussion
We have proposed four estimation methods for partially linear monotone mod-
els, all based on monotone splines lasso, combining I-splines with a cooperative
lasso penalty. We named the methods PLAMM-1, PLAMM-2, APLAMM-1, and
APLAMM-2.

PLAMM-1 has one common penalty parameter for the linear and the nonlin-
ear variables, but weighs the penalty with group size raised to the power α . The
parameter α is thus a tuning parameter which controls the relative penalty on the
monotone and linear effects. APLAMM-1 is the adaptive version of PLAMM-1.
PLAMM-2 instead uses two different penalty parameters on the linear and the
monotone covariates, and the estimation is performed iteratively. APLAMM-2 is
the adaptive version of PLAMM-2. PLAMM-2 is a more general method than
PLAMM-1, as it can be used with any type of penalty on the linear covariates,
while PLAMM-1 poses a cooperative penalty on the linear covariates, correspond-
ing to an L1 penalty for single covariates. Hence, for grouped linear covariates,
PLAMM-1 favours sign-coherence, through use of the cooperative lasso penalty.
PLAMM-2 can use any penalty desired, for instance group lasso. If the grouped
linear covariates are ordered categorical variables, then sign-coherence may be an
attractive property. This is also one of the original suggested application areas for
the cooperative lasso penalty, discussed in [41].

Our proposed methods perform automatic monotonicity direction discovery.
We often do not have prior information about the monotonicity directions of the
effects, especially in settings with strong collinearity or confounding variables.
There are no obvious ways in which to estimate monotonicity directions for meth-
ods which do not incorporate this. That is also why we, in our simulation ex-
periments, fitted the noise covariates without monotonicity restrictions for scam
and mboost. In our medical data example applications, we chose to let the mono-
tonicity directions be the directions from an initial ridge regression fit, assuming
a linear model, for the methods which cannot estimate the monotonicity direc-
tions. This might not be the optimal solution, and the success of this approach
is likely to depend on how much the true, underlying relationships deviate from
linear functions. Moreover, estimating the monotonicity directions and the model
in two separate steps complicates the understanding. For example, in the case of
mboost, we do not know whether a covariate was left out of the model because it
had no underlying relationship with the response, or whether it was because the
estimated monotonicity direction was incorrect. Hence, automatic monotonicity
direction discovery is a desirable and sometimes necessary property.

In a high-dimensional data setting, intuition about monotonicity directions is
even less likely to be available. Hence, the automatic monotonicity direction prop-
erty of our methods is particularly attractive in the high-dimensional settings. We
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find that our methods outperform mboost in selection, estimation, and prediction,
in simulation experiments in high-dimensional data settings, despite the fact that
mboost is provided with correct information about the monotonicity directions of
the effects. APLAMM-1 performs the overall best in the high-dimensional data
setting.

The methods are also compared to existing methods for estimating partially
linear monotone models in the classical setting. In a setting with no noise covari-
ates, the methods are compared to cgam, scam, scar, and mboost. In this simple
nonsparse setting, scam and cgam perform the best among the methods, however
our methods perform almost as well. We performed multiple simulations in sparse
settings with noise covariates. APLAMM-1 performed the overall best in these
settings in terms of prediction, selection, and estimation of the monotone effects.
Scam and cgam performed the best in terms of estimating the linear parameters.
Cgam was in general good at selecting the true covariates, but selected too many
false. Mboost tended to select many false covariates in the nonlinear part of the
model. Mboost, scam, and cgam are more general than our proposed methods,
as they allow other constraints than linear and monotonicity constraints. Hence,
if the underlying model assumption includes covariates which are assumed to be
nonmonotone, cgam, mboost or scam should be used instead.

Though we conclude that APLAMM-1 performs the overall best among the
methods, it was not obvious in all settings whether or not there was a benefit in
the adaptive step for both PLAMM-1 and PLAMM-2. For instance, the prediction
errors did not always decrease with the adaptive step. In particular, in the medical
data examples, the adaptive methods obtained larger prediction errors than their
nonadaptive counterparts. In terms of estimation, the adaptive step in general
improved the estimation for the linear coefficients, while the estimation errors for
the monotone functions did not improve with the adaptive step. In most settings,
the adaptive step improved the selection performance. However, there is a risk of
sacrificing some true positives in exchange for a (much greater) reduction in false
positives. It is not obvious how to determine the cost/loss of the trade-off between
true and false positives.

We have chosen to estimate the parameter α for PLAMM-1, and then use the
same α for APLAMM-1, in order to use as much of the information in the data as
possible to estimate the model. This is also the reason why we have chosen to use
a coarse grid search, instead of a finer grid. It would have been possible to also
estimate α separately for APLAMM-1 and/or use a finer grid, however it is not
obvious whether that would improve or worsen the performance.

Another potential tuning parameter is the number of knots for the different
methods. We have chosen to fix the number of knots. In general, the more knots,
the greater the flexibility of the estimated function, but the less information to esti-
mate each spline coefficient [18]. For I-splines, [18] argues that a great flexibility
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can be obtained with few knots, and that it is more important to estimate each ba-
sis spline well. For PLAMM-1, PLAMM-2, APLAMM-1, and APLAMM-2, we
have fixed the number of interior knots to six, and the cooperative lasso penalty
is used to avoid overfitting. For cgam, we have used the default number of knots,
which is n1/7. For scam, it is recommended to use a relatively large number of
knots, to avoid underfitting. We have therefore used a relatively large number
of knots for scam, compared to the number of observations. Overfitting is han-
dled by a smoothing penalty term. Mboost has an inbuilt automatic selection of
the number of knots. We could have estimated the number of knots for all the
methods, by minimising an estimate of the prediction error, for instance the cross-
validation error on the training set, as in [52]. However, again, it is not obvious
whether using more information in the data in the tuning procedure would lead
to a better or worse performance of the different methods. Moreover, [53] claims
that when there are shape constraints on the functions (e.g. monotonicity), then
the estimated functions are robust to the number of knots.

We illustrated the use of the methods on a low-dimensional prostate cancer
data set. We included categorical variables in the linear part of the model, and the
continuous variables as monotone. The setting was quite simple, with a relatively
large number of observations, compared to the number of predictors. Mboost
and cgam selected more covariates than PLAMM-1 and PLAMM-2, and hence a
denser model. In terms of prediction errors, the methods performed similarly in
this rather simple real data setting, but cgam obtained the largest prediction errors.
The methods were also tried out on a high-dimensional genomic data set, where
bone mineral density was modelled using a partially linear monotone model. Clin-
ical covariates were included in the linear part of the model, and gene expression
variables were assumed to have monotone effects. Mboost selected only one linear
covariate (BMI), which might be due to the high-dimensionality of the genomic
variables. This was also the case for the adaptive lasso. The problem of informa-
tive clinical covariates getting lost due to the high dimensionality of genomic data
was also discussed in [33, 39, 40]. An alternative way of combining clinical and
genomic data, is to first fit the model using only the clinical data, then use the ge-
nomic data to fit the residuals, as considered in [33, 39, 54, 40]. Comparing with
such an approach would have been an interesting option, in particular for mboost,
which only selected one linear covariate. PLAMM-1 and PLAMM-2 do not seem
to have this problem, which is likely due to different penalties on the linear and
the nonlinear covariates. This is more similar to the so-called ”favoring strategy”
considered in e.g. [33, 40], which was also used in [55], where our methods can
be seen as data-driven favouring strategies. Different penalties on the clinical and
genomic variables were also used in [36].

We have proven theoretical convergence of the iterative algorithm for the
PLAMM-2 method. The convergence criterion used in practice was that the
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squared distance between the estimated coefficients in two consecutive iterations
was smaller than a prespecified tolerance. We used a tolerance of 10−4 for the
simulation studies, and 10−3 for the medical data examples. However, in the
simulation experiments (but not in the medical data examples), we stopped the
algorithm after a maximum number (40) of iterations. In most of the settings
considered, PLAMM-2 converged in more than 90% of the simulations, before
reaching the maximum number of iterations. Our experience is that it normally
took less than ten iterations before the method converged. The convergence was
most difficult in the high-dimensional settings considered, which may partly be
due to the tolerance criterion, which is more difficult to reach the higher the di-
mension, and due to the high-dimensional data setting being more challenging.
We chose to include the results based on all the simulations, regardless of whether
the method converged or not. This was done because the method is still an ap-
proximation to the solution even if it had not converged, and in order to avoid
cherry picking settings that PLAMM-2 handles well.

We compared our methods to existing frequentist methods which can fit par-
tially linear monotone models. However, it should be noted that there exist also
Bayesian methods which are able to handle partially linear monotone models, see
for instance [11]. However, we have chosen to only compare our proposed meth-
ods to frequentist methods, as this seems most fair.

All the methods we have considered assume a priori knowledge of which co-
variates should be modelled as linear, and which should be included in the non-
linear part. However, such knowledge is not always available, in particular in the
high-dimensional data setting, as noted in [56]. There exist also methods which
can separate the covariates into linear and nonlinear effects, see [57] for a method
which can be used in the low-dimensional setting, and [56] and [58] for methods
which can be used in the high-dimensional setting. A topic for future work is thus
to extend the ideas of PLAMM-1 and PLAMM-2 to a method for separation into
linear and monotone covariates, which utilises the monotonicity property of the
functions.

In this paper, we have proposed two different methods for estimating a par-
tially linear monotone model, and extended them with an adaptive step. The
main advantage of our methods over existing methods in the literature, is that
they perform automatic monotonicity direction discovery, while most of the pre-
viously proposed methods have to be provided with (correct) information about
the monotonicity directions. In particular, our methods are the first which can
perform automatic monotonicity direction discovery in a high-dimensional data
setting. Out of the four proposed methods, APLAMM-1 performed the best, in
terms of prediction, estimation, and selection. APLAMM-1 outperformed the
existing methods in all but the simplest dense setting with no noise covariates.
Hence, we recommend using APLAMM-1 in all but the simplest settings where
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most of the variables are expected to be of relevance.

Implementations
The implementations of PLAMM-1 and PLAMM-2 are based on the implementa-
tion of monotone splines lasso, found at http://www.mn.uio.no/math/english/
people/aca/glad/r-scripts/mslasso/. It is based on the R-package scoop
for cooperative lasso [41], found at http://julien.cremeriefamily.info/
scoop. Our implementations of PLAMM-1 and PLAMM-2 can also be found
at https://www.mn.uio.no/math/english/people/aca/glad/r-scripts/
mslasso/.
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Table 1: True positives, mean squared prediction errors (PE), mean squared esti-
mation errors (MSE), and estimated linear parameters, for n = 80, d1 = d2 = 4,
SNR ≈ 4 and t = 0. PLAMM-1 selected an average α = 1.32 (0.48). Standard
deviations are given in parentheses. ”TPM” denotes true positives among the
monotone covariates, and ”TPL” denotes true positives among the linear covari-
ates.

Selection: TPM TPL PE
PLAMM-1 4.0 (0) 4.0 (0) 0.27 (0.055)
PLAMM-2 4.0 (0) 4.0 (0) 0.28 (0.068)
APLAMM-1 4.0 (0) 4.0 (0) 0.28 (0.055)
APLAMM-2 4.0 (0) 4.0 (0) 0.28 (0.068)
Cgam 4.0 (0) 4.0 (0) 0.25 (0.068)

Results provided correct monotonicity directions:

Scam – – 0.25 (0.041)
Scar – – 0.42 (0.24)
Mboost 4.0 (0) 4.0 (0) 0.26 (0.048)

MSE: g1 g2 g3 g4
PLAMM-1 0.0099 (0.0074) 0.012 (0.0078) 0.015 (0.0094) 0.013 (0.0086)
PLAMM-2 0.010 (0.0074) 0.012 (0.0081) 0.015 (0.0093) 0.012 (0.0093)
APLAMM-1 0.011 (0.0090) 0.013 (0.0091) 0.015 (0.0092) 0.014 (0.0091)
APLAMM-2 0.011 (0.0096) 0.013 (0.0098) 0.015 (0.0097) 0.014 (0.0096)
Cgam 0.011 (0.0075) 0.013 (0.0087) 0.013 (0.0080) 0.0099 (0.0078)

Results provided correct monotonicity directions:

Scam 0.011 (0.0091) 0.0099 (0.0086) 0.013 (0.0086) 0.013 (0.0096)
Scar 0.027 (0.014) 0.033 (0.016) 0.032 (0.014) 0.031 (0.015)
Mboost 0.0085 (0.0065) 0.011 (0.011) 0.017 (0.010) 0.013 (0.011)

β1 β2 β3 β4
PLAMM-1 1.96 (0.20) 1.98 (0.20) −1.95 (0.18) −1.98 (0.20)
PLAMM-2 1.95 (0.21) 1.96 (0.21) −1.94 (0.22) −1.97 (0.23)
APLAMM-1 1.97 (0.20) 1.99 (0.20) −1.96 (0.18) −2.00 (0.20)
APLAMM-2 1.95 (0.22) 1.96 (0.22) −1.94 (0.22) −1.97 (0.24)
Cgam 2.00 (0.23) 2.01 (0.22) −2.00 (0.19) −2.02 (0.21)

Results provided correct monotonicity directions:

Scam 2.00 (0.22) 2.02 (0.21) −2.00 (0.19) −2.02 (0.21)
Scar 1.94 (0.25) 1.99 (0.24) −1.95 (0.24) −1.96 (0.25)
Mboost 1.91 (0.24) 1.94 (0.22) −1.93 (0.19) −1.95 (0.21)
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Table 2: True and false positives, mean squared prediction errors (PE), mean
squared estimation errors (MSE), and estimated linear coefficients, for n = 80,
d1 = d2 = 10, SNR ≈ 4 and t = 0. PLAMM-1 selected an average α = 1.12
(0.44). Standard deviations are given in parentheses. ”TPM” and ”FPM” denote
true and false positives among the monotone covariates, respectively, and ”TPL”
and ”FPL” denote true and false positives among the linear covariates, respec-
tively.

Selection: TPM TPL FPM FPL PE
PLAMM-1 4.0 (0) 4.0 (0) 3.59 (1.69) 3.46 (1.95) 0.31 (0.068)
PLAMM-2 4.0 (0) 4.0 (0) 3.66 (1.72) 3.17 (1.88) 0.32 (0.087)
APLAMM-1 4.0 (0) 4.0 (0) 0.67 (1.05) 1.45 (1.83) 0.29 (0.064)
APLAMM-2 4.0 (0) 4.0 (0) 0.83 (1.16) 1.10 (1.48) 0.30 (0.086)
Cgam 4.0 (0) 4.0 (0) 2.71 (1.22) 1.74 (1.12) 0.33 (0.084)

Results provided correct monotonicity directions:

Scam – – – – 0.35 (0.092)
Mboost 4.0 (0) 4.0 (0) 5.71 (0.59) 3.11 (1.56) 0.33 (0.069)

MSE: g1 g2 g3 g4
PLAMM-1 0.010 (0.0089) 0.012 (0.0080) 0.019 (0.0097) 0.017 (0.013)
PLAMM-2 0.010 (0.0088) 0.012 (0.0085) 0.019 (0.010) 0.017 (0.013)
APLAMM-1 0.011 (0.0093) 0.013 (0.0079) 0.016 (0.0081) 0.015 (0.010)
APLAMM-2 0.011 (0.0088) 0.013 (0.0088) 0.016 (0.0087) 0.015 (0.012)
Cgam 0.012 (0.0081) 0.016 (0.0097) 0.018 (0.0099) 0.015 (0.011)

Results provided correct monotonicity directions:

Scam 0.011 (0.0096) 0.013 (0.010) 0.025 (0.013) 0.021 (0.015)
Mboost 0.0092 (0.0078) 0.014 (0.0097) 0.019 (0.0092) 0.019 (0.014)

β1 β2 β3 β4
PLAMM-1 1.89 (0.24) 1.91 (0.21) −1.90 (0.20) −1.89 (0.22)
PLAMM-2 1.86 (0.25) 1.88 (0.24) −1.87 (0.25) −1.85 (0.26)
APLAMM-1 1.96 (0.22) 1.98 (0.20) −1.96 (0.18) −1.95 (0.20)
APLAMM-2 1.95 (0.25) 1.97 (0.23) −1.95 (0.22) −1.93 (0.27)
Cgam 2.00 (0.25) 2.03 (0.22) −2.00 (0.22) −1.98 (0.23)

Results provided correct monotonicity directions:

Scam 2.01 (0.26) 2.03 (0.22) −2.01 (0.22) −1.99 (0.24)
Mboost 1.78 (0.25) 1.80 (0.20) −1.80 (0.21) −1.78 (0.24)
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Table 3: True and false positives, mean squared prediction errors (PE), mean
squared estimation errors (MSE), and estimated linear coefficients, for n = 50,
d1 = d2 = 10, SNR ≈ 4 and t = 0. PLAMM-1 selected an average α = 1.09
(0.41). Standard deviations are given in parentheses. ”TPM” and ”FPM” denote
true and false positives among the monotone covariates, respectively, and ”TPL”
and ”FPL” denote true and false positives among the linear covariates, respec-
tively.

Selection: TPM TPL FPM FPL PE
PLAMM-1 4.0 (0) 4.0 (0) 3.75 (1.54) 3.86 (1.69) 0.42 (0.11)
PLAMM-2 4.0 (0) 3.95 (0.36) 3.42 (1.58) 3.41 (2.03) 0.51 (0.39)
APLAMM-1 3.99 (0.10) 4.0 (0) 0.96 (1.23) 1.60 (1.68) 0.41 (0.15)
APLAMM-2 3.97 (0.22) 3.92 (0.44) 1.01 (1.22) 1.29 (1.57) 0.53 (0.46)
Cgam 4.0 (0) 4.0 (0) 2.99 (1.18) 1.93 (1.25) 0.51 (0.21)

Results provided correct monotonicity directions:

Scam – – – – 0.57 (0.20)
Mboost 4.0 (0) 4.0 (0) 5.68 (0.72) 3.06 (1.65) 0.53 (0.14)

MSE: g1 g2 g3 g4
PLAMM-1 0.021 (0.016) 0.020 (0.014) 0.034 (0.022) 0.029 (0.027)
PLAMM-2 0.028 (0.042) 0.023 (0.017) 0.041 (0.034) 0.037 (0.036)
APLAMM-1 0.025 (0.026) 0.023 (0.018) 0.029 (0.019) 0.028 (0.031)
APLAMM-2 0.035 (0.059) 0.028 (0.029) 0.037 (0.039) 0.037 (0.045)
Cgam 0.027 (0.024) 0.028 (0.021) 0.039 (0.022) 0.031 (0.044)

Results provided correct monotonicity directions:

Scam 0.023 (0.022) 0.024 (0.023) 0.055 (0.029) 0.046 (0.029)
Mboost 0.027 (0.023) 0.026 (0.020) 0.035 (0.024) 0.037 (0.032)

β1 β2 β3 β4
PLAMM-1 1.87 (0.30) 1.89 (0.30) −1.84 (0.29) −1.85 (0.26)
PLAMM-2 1.74 (0.44) 1.74 (0.48) −1.73 (0.42) −1.72 (0.41)
APLAMM-1 1.94 (0.29) 1.97 (0.29) −1.92 (0.28) −1.94 (0.26)
APLAMM-2 1.78 (0.47) 1.78 (0.55) −1.77 (0.47) −1.76 (0.44)
Cgam 2.05 (0.35) 2.05 (0.35) −2.00 (0.34) −1.98 (0.31)

Results provided correct monotonicity directions:

Scam 2.00 (0.36) 2.03 (0.37) −1.98 (0.40) −2.01 (0.31)
Mboost 1.58 (0.40) 1.60 (0.34) −1.63 (0.39) −1.61 (0.36)
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Table 4: True and false positives, mean squared prediction errors (PE), mean
squared estimation errors (MSE), and estimated linear coefficients, for n = 80,
d1 = d2 = 10, SNR ≈ 4 and t = 1. PLAMM-1 selected an average α = 1.24
(0.33). Standard deviations are given in parentheses. ”TPM” and ”FPM” denote
true and false positives among the monotone covariates, respectively, and ”TPL”
and ”FPL” denote true and false positives among the linear covariates, respec-
tively.

Selection: TPM TPL FPM FPL PE
PLAMM-1 4.0 (0) 4.0 (0) 3.70 (1.60) 3.51 (1.51) 0.094 (0.023)
PLAMM-2 4.0 (0) 3.94 (0.42) 3.62 (1.71) 2.40 (1.97) 0.12 (0.070)
APLAMM-1 4.0 (0) 4.0 (0) 0.56 (1.16) 1.09 (1.19) 0.087 (0.021)
APLAMM-2 3.99 (0.10) 3.91 (0.51) 0.76 (1.44) 0.85 (1.33) 0.13 (0.10)
Cgam 4.0 (0) 4.0 (0) 2.46 (1.18) 1.62 (1.25) 0.10 (0.027)

Results provided correct monotonicity directions:

Scam – – – – 0.11 (0.030)
Mboost 4.0 (0) 4.0 (0) 5.94 (0.24) 2.59 (1.22) 0.11 (0.025)

MSE: g1 g2 g3 g4
PLAMM-1 0.0048 (0.0041) 0.0053 (0.0046) 0.0079 (0.0064) 0.0075 (0.0059)
PLAMM-2 0.0067 (0.0095) 0.0064 (0.0054) 0.0093 (0.0069) 0.010 (0.0089)
APLAMM-1 0.0050 (0.0047) 0.0053 (0.0045) 0.0061 (0.0044) 0.0075 (0.0060)
APLAMM-2 0.0082 (0.015) 0.0073 (0.0094) 0.0094 (0.015) 0.010 (0.014)
Cgam 0.0056 (0.0043) 0.0071 (0.0051) 0.0065 (0.0049) 0.0064 (0.0060)

Results provided correct monotonicity directions:

Scam 0.0047 (0.0043) 0.0060 (0.0048) 0.0090 (0.0070) 0.0073 (0.0086)
Mboost 0.0047 (0.0040) 0.0062 (0.0057) 0.0078 (0.0053) 0.0082 (0.0065)

β1 β2 β3 β4
PLAMM-1 1.94 (0.21) 1.95 (0.20) −1.85 (0.21) −1.85 (0.21)
PLAMM-2 1.70 (0.43) 1.70 (0.40) −1.58 (0.48) −1.59 (0.44)
APLAMM-1 2.03 (0.21) 2.04 (0.20) −1.92 (0.20) −1.91 (0.19)
APLAMM-2 1.78 (0.47) 1.78 (0.46) −1.64 (0.55) −1.66 (0.49)
Cgam 2.02 (0.24) 2.06 (0.23) −2.00 (0.21) −1.99 (0.23)

Results provided correct monotonicity directions:

Scam 2.00 (0.26) 2.06 (0.21) −2.01 (0.22) −2.01 (0.24)
Mboost 1.70 (0.25) 1.72 (0.22) −1.72 (0.21) −1.72 (0.24)
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Table 5: True and false positives, mean squared prediction errors (PE), mean
squared estimation errors (MSE), and estimated linear coefficients, for n = 80,
d1 = d2 = 10, SNR ≈ 2 and t = 0. PLAMM-1 selected an average α = 1.11
(0.40). Standard deviations are given in parentheses. ”TPM” and ”FPM” denote
true and false positives among the monotone covariates, respectively, and ”TPL”
and ”FPL” denote true and false positives among the linear covariates, respec-
tively.

Selection TPM TPL FPM FPL PE
PLAMM-1 4.0 (0) 4.0 (0) 3.45 (1.75) 3.40 (1.87) 1.07 (0.22)
PLAMM-2 4.0 (0) 4.0 (0) 3.60 (1.68) 3.36 (1.90) 1.07 (0.22)
APLAMM-1 3.99 (0.10) 3.99 (0.10) 1.08 (1.24) 1.73 (1.95) 1.07 (0.25)
APLAMM-2 3.98 (0.14) 3.99 (0.10) 1.09 (1.23) 1.29 (1.37) 1.07 (0.23)
Cgam 4.0 (0) 3.99 (0.10) 2.53 (1.19) 1.66 (1.17) 1.24 (0.30)

Results provided correct monotonicity directions:

Scam – – – – 1.23 (0.28)
Mboost 4.0 (0) 3.99 (0.10) 5.19 (1.11) 1.96 (1.46) 1.14 (0.23)

MSE: g1 g2 g3 g4
PLAMM-1 0.027 (0.025) 0.033 (0.028) 0.046 (0.031) 0.048 (0.036)
PLAMM-2 0.028 (0.026) 0.033 (0.028) 0.047 (0.032) 0.048 (0.038)
APLAMM-1 0.034 (0.035) 0.039 (0.029) 0.048 (0.030) 0.045 (0.035)
APLAMM-2 0.035 (0.035) 0.041 (0.033) 0.049 (0.032) 0.047 (0.038)
Cgam 0.037 (0.027) 0.045 (0.033) 0.049 (0.032) 0.049 (0.034)

Results provided correct monotonicity directions:

Scam 0.032 (0.024) 0.034 (0.025) 0.057 (0.042) 0.043 (0.030)
Mboost 0.026 (0.025) 0.037 (0.032) 0.042 (0.027) 0.045 (0.033)

β1 β2 β3 β4
PLAMM-1 1.78 (0.45) 1.82 (0.37) −1.79 (0.42) −1.79 (0.42)
PLAMM-2 1.70 (0.43) 1.70 (0.40) −1.58 (0.48) −1.59 (0.44)
APLAMM-1 1.90 (0.46) 1.94 (0.39) −1.92 (0.35) −1.90 (0.41)
APLAMM-2 1.94 (0.45) 1.95 (0.37) −1.94 (0.35) −1.90 (0.40)
Cgam 1.98 (0.50) 2.04 (0.43) −2.01 (0.43) −1.97 (0.43)

Results provided correct monotonicity directions:

Scam 2.02 (0.51) 2.07 (0.40) −2.02 (0.41) −1.99 (0.44)
Mboost 1.54 (0.49) 1.58 (0.38) −1.56 (0.38) −1.54 (0.43)
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Table 6: True and false positives, mean squared prediction errors (PE), mean
squared estimation errors (MSE), and estimated linear coefficients, for n = 50,
d1 = d2 = 100, SNR ≈ 4 and t = 0. PLAMM-1 selected an average α = 0.79
(0.16). Standard deviations are given in parentheses. ”TPM” and ”FPM” denote
true and false positives among the monotone covariates, respectively, and ”TPL”
and ”FPL” denote true and false positives among the linear covariates, respec-
tively.

Selection: TPM TPL FPM FPL PE
PLAMM-1 3.62 (0.91) 3.73 (0.78) 12.91 (5.77) 12.81 (6.64) 1.27 (0.64)
PLAMM-2 3.67 (0.55) 3.33 (1.28) 18.94 (8.23) 9.98 (7.44) 1.63 (0.71)
APLAMM-1 3.49 (0.99) 3.67 (0.84) 4.54 (3.12) 6.06 (5.41) 1.12 (0.82)
APLAMM-2 3.42 (0.77) 2.92 (1.41) 7.61 (4.61) 1.75 (1.03) 1.75 (1.03)

Results provided correct monotonicity directions:

Mboost 2.62 (1.26) 2.05 (1.48) 10.25 (15.28) 2.09 (4.00) 2.22 (0.62)

MSE: g1 g2 g3 g4
PLAMM-1 0.098 (0.078) 0.10 (0.10) 0.13 (0.13) 0.13 (0.13)
PLAMM-2 0.10 (0.080) 0.11 (0.10) 0.13 (0.11) 0.14 (0.11)
APLAMM-1 0.082 (0.082) 0.085 (0.11) 0.097 (0.13) 0.094 (0.13)
APLAMM-2 0.11 (0.087) 0.11 (0.11) 0.11 (0.10) 0.12 (0.11)

Results provided correct monotonicity directions:

Mboost 0.16 (0.071) 0.22 (0.12) 0.26 (0.17) 0.29 (0.19)

β1 β2 β3 β4
PLAMM-1 1.26 (0.50) 1.16 (0.58) −1.14 (0.59) −1.24 (0.60)
PLAMM-2 0.88 (0.62) 0.88 (0.65) −0.83 (0.60) −0.91 (0.69)
APLAMM-1 1.56 (0.59) 1.45 (0.65) −1.39 (0.66) −1.54 (0.63)
APLAMM-2 0.98 (0.75) 0.99 (0.81) −0.93 (0.78) −1.01 (0.82)

Results provided correct monotonicity directions:

Mboost 0.41 (0.48) 0.33 (0.47) −0.37 (0.49) −0.43 (0.57)

40



Table 7: True and false positives, mean squared prediction errors (PE), mean
squared estimation errors (MSE), and estimated linear coefficients, for n = 50,
d1 = 100, d2 = 500, SNR ≈ 4 and t = 0. PLAMM-1 selected an average α = 0.89
(0.23). Standard deviations are given in parentheses. ”TPM” and ”FPM” denote
true and false positives among the monotone covariates, respectively, and ”TPL”
and ”FPL” denote true and false positives among the linear covariates, respec-
tively.

Selection: TPM TPL FPM FPL PE
PLAMM-1 3.13 (1.24) 3.56 (0.97) 11.42 (9.83) 11.28 (9.56) 2.14 (0.72)
PLAMM-2 2.82 (1.34) 2.97 (1.31) 20.94 (12.43) 8.99 (7.78) 2.18 (0.79)
APLAMM-1 2.92 (1.31) 3.47 (1.08) 5.18 (4.60) 8.05 (6.98) 2.21 (1.02)
APLAMM-2 2.48 (1.34) 2.23 (1.40) 9.13 (6.01) 2.71 (3.42) 2.63 (1.18)

Results provided correct monotonicity directions:

Mboost 1.07 (1.11) 0.52 (0.81) 5.30 (14.40) 0.14 (0.64) 2.96 (0.35)

MSE: g1 g2 g3 g4
PLAMM-1 0.17 (0.076) 0.23 (0.14) 0.30 (0.17) 0.30 (0.20)
PLAMM-2 0.16 (0.077) 0.20 (0.14) 0.25 (0.17) 0.27 (0.19)
APLAMM-1 0.17 (0.086) 0.22 (0.16) 0.26 (0.22) 0.26 (0.22)
APLAMM-2 0.16 (0.082) 0.19 (0.15) 0.23 (0.19) 0.25 (0.22)

Results provided correct monotonicity directions:

Mboost 0.21 (0.052) 0.32 (0.10) 0.43 (0.15) 0.45 (0.17)

β1 β2 β3 β4
PLAMM-1 0.83 (0.75) 0.86 (0.68) −0.87 (0.73) −0.84 (0.71)
PLAMM-2 0.66 (0.65) 0.67 (0.61) −0.67 (0.66) −0.74 (0.68)
APLAMM-1 1.04 (0.90) 1.06 (0.81) −1.11 (0.87) −1.07 (0.87)
APLAMM-2 0.64 (0.77) 0.61 (0.75) −0.64 (0.81) −0.70 (0.83)

Results provided correct monotonicity directions:

Mboost 0.053 (0.25) 0.074 (0.24) −0.069 (0.21) −0.10 (0.27)
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Table 8: True and false positives, mean squared prediction errors (PE), mean
squared estimation errors (MSE), and estimated linear coefficients, for n = 100,
d1 = 100, d2 = 500, SNR ≈ 4 and t = 0. PLAMM-1 selected an average α = 0.91
(0.13). Standard deviations are given in parentheses. ”TPM” and ”FPM” denote
true and false positives among the monotone covariates, respectively, and ”TPL”
and ”FPL” denote true and false positives among the linear covariates, respec-
tively.

Selection: TPM TPL FPM FPL PE
PLAMM-1 4.0 (0) 4.0 (0) 29.26 (13.09) 17.10 (10.44) 0.49 (0.11)
PLAMM-2 4.0 (0) 3.96 (0.40) 38.5 (18.32) 12.16 (10.46) 0.72 (0.57)
APLAMM-1 4.0 (0) 4.0 (0) 8.41 (5.43) 8.45 (6.62) 0.36 (0.089)
APLAMM-2 4.0 (0) 3.84 (0.68) 16.42 (10.41) 0.44 (0.98) 0.99 (0.93)

Results provided correct monotonicity directions:

Mboost 3.91 (0.38) 3.90 (0.48) 35.84 (26.44) 1.04 (1.30) 0.90 (0.43)

MSE: g1 g2 g3 g4
PLAMM-1 0.032 (0.025) 0.028 (0.020) 0.050 (0.023) 0.043 (0.021)
PLAMM-2 0.041 (0.040) 0.034 (0.028) 0.060 (0.048) 0.053 (0.043)
APLAMM-1 0.014 (0.015) 0.013 (0.0086) 0.019 (0.010) 0.018 (0.013)
APLAMM-2 0.040 (0.051) 0.035 (0.032) 0.051 (0.061) 0.045 (0.054)

Results provided correct monotonicity directions:

Mboost 0.071 (0.058) 0.069 (0.056) 0.094 (0.085) 0.085 (0.088)

β1 β2 β3 β4
PLAMM-1 1.69 (0.25) 1.65 (0.25) −1.66 (0.23) −1.67 (0.24)
PLAMM-2 1.42 (0.53) 1.41 (0.50) −1.40 (0.51) −1.41 (0.50)
APLAMM-1 1.91 (0.20) 1.88 (0.17) −1.90 (0.19) −1.89 (0.20)
APLAMM-2 1.28 (0.69) 1.28 (0.67) −1.25 (0.68) −1.28 (0.67)

Results provided correct monotonicity directions:

Mboost 1.12 (0.44) 1.11 (0.43) −1.11 (0.40) −1.13 (0.45)
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Table 9: Estimated linear parameters and prediction errors with the different meth-
ods for the prostate cancer data. The estimated α for PLAMM-1 on the full data
was 1.5. The estimated α on the training data for PLAMM-1 was 1.33 (standard
deviation 0.54).

Estimated linear coefficients.
PLAMM-1 PLAMM-2 APLAMM-1 APLAMM-2

Svi 0.75 0.78 0.61 0.72
Gleason 0.41 0.43 0.28 0.37

Cgam Mboost Scam
Svi 0.65 0.42 −0.56
Gleason 0.42 0.067 0.59

Estimated mean squared prediction errors
PLAMM-1 PLAMM-2 APLAMM-1 APLAMM-2

Prediction error 0.63 0.60 0.65 0.65
Standard deviation 0.17 0.13 0.16 0.14

Cgam Mboost Scam
Prediction error 0.79 0.61 0.65
Standard deviation 0.17 0.13 0.18

Table 10: Estimated linear parameters and prediction errors with the different
methods for the bone mineral density data. The estimated α for PLAMM-1 on
the full data set was 0.75. The estimated α for PLAMM-1 on the training data
sets was 1.25 (standard deviation 0.48). ”Std. dev.” is the standard deviation and
”Ad. Lasso” is the adaptive lasso.

Estimated linear coefficients
PLAMM-1 PLAMM-2 APLAMM-1 APLAMM-2 Mboost Lasso Ad. Lasso

Age −0.23 −0.038 −0.27 −0.024 – −0.012 –
BMI 0.38 0.15 0.49 0.15 0.16 0.074 0.070
Pth −0.095 −0.088 −0.053 −0.036 – −0.043 –
Vitamin D – −0.0041 – – – – –
Cpt −0.054 −0.10 – −0.089 – – –

Estimated prediction errors
Estimate 1.82 1.95 2.11 2.15 1.97 2.06 2.02
Std. dev. 0.32 0.39 0.60 0.60 0.30 0.34 0.32
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