
  

Abstract— Spectral Doppler measurements are an 
important part of the standard echocardiographic 
examination. These measurements give insight into 
myocardial motion and blood flow, providing clinicians with 
parameters for diagnostic decision making. Many of these 
measurements are performed automatically with high 
accuracy, increasing the efficiency of the diagnostic 
pipeline. However, full automation is not yet available 
because the user must manually select which measurement 
should be performed on each image. In this work, we 
develop a pipeline based on convolutional neural networks 
(CNNs) to automatically classify the measurement type 
from cardiac Doppler scans. We show how the multi-modal 
information in each spectral Doppler recording can be 
combined using a meta parameter post-processing 
mapping scheme and heatmaps to encode coordinate 
locations. Additionally, we experiment with several 
architectures to examine the tradeoff between accuracy, 
speed, and memory usage for resource-constrained 
environments. Finally, we propose a confidence metric 
using the values in the last fully connected layer of the 
network and show that our confidence metric can prevent 
many misclassifications. Our algorithm enables a fully 
automatic pipeline from acquisition to Doppler spectrum 
measurements. We achieve 96% accuracy on a test set 
drawn from separate clinical sites, indicating that the 
proposed method is suitable for clinical adoption. 

 
Index Terms— Convolutional neural network (CNN), deep 

learning, classification, ultrasound (US), Doppler 

I.  INTRODUCTION 

CHOCARDIOGRAPHY is the primary method used to 

image the heart due to its portability, affordability, and 

absence of ionizing radiation. The diagnostic power of 

 
 

 

echocardiography is reflected in clinical guidelines. 

Echocardiography indices are included as both minor and major 

clinical diagnostic criteria in many protocols [1]. As 

computational power increases image quality improves. 

Consequently, the theoretical accuracy of clinical 

measurements also increases.  

 In addition to the diagnostic power, there is a growing trend 

to use echocardiography as a therapy guidance tool to support 

interventions and complement other imaging modalities. 

Minimally invasive valve interventions are much less risky than 

full surgery and are becoming the therapy of choice as 

techniques and prosthetics advance. Spectral Doppler imaging 

is the primary method to assess blood flow across valves, a 

crucial step for intervention planning and follow-up [2]. 

Therefore, spectral Doppler imaging has become an integral 

component of the echocardiography exam to provide a means 

to assess hemodynamic function in all four valves of the heart.  

A. Spectral Doppler Measurements  

Fig. 1 shows an example of a spectral Doppler acquisition as 

seen in EchoPAC (GE Healthcare, Horten, NO).  There are 

many important features of the acquisition that are available 

within the raw data of each recording: 

• The Doppler spectrum is displayed over multiple 

cardiac cycles for analysis and measurement.  

• The relative baseline of the Doppler spectrum can be 
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Fig. 1. Example of a Doppler acquisition shown in EchoPAC (GE Healthcare, 
Horten, NO) depicting the relevant information to a spectrum classification 

problem as a clinician would see it. 
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adjusted by the user during acquisition to focus on a 

specific part of the spectrum and prevent aliasing.  

• The mode provides information on how the Doppler 

spectrum was acquired. Spectral Doppler incorporates 

three main imaging modes: Continuous Wave (CW) 

Doppler, Pulsed Wave (PW) Doppler, and Tissue 

Velocity Doppler (TVD). CW is used to measure high 

velocity blood flow across valves, PW provides flow 

analysis at specific spatial points, and TVD provides 

quantifiable myocardial velocities.  

• The 2D B-mode (brightness mode) image shows the 

orientation of the probe with respect to the physical 

anatomy of the heart. Doppler spectra can be obtained 

from a variety of probe positions and angles depending 

on the desired measurement. The scan converted B-

mode image is displayed here to orient the user. 

• The Doppler cursor, visible on top of the B-mode 

image, indicates the spatial location of the spectrum. 

This parameter is interpreted in the context of the B-

mode image. See Fig. 2 for a visual overview of how 

the cursor location corresponds to specific points in 

anatomical space. In the TVD classes the cursor is 

focused directly on the tissue, while in the CW and PW 

classes the cursor is focused on an area of blood flow. 

Exact positioning will depend on the desired 

measurement, operator preference, and individual 

patient anatomy.  
Together, this information identifies the Doppler spectrum and 

therefore which measurements should be performed.  

B. Clinical Need for Measurement Type Classification 

Accurate automatic classification of Doppler measurement 

types can be combined with already available automated 

measurement techniques (e.g. [3], [4]) to provide fully 

automated analysis of Doppler spectra. Specifically, in a fully 

automated workflow, as soon as a Doppler exam is acquired the 

classification system is triggered and determines the 

measurement type. The system then triggers the corresponding 

automated measurement algorithm to display the measurement 

with no additional user interaction. This workflow is more 

efficient, allowing clinicians to spend more time on difficult 

measurements.  

Furthermore, many clinics have petabytes of patient data in 

their archive systems from tracking patients over time. Thus, if 

used in combination with automated measurement techniques, 

one application of automatic Doppler measurement type 

classification is to perform rapid historical analysis on past 

exams in a robust and standardized manner. All information 

used in the proposed classification system is readily available 

in hospital archives if those archives store the raw data for each 

patient. Knowing a patient’s progression from previous 

checkpoints can provide further information to support therapy 

planning. Therefore, historical analysis would provide clinical 

value through objective study of measurements over time. 

Another application is continually performing analysis on 

patients, which could bring statistical power to the development 

and augmentation of clinical guidelines.  

C. Related Work 

1) Ultrasound Classification 

 Doppler measurement type classification is unique because 

of the heterogeneity of data available in each classification 

example. As shown in Fig. 1, each recording contains image 

data, spectral data, modal parameters, a baseline position, and 

Doppler cursor coordinate locations. Previously, many of these 

items have been automatically classified individually, 

borrowing techniques from non-medical domains. Processing 

of spectral data has been a common task for several decades in 

speech recognition [5], and these techniques have been applied 

to Doppler spectra as well. For example, Wright et al. used 

artificial neural networks to classify Doppler spectra from 

arteries [6]. Meanwhile, automatic image classification has also 

 
Fig. 2. Each of the Doppler measurement types sorted by the location of the cursor position. Each color corresponds to a different region in anatomical space. The 

mode of each measurement in shown in front. Apical 5 chamber and parasternal short axis views are shown here for illustrative purposes only, to demonstrate the 
relative positions of the classes. Doppler spectra are typically acquired from a variety of echocardiographic views (see Appendix A for details) and part of the 

challenge of this problem is that the spatial relationship between structures demonstrated above will change depending on the view used for image acquisition. The 

No Organ (NO) class refers to images of air and ultrasound gel.  
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• CW = Continuous Wave
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become increasingly common as CNNs have surpassed the 

accuracy of humans on many tasks. Recently, these techniques 

were applied to echocardiographic B-mode images to 

automatically classify cardiac views with high accuracy [7], [8].  

2) Multi-modal Learning 

In non-medical fields, several groups have also looked at 

how data from different modalities can be combined. Ngiam et 

al. showed how a deep autoencoder could be trained with both 

video and speech data to generate a shared representation [9]. 

Ephrat et al. demonstrated how video and speech data could be 

encoded separately and then combined in a bidirectional long 

short-term memory network to solve the cocktail party problem 

of singling out a single speaker in a noisy audio track [10].  

While many deep learning techniques have successfully 

made the transition from non-medical to medical applications 

[11], applying multimodal learning techniques remains a 

challenge because there are several orders of magnitude 

difference in the amount of available data. For example, Ephrat 

et al. were able to use >2000 hours of automatically annotated 

data. The annotation of such a volume of data in the context of 

Doppler spectra is challenging due to the lack of available 

simulated data. Transfer learning and fine tuning have 

previously been applied to solve data magnitude problems in 

medical imaging [12]. However, it is of limited use here since 

task objectives are different, and the relationship between the 

modalities (Doppler spectrum to B-mode) varies for each 

Doppler measurement class.  

3) Confidence 

One challenge in ultrasound imaging is that images acquired 

in clinical settings are not necessarily in standard views. During 

training, models are exposed to only a subset of possible views 

that might be seen in a clinical workflow. This is a concern in 

the given classification problem where misclassifications are 

more costly than doing nothing. Therefore, an algorithm to 

classify such images needs a mechanism to handle non-standard 

cases. This can be either collecting large datasets that can cover 

all possible views (even those that are non-standard) or a 

mechanism to bail-out when the image doesn’t fall in the label 

set, such as via confidence metrics with a set threshold for 

acceptance.  

Several groups have looked at how networks can give a 

confidence prediction along with an output label. It is well 

known that CNNs are prone to overfitting and cannot generalize 

well from the training set to unseen inputs [13]. Previously, 

Bayesian models have been used to provide a better estimate of 

model uncertainty by encoding model weights as a probability 

distribution. However, Bayesian techniques often come with 

increased parameter count and a higher computational cost to 

adequately model random distributions [14]. Monte Carlo 

dropout (MC-dropout) uses dropout at test time to approximate 

Bayesian inference with a lower computation cost [15]. Other 

methods such as temperature scaling [16] or histogram binning 

[17] calibrate fully trained network outputs without changing 

inference. Parameters are learned on the validation set to map 

network outputs to a true confidence distribution. These 

methods have the advantage of maintaining inference time and 

increasing the interpretability of the results without sacrificing 

the accuracy of the model. 

D. Contributions  

After an analysis of the data, the spectral information was 

eliminated from the processing pipeline. This reduced the input 

to a B-mode image, Doppler cursor coordinate location, 

baseline position, and mode parameter. Although spectra 

provide useful information (and are used by clinical experts 

when labelling images), there are many variations in the 

collection of spectra that make it difficult to use in a network. 

For example, as shown in Fig. 3, spectral data can have 

discontinuities in the baseline as the user changes the 

parameters during acquisition.  Spectral data is also variable 

length, which effectively shrinks or expands the features in the 

output image. Dealing with variable length would require an 

even larger dataset, since CNNs are not magnitude invariant. To 

avoid adding unnecessary complexity, the method developed 

here does not rely on spectral data. Instead, the method is 

focused on the integration of the latter four parameters. The 

spectra can be eliminated because we develop a novel pipeline 

which breaks the problem into a series of simpler pieces. We 

create an alternate way of uniquely identifying the spectra using 

these pieces. Our pipeline is outlined in Fig. 4 with references 

to the relevant section numbers for each piece.  In brief, the 

principle contributions of this work are four-fold:  

(1) Heatmap encoding: We show how to encode spatial 

features at the input of CNNs when multi-modal data 

includes coordinate locations as features.  

(2) Multi-head output: We borrow techniques from multi-

task learning to develop a multi-head learning strategy that 

integrates mode information to prevent misclassifications 

and reduce network size.  

(3) Decision tree mapping: We use decision trees to 

incorporate user-defined imaging parameters in order to 

simplify the task of the CNN and better predict user 

intentions for the desired measurement type. 

(4) Confidence Thresholds: We demonstrate how neural 

network layers, besides just the final layer, can be used to 

define a confidence metric that will disregard many images 

that differ from the training set. Our method requires no 

extra trained parameters, uses a fully nonlinear mapping 

between the output values and the network confidence 

estimate, and can be dynamically modified at inference time 

depending on the desired tradeoff between ignored and error 

rates.  

To the best of our knowledge, this is the first work to use 

CNNs to classify Doppler measurement types. We achieve high 

 
Fig. 3. Discontinuities arise when the operator shifts the baseline during 

acquisition. This is common practice when acquiring several measurements. 
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accuracy on the task, while maintaining a small memory 

footprint and close to real-time performance. Moreover, several 

of the methods developed in this work may be applicable to 

other classification problems, especially in medical imaging.  

II. METHODS 

 Through conversations with clinical experts, 18 of the 

most common measurement types for adults were identified. 

Three additional types of Doppler measurements were 

identified but were excluded from the current algorithm design 

due to infrequent clinical use. Specifically, among a dataset of 

over 7000 random Doppler images collected from a clinical 

site, just 30 images came from these three classes combined. 

Including these measurement types would be more likely to 

confuse the network and would require a significant effort to 

collect sufficient training data. Additionally, including the 

classes would not result in noticeable clinical time savings after 

algorithm implementation since they are used infrequently. 

Two steps are taken to account for measurement types not 

covered in our label set. First, to avoid making a classification 

on images scanned without a visible B-mode image on screen, 

a no organ (NO) class was added which consisted only of 

images where air and varying amounts of ultrasound gel were 

scanned. The Doppler cursor, baseline, and other parameters 

were chosen to cover a variety of possible inputs for the NO 

images. Second, a confidence metric was designed (Sec. II.C) 

to discard images from other classes. A full discussion of each 

of the measurement types is outside the scope of this work, but 

Fig. 2 shows a diagram of the relative cursor positions as well 

as the abbreviations for each type. An outline of each 

measurement’s use and acquisition is available in [1], and 

reports specific to CW and PW [18], and TVD [19] mode 

measurements are also available. In addition, a further 

description of each measurement type is presented in Appendix 

A of the supplementary material. 

The proposed method performs a classification on these 

Doppler measurement types. The relevant anatomical region is 

determined using a CNN as described in Sec. II.A. Sec. II.A.1 

explains heatmap encoding at the input of the network while 

Sec. II.A.2 describes a multi-head output approach to divide the 

classification according to the imaging mode. A decision tree to 

simplify the network’s classification task is presented in Sec. 

II.B. A confidence metric is defined in Sec. II.C to avoid 

misclassifications for low-confidence cases such as images 

from other measurement types or images with poor quality. 

Finally, the design of the dataset used for training and testing is 

outlined in Sec. II.D.  

A. Determining Cursor Location with CNNs 

As shown in Fig. 1, a single Doppler recording is composed 

of many multi-modal features. Given the information in the 

format of Fig. 1, an expert observer can mentally integrate the 

relevant information and classify the type of measurement that 

should be made. However, it would be unrealistic to expect a 

network to perform a classification given only an image such as 

Fig. 1 because some of the most important pieces of information 

are not emphasized in the image. For example, the Doppler 

cursor is very important to the classification because it indicates 

the location of the Doppler spectrum within the heart, but it is 

only a small marker on the image.  

Instead, all the relevant data is extracted individually from 

each recording. The mode is recorded as either CW, PW, or 

TVD. The relative baseline is extracted as a float in the range 

from 0 to 1, where the default (unchanged) location is 0.5. The 

raw B-mode data is extracted as a 512×256 image, since the 

depth dimension is usually much larger in the raw data. Note 

that the non-scan converted (beam space) data is used directly 

rather than the scan-converted (probe space) data that is shown 

to the user. The added step in the pipeline to scan-convert the 

images yields no gain in this application where the Doppler 

cursor position relative to the heart structures is the key piece 

of information. Scan-converted images could equivalently be 

used.  

As shown by the different colors in Fig. 2, the measurement 

types can be grouped into 9 locations in anatomical space. Since 

the relationship between cursor coordinates and image features 

would be similar for each of these locations, all measurements 

from the same anatomical location are merged into the same 

class for the CNN. Thus, the task of the CNN is only to figure 

out which anatomical location the measurement came from, the 

rest is handled during post-processing as described in Sec. II.B. 

The only inputs into the network are the B-mode image and the 

cursor coordinate.  

1) Heatmap Encoding 

 The position of the cursor is extracted relative to the original 

B-mode image as a coordinate pair. In the proposed approach 

the coordinates are encoded as a heatmap. The coordinates are 

not directly used because Liu et al. showed CNN’s are typically 

poor at learning mapping between coordinates in cartesian 

coordinate space and pixel space [20]. Additionally, in 

landmark detection problems, the current state of the art is to 

extract landmark coordinates from heatmaps of likely locations 

produced by the network [21]. Intuitively, using heatmaps 

works because there is a linear mapping from the coordinate 

space of the input image to the output heatmap. Logically, 

networks should also perform better if landmarks at the input 

are encoded as heatmaps instead of input as coordinates. To 

encode the Doppler cursor location as a heatmap, we generate 

a 2D normal gaussian probability density function with a 

standard deviation of 10 pixels centered at the cursor 

coordinate. The heatmap is generated in 512×256 resolution to 

match the original raw data, and then appended to the input 

image as an additional channel. Image and heatmap are both 

rescaled to 256×256, which has the effect of compressing the 

gaussian vertically. This allows the expected spatial distribution 

of the landmark to more closely match the physical dimensions 

of the raw data. An example heatmap is shown in Fig. 5. Finally, 

both image and heatmap are cropped to 224×224. During 

training, random crops are used for augmentation. Center crops 

are used during validation and testing. 

2) Multi-Head Network 

As shown in Fig. 2, other than Pulmonary Vein, the CW and 

PW mode measurements share the same anatomical locations. 

 
Fig. 4. The pipeline of the proposed method with relevant section numbers. 
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The CW and PW locations are also completely distinct from the 

TVD mode measurements (except for the no-organ synthetic 

class). Because the mode parameter is always set by the user, 

simply training a network to classify all outputs would lead to 

unnecessary errors. The network should never classify a TVD 

mode image into a CW/PW measurement type since the mode 

is known at classification time, but without explicit separation 

this misclassification may occur. To solve this, the set of 

anatomical location classes can be split into unique sets, one for 

CW&PW and one for TVD. One approach would then be to 

train a different network for each mode and call the network for 

the relevant mode during inference. However, this approach 

doubles the memory footprint of any implementation, which is 

a downside for integration into a resource-constrained 

environment. 

An alternative solution is to frame this as a multi-task 

learning problem. Multi-task learning integrates the 

information from several related tasks into a single network by 

implementing a separate network branch for each task. Often in 

multi-task networks, information from one task improves 

performance on another. The approach has proven to be 

successful in a variety of deep learning applications [22]. Our 

method is a slight variant of multi-task learning adapted for this 

problem. In detail, the network presented here has only a single 

branch with multiple classification heads operating on the final 

layer. Only one head is relevant for every given input sample. 

Therefore loss is backpropagated only from the classification 

head with a mode matching that sample whereas in multi-task 

learning loss can be taken from all branches during training. 

Input to each classification head are the values from the last 

fully connected layer for the classes that belong to that mode. 

The total loss for a given minibatch is shown in (1) where 

𝑓(𝑥; 𝜃) is the output of a network with input 𝑥 and parameters 

𝜃,  𝑥𝑇𝑉𝐷 and 𝑥𝐶𝑊𝑃𝑊  are the TVD and CWPW samples in the 

minibatch respectively, and 𝐶𝐸 is cross-entropy loss. The 𝜆 

values control the weighting between heads.  

𝐿 = 𝜆1𝐶𝐸(𝑓(𝑥𝑇𝑉𝐷; 𝜃)) + 𝜆2𝐶𝐸(𝑓(𝑥𝐶𝑊𝑃𝑊; 𝜃)) (1) 

During inference, the CNN yields predictions from both 

heads, but only the value from the relevant mode is read by the 

calling function. Due to these differences we instead call this a 

“multi-head” network. With this design choice, we exploit the 

information about the different modes by including separate 

heads and loss functions for the CW&PW and TVD groupings 

of anatomical locations. The architecture of the multi-head 

network is shown in Fig. 5.  

B. Decision Tree Mapping 

After finding the anatomical location with the CNN, the next 

step in the pipeline is determining the final measurement type. 

The mode and relative baseline position parameters extracted 

from the spectrum linearly separate the measurement types in 

each anatomical region because users change those parameters 

based on which type of measurement they wish to acquire. 

Therefore, decision trees are used for post-processing the output 

of each head as shown in Fig. 6. One possible error is introduced 

in this scheme when a CW image is classified as a Pulmonary 

Vein (PVe). In preliminary experiments this was never an issue, 

but occurrence in a clinical setting would require manual re-

classification.  

Decision trees are a better solution than feeding the 

parameters into the network because it avoids unnecessary 

mistakes and enables the CNN to use classes that are based 

solely on regions in anatomical space. Otherwise, the CNN 

would likely be confused between classes from the same 

anatomical region. Additionally, several of the original smaller 

classes do not have enough images for a network to properly 

converge. Grouping the classes increases performance.  

C. Confidence Metric 

Correct classifications from the network will yield 

significant time savings for clinical users by automatically 

launching the tool associated with that Doppler measurement 

type, where available. However, incorrect classification comes 

with a cost as the user will have to navigate back in the menu 

and select the correct measurement type. As automation 

continues to permeate clinical workflows, this cost may become 

larger. Initial misclassification could trigger unrelated 

measurements and automated tools. Moreover, there may be 

images in a clinical setting that are different from those seen 

during training. Thus, it is important for the network to have a 

bail-out mechanism on images with high uncertainty.  

Our approach relies on the last fully connected layer before 

the softmax classifier, named the “pre-softmax” layer. This 

layer was chosen because raw network estimates for all classes 

are readily available before distortion by the multiple heads. 

The pre-softmax values for each example in the validation set 

are recorded after the network weights are trained and frozen. 

The recorded values are divided into quantiles. That is, rather 

than learning a mapping from outputs to true confidence (as was 

done in [16] and [17]), a series of cutoff values are found for 

each confidence level. During test time, the quantile is set based 

 
Fig. 5. The heatmap of the Doppler cursor location is appended as a channel to the non-scanconverted B-mode image and both are cropped to 224×224 before 

being input to the network. A ResNet18 [28] is presented here, but a variety of network architectures are tested (section III.A.3). For all networks, the last fully 
connected layer (of size 9) is split into two groups (heads). The No Organ (NO) class is input to both heads so the CW&PW head is 6 classes and the TVD node is 

4 classes. During training the loss can be backpropagated from each head individually, or together from all classes (section II.A.2) During inference each head is 

passed to its own classifier and decision tree (see Fig. 6 for decision trees). The mode parameter is used to select between the two outputs to yield a final class. See 

Fig. 2 for class abbreviations.  
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on the desired tradeoff between error rate and ignored rate. The 

maximum output value is found as usual, but if the pre-softmax 

value for that class falls below the given threshold then the 

image is labeled as low confidence and ignored.  

To validate the chosen approach, results were compared to 

several other methods of determining confidence. MC-dropout 

has proven to be one method for approximating Bayesian 

inference in a computationally efficient manner  [15]. An MC-

dropout version of the model is implemented following the 

approach in [23], where 50% of the neurons from the last fully 

connected layer are randomly dropped during each inference 

run. In addition, combining the predictions of ensembles of 

neural networks has given superior classification performance 

[24], [25]. However, ensembled outputs can also be used as a 

measure of algorithm confidence. An ensembled confidence is 

implemented by ignoring cases where networks within the 

ensemble predict differing classes.  

D. Dataset 

The training and validation dataset consisted of exams 

previously collected by GE Healthcare for internal tool 

development. All exams were fully anonymized and came from 

a single clinical site. Exams were collected to try to maintain a 

high number in each class, but more images were available for 

classes that occur more frequently in clinical practice than those 

that occur infrequently. Thus, the dataset is slightly unbalanced 

because it reflects the clinical distribution of the data. Note that 

all classes of the same color in Fig. 2 are grouped together for 

training the network and split later in post-processing as shown 

in Fig. 6. The final set was 7081 images where individual class 

sizes are shown in Fig. 6.  

Exams from seven institutions were used for the test set. The 

test institutions were spread over six different countries and 

three different continents. All test set institutions were different 

from the training set institution. This was done for two reasons. 

First, since images are fully anonymized, it is impossible to 

guarantee that two images from the same institution are not 

from the same patient. It is crucial for accurate test statistics that 

the training and test sets contain unique patients. Second, every 

institution has slightly different acquisition practices and 

patient populations, leading to small differences in the 

distribution of the images. Thus, to get a result that reflects real 

performance “in-the-wild” it is important to test on data from 

separate institutions. The test set contained 1479 images and 

class distributions are also shown in Fig. 6. All images were 

labeled by a clinical expert experienced in Doppler spectrum 

analysis and reviewed for accuracy by two other experts. Roles 

were swapped between sets, so a different expert did the initial 

labeling for the test set.  

While gathering the training and validation sets, there were 

298 images that had insufficient image quality for an expert to 

classify them. These images were categorized as the unknown 

set to analyze the confidence metric. Additionally, 30 images 

were identified that belonged to the three measurement classes 

not included in this network because they appear infrequently 

in clinical practice. These images were put into the extra set to 

analyze the confidence metric. Anonymization procedures 

removed all patient information, so the number of patients in 

the datasets is unknown.  

E. Testing 

To validate reproducibility, the combined training and 

validation set is used to estimate five different models. Each 

model is trained using 90% of the dataset with the remaining 

10% set aside as validation. The model with the best 

 
Fig. 6. Decision trees from the classes output by the network to the final classes determining the measurement type. The network has two heads, the CW&PW head 
and the TVD head. Outputs from each head are mapped to final classes using the mode and baseline parameters. The mode is then used to decide between the 

CW&PW head output and the TVD head output (Fig. 5). For the baseline: (↑) indicates a baseline was moved upwards – towards positive values, exposing a larger 

range of negative velocities, (↔) indicates a baseline is in center position, and (↓) indicates the baseline was moved downwards – towards negative values, exposing 
a larger range of positive velocities. If nothing is indicated for mode or baseline, then those parameters are not used for that mapping (all values map to the same 

class). For example. every image in the TVD head is guaranteed to be mode TVD so the mode is not relevant. Training, validation, and test set sizes are shown 

below each class. See Fig. 2 for locations of each class and acronym definition. ARAVO, MRMVT, and PRPVO are combinations of AR/AVO, MR/MVT, and 

PR/PVO respectively.  
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performance on each validation set during training is saved for 

testing on the independent test set. The train/validation/test split 

as a percentage of the total data is 74%/9%/17%. The five 

different validation sets are non-overlapping. Quantile cutoff 

limits for the confidence metric are extracted by averaging 

results across the five validation sets. This setup is used for all 

presented approaches and metrics are averaged from evaluating 

all five trained models on the unseen test set. Using five 

different models is important to (a) better estimate accuracies 

on the test set, (b) provide more robust quantile cutoff limits 

extracted across a larger set of unseen examples, and (c) obtain 

different models for the ensemble-based confidence method.   

III. RESULTS 

To evaluate the effects of each design decision, a series of 

experiments were constructed with metrics measuring 

accuracy, speed, and memory usage. Classification accuracy 

was measured as defined in (2) where 𝑁𝐼 is the total number of 

images in the test set, C is the set of classes, and 𝑇𝑃i is the 

number of true positives for class 𝑖. The F1 score [26],  was 

measured as a combination of recall and precision (3). The 

recall of class 𝑖, 𝑅i, is given by 𝑅i = 𝑇𝑃i/(𝑇𝑃i + 𝐹𝑁i) where 

𝐹𝑁i is the number of false negatives. The precision of class 𝑖,  
𝑃i, is given by 𝑃i = 𝑇𝑃i/(𝑇𝑃i + 𝐹𝑃i) where 𝐹𝑃i is the number 

of false positives. 𝑁𝑐 is the number of classes. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   1
𝑁𝐼

⁄ ∑ 𝑇𝑃i
𝑖∈𝐶

 
(2) 

 
F1 =  

2 ∗ ∑ 𝑅i𝑖∈𝐶 ∗ ∑ 𝑃i𝑖∈𝐶

𝑁𝐶 ∗ (∑ 𝑅i𝑖∈𝐶 + ∑ 𝑃i𝑖∈𝐶 )
 

(3) 

Note that accuracy was obtained by micro-averaging 

(weighting by class frequency), while F1 was obtained by 

macro-averaging (weighting each class equally). Although 

micro-averaging will bias results towards classes with more 

images, it also reflects the clinical reality since classes with 

more images will appear more in clinical use.  The memory size 

and inference time measurements were implemented following 

[27]. We first examine the effect of different input and output 

settings in the experimental setup (Table 1) and then look at the 

performance of various network architectures (Table 2). For the 

first experiments a ResNet18 network (architecture shown in 

Fig. 5) was chosen because the residual connections in ResNet 

speed up training and improve accuracy when training deeper 

networks [28]. Specifically, ResNet18 has a smaller footprint 

than other networks and less parameters, which helps avoid 

overfitting on data-limited tasks.  
 

A. Cursor Location with CNNs 

1) Heatmap Encoding 

First, the effect of adding the cursor heatmap was evaluated. 

A network was trained using only the B-mode image as an input 

(E1 in Table 1), using only the heatmap as an input (E2), and 

then with the cursor heatmap appended to the B-mode image 

(E3). In all three cases, separate networks were trained for each 

mode (CW&PW vs. TVD). As expected, with only a single 

input channel (either image or heatmap) there were low 

classification accuracies. The TVD network in E2 (heatmap 

only) did achieve 84% accuracy which shows the heatmap 

provides quite a bit of information for TVD cases. This is 

intuitive since TVD images are almost always acquired from 

the same echocardiography view (apical four chamber). 

Therefore, the position of the cursor remains relatively constant 

within each class and different between them. Conversely, 

results were worse with only a heatmap for the CW/PW mode. 

In this mode views (and therefore cursor locations) change 

within classes. Results showed a significant improvement with 

both the image and heatmap passed to the network (95.7% 

accuracy). 

2) Multi-head Networks 

Second, the effect of the multi-head approach was tested. As 

a baseline approach one network was trained with a single 

classification head on all 9 classes (E4). There are 9 classes 

instead of 10 here because with a single classification head only 

one NO class is needed. Results showed a 2% drop in accuracy 

compared to E3, indicating that not splitting the classes creates 

a harder task for the network. However, the memory footprint 

was also cut in half. To test whether the multi-head approach 

could achieve the same accuracy as two separate networks (E3) 

with the footprint of a single network, the multi-head 

architecture was applied at test time to the network trained in 

E4 (E5 in Table 1). Next, a single network was trained using the 

multi-head approach during both training and testing (E6). 

Experiments E3 – E6 all used the same input information, but 

with different methods of integrating the mode information.   
Results showed that using a single head at training, but 

multiple heads at test time (E5) resulted in the best performance 

# Architecture Input Networks Classification Heads 
Accuracy 

F1 Score (std) Size (MB) 
Time  
(ms) TVD CWPW Total (std) 

E1 ResNet18  I 2 One head per network 52.5% 70.8% 67.3% (0.4%) 63.1% (0.7%) 1480 3.5 

E2 ResNet18 H 2 One head per network 83.9% 66.2% 68.8% (0.3%) 70.3% (1.3%) 1480 3.5 

E3 ResNet18 I + H 2 One head per network 96.9% 95.3% 95.7% (0.3%) 96.3% (0.2%) 1480 3.5 

E4 ResNet18 I + H 1 One head 90.8% 94.5% 93.7% (0.4%) 94.3% (0.3%) 740 3.5 

E5 ResNet18 I + H 1 
Training: one head 

Testing: two heads 
98.4% 95.7% 96.4% (0.3%) 97.1% (0.3%) 740 3.5 

E6 ResNet18 I + H 1 Two heads 98.8% 95.0% 95.8% (0.9%) 96.6% (0.7%) 740 3.5 

Table 1. Comparison of experimental results for different input and output settings. In the Input column, I indicates only an image, H indicates only a heatmap, and 
I + H means the image with heatmap concatenated as shown in Fig. 5. In the Classification heads column “one head” refers to a  single softmax classifier with all 

classes, and “two heads” refers to the multi-head approach detailed in Fig. 5. Accuracy is total correct images over total images (weighting classes with more 

images more) and F1 score is an average across the individual F1 scores of each class (weighting each class equally).  
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(96.3% accuracy), slightly better than using separate networks 

(E3). This result indicates that the network can use the 

information from other modes to improve performance like 

multi-task learning. It was also better to use the multi-head 

architecture only during testing (E5) than both training and 

testing (E6), possibly because the harder task of training with 

all 9 classes forced the networks to better differentiate between 

classes.  

3) Network Architecture 

Third, the impact of network architecture was tested. The top 

15 architectures in terms of Top-1 accuracy density from the 

benchmark analysis of Bianco et al. [27] were evaluated. Top-

1 accuracy density is classification accuracy (in their work on 

ImageNet) divided by number of parameters and is a measure 

of a network’s performance relative to its size. Details on the 

implementation of all networks are provided in Appendix B. 

The E5 configuration was used for all architecture experiments.  
Results are presented in Table 2. The NasNet-A-Mobile [29] 

(E12) had the best accuracy (96.7%), while ShuffleNet [30] 

(E10) had the smallest size (579 MB), and ResNet18 (E5) had 

the fastest inference time (3.5 ms). All models achieved 

accuracies >94% indicating that our method is resilient to 

changes in architecture. The chosen architecture will depend on 

the desired tradeoff between accuracy, memory size, and speed, 

but we judged the optimal approach considering all factors to 

be the ResNet18 architecture (E5). ResNet18 has just slightly 

lower accuracy (96.3%) than NasNet-A-Mobile but is more 

than 10 times as fast.   
The remainder of the results are presented using the single 

network from E5 with the best performance on its validation 

set. Using validation sets is not a fair comparison since every 

network has a different validation set. However, as shown in 

Table 1, the variance between results is quite low so  the choice 

of network does not significantly affect the results. The 

confusion matrix on the test set for this network is shown in Fig. 

7. Tricuspid Valve (TV) had the lowest accuracy with 93%. 

Despite the uneven distribution of training data between 

classes, the method does not overfit to the classes with more 

images.  

B. Decision Tree Mapping 

Using the decision tree presented in Fig. 6 the output of the 

network was mapped to the final measurement type classes. The 

accuracy for each type is shown in Table 3. To check what kind 

of mistakes were occurring, an error analysis was performed for 

the two measurement types with the lowest accuracy: Aortic 

Regurgitation (AR) and Tricuspid Regurgitation (TR). For AR, 

there were 4 misclassified images. Of these, 3 were acquired 

from the apical parasternal long axis view (A full description of 

echocardiographic views is available in [1]). It is logical the 

network might miss these cases since there were few AR 

images acquired from this view in the training set because AR 

measurements are typically taken from the apical 5 chamber 

view. However, operators at different clinics may have different 

preferences, leading to the discrepancy between training and 

test sets. The last image was judged to have been misclassified 

by the labeler on re-analysis.  

There were 16 misclassified TR images. Of these 

misclassifications 13 images were from the right ventricle 

inflow view. This view was not included in the training set 

because the labeler for the training set did not have experience 

with this view and thus ignored those images. Therefore, the 

network never learned the patterns associated with these 

images. For one of the remaining images the class could not be 

determined during re-analysis, it was initially classified as TR 

because TR measurements were encoded in the file. The 

# Architecture Accuracy  F1 

score 

Size 

(MB) 

Time 

(ms) 

E5 ResNet18  [28] 96.4% 97.1% 740 3.5 

E7 ResNet34  [28] 96.5% 97.1% 911 6.2 

E8 ResNet50  [28] 96.2% 97.0% 966 8.8 

E9 SqueezeNet-v1.1 [31] 94.2% 94.8% 584 3.9 

E10 ShuffleNet [30] 96.0% 96.8% 579 12.0 

E11 MobileNet-v2 [32] 96.0% 96.8% 582 7.4 

E12 NASNet-A-Mobile [29] 96.7% 97.3% 653 46.3 

E13 GoogLeNet [25] 96.1% 96.8% 702 10.0 

E14 DenseNet-121 [33] 96.5% 97.3% 653 22 

E15 DenseNet-169 [33] 96.2% 97.0% 735 30.9 

E16 DenseNet-201 [33] 96.5% 97.3% 828 36.8 

E17 BN-Inception [34] 96.2% 96.8% 697 13.9 

E18 DualPathNet-68 [35] 96.4% 97.2% 735 27.7 

E19 Xception [36] 96.4% 97.2% 891 8.0 

E20 Inception-v3  [37] 96.0% 96.7% 908 15.8 

Table 2. Comparison of experimental results with different network 

architectures. Accuracy and F1 scores are means across five networks trained 
using the setup described in section II.E. All experiments used the same 

input/output configuration as E5 in Table 1. 

 
Fig. 7. Confusion matrix on the final test set using E5 The boxes where no 

number is shown will never be misclassified because separate classification 
heads are used. Colors are normalized to class size (percentages). Abbreviations 

are described in Fig. 2. 

 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JBHI.2020.3029392

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Gilbert et al.: User-Intended Doppler Measurement Type Prediction Combining CNNs With Smart Post-Processing
 
9 

remaining 2 images were simply missed by the network.  

C. Confidence Metric 

To test the validity of the proposed confidence metric, the 

pre-softmax set of cutoff values were extracted. Quantile cutoff 

limits were extracted for each class from 0%-10% quantiles in 

0.2% step sizes. The quantile is the ignored percentage on the 

validation set: a quantile of 5% indicates that the 5% of images 

with the lowest pre-softmax values would be ignored. Quantiles 

were tested only on the single network  but were obtained by 

averaging across all five networks and validation sets to 

enhance the robustness.  
The test set was split into two pieces, the first containing the 

1431 correctly classified images (correct set) from E5 and the 

second containing the 51 misclassifications (incorrect set). The 

quantiles were used when running inference on these two sets 

of images as well as the full test set and the unknown and extra 

sets put aside during labeling. For each set, the ignored rate was 

recorded while iterating through the quantile values. For the test 

set, the error rate was also recorded. Results are shown in Fig. 

8, with ignored rates on the left axis and error rate (in red) on 

the right axis.  

The confidence metric results may indicate some overfitting, 

as well as that the validation and test sets came from different 

distributions. If the network is not overfit and the images are 

from the same distribution, the quantile should map 1:1 to the 

ignored test percentage. However, results showed at the 0.5% 

quantile 5% of the test images are ignored. A difference in 

distribution is expected since the images came from separate 

clinics and matches what was found in the error analysis.  

Results also demonstrated the confidence metric accurately 

detected which images came from outside our training 

distribution and eliminated misclassified images at a much 

higher rate than correctly classified ones. For example, a user 

setting the confidence threshold at the 8% quantile mark would 

have to manually label 16.5% of their images but would achieve 

an accuracy of 99% on those images automatically classified 

because ~80% of the incorrect images would be ignored.  

Both the unknown and extra image sets were also ignored at 

a much higher rate, confirming that the metric identified out of 

distribution samples. Ignored rates showed an approximately 

logarithmic relationship with increasing quantile values for all 

three of the incorrect, unknown, and extra sets. For all three, 

>20% of images were ignored at the 1% quantile. 

Results were compared to the MC-dropout versions of the 

model. Each MC-dropout model was run 100 times, and 

quantile limits were set for values from the pre-softmax layer 

and softmax layer of the normal model, and from the mean and 

variance of the pre-softmax and softmax layers from the MC-

dropout model. Results were similar for all implementations, 

with a slightly higher ignored rate for all sets when using the 

pre-softmax layer from either model. These results indicate that 

the choice of how to extract quantile values does not play a large 

role in the resulting confidence metric. The advantages of using 

the pre-softmax values are that it is simpler to implement and 

no additional experiments need to be run.  

Metrics from the ensembled approaches were also compared 

to selected quantiles of the proposed confidence metric in 

experiments C1-C5 in Table 4. The ensemble networks 

contained all five originally trained models. The predicted class 

came from either the majority vote (C4) or only images where 

all networks agreed while other images were ignored (C5). 

These ensembled approaches were compared to representative 

quantiles from Fig. 8: the 0% quantile (C1 – the single chosen 

network from E5), the 5.2% quantile (C2 – selected as the 

closest error rate to C5), and the 8% quantile (C3 – first quantile 

with error <1%). Using majority voting (C4) provided a small 

improvement in error rate (3.2%) compared to C1 (3.4%) 

without ignoring any images. Selecting only matching outputs 

(C5) provides a significant decrease in error rate (1.3%) 

although 4.8% of images were ignored. To achieve an 

equivalent error rate with the proposed confidence metric (C2), 

more than twice the number of images were ignored. The 

downside of the ensembled approach is five networks must be 

initialized, significantly increasing the memory consumption.  

D. Implementation Details  

All parameters were extracted automatically from private 

Dicom tags using Python 3.6. Pre-processing, training, and 

 
Table 3. Classification accuracy for the selected network for each measurement 

type sorted by mode. Abbreviations are described in Fig. 2. 

 

 
Fig. 8. Results of confidence metric experiments with ignored rates (green lines) 

on the left axis and error rate of the test set (red line) on the right axis. Ignored 
rate refers to the percentage of images which the network did not label because 

the output was beneath the cutoff for that quantile. Test refers to the test set of 

images. Correct is the subset of test images correctly classified by the network 
in E5 and incorrect is the subset of misclassifications. Unknown is the set of 

images which were unidentified during labeling. Extra is the set of images from 

classes not included in this classification scheme. An ideal confidence metric 
should completely ignore the incorrect and extra sets while ignoring none of 

the correct set. Ignoring the unknown set indicates the network accurately 

reflects expert confidence, but it is possible the network has detected features 

unseen to the observer. Best viewed in color. 
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testing were carried out on an Ubuntu machine with Python 3.6, 

PyTorch 0.4, and an NVIDIA Titan X GPU. All networks were 

trained for 60 epochs. The learning rate was set to 0.1 for all 

experiments other than E9 where it had to be reduced to 0.01 to 

get the network to converge. Learning rates were reduced by a 

factor of 10 every 20 epochs. All experiments used standard 

gradient descent with momentum (coefficient 0.9) and weight 

decay (0.0005). We used normalization to center the dataset 

during training and inference. The B-mode images were 

normalized to [0,1]. The heatmaps were already in the range 

[0,1] because they are probability maps., Both images and 

heatmaps were mean-centered by subtracting the mean value of 

all pixels in all images in the training set. This value was 0.3 for 

the B-mode image and 0.0062 for the heatmap image. Cross-

entropy loss was used for all experiments and the classes were 

not weighted since the results did not suffer from class 

imbalance. Preliminary experiments with a weighted loss 

function did not improve results. While training the multi-head 

network, 𝜆1 and 𝜆2 (loss function hyperparameters from  (1)) 

were set to 0.18 and 0.82 respectively, but results were not 

sensitive to changes of 𝜆’s within normal ranges. TVD 

classification is an easier task (as shown in Table 1)  so 𝜆2 >
 𝜆1 even though there were fewer TVD images.  

IV. DISCUSSION 

Our results indicate that highly accurate Doppler spectrum 

measurement type classification is possible in 

echocardiography without using the spectrum data. Accurate 

classification despite the omission of the Doppler spectra 

proves the network is learning the relationship between user 

input and anatomical structures. The spectrum data can be 

ignored because each class correlates to a unique physical 

location within the heart after using our mapping scheme. Note 

that since each Doppler spectrum can be acquired from a variety 

of different views, this does not imply each class corresponds 

to a unique location in the input image. Accurate classification 

requires understanding of both the B-mode image and the 

cursor location. Highly accurate results have already been 

achieved on view recognition tasks in echocardiography (e.g. 

[7], [8]) indicating effective understanding of the B-mode 

image through CNNs. Our results take this a step further. We 

show heatmaps are an effective way to encode physical location 

information for CNNs, demonstrating the ability to connect 

anatomical structural information (B-mode image) to relevant 

user input (Doppler cursor location) in a classification.  

Since deep-learning algorithms deployed in clinical settings 

must frequently compete for resources, methods for decreasing 

resource utilization were analyzed. Results demonstrated that a 

multi-head classification could reduce the memory footprint 

when the classification task can be split into separate problems 

by external parameters. The multi-head networks (E5/E6) 

maintained similar accuracy levels to those of separate 

networks (E3) and higher accuracy than a single network 

trained with all classes (E4). The final implementation achieved 

sub-4ms inference time, indicating near real-time performance.  

Our approach demonstrated high accuracies across varying 

network architectures. Additionally, training several networks 

from differing dataset splits showed consistent results with low 

variances in F1 scores and accuracies. The repeatability of our 

results across architectures and data splits is another strength of 

the contributions. 

We also conducted an error analysis of the mistakes made by 

the network. Encouragingly, the error analysis showed the 

network is accurately learning the image and heatmap patterns 

included during training. The errors seen were mostly due to 

differences between the training and test sets in echo views or 

mismatch in labeling practices. Because the network accurately 

learned the patterns it was exposed to, accuracy could 

continually be improved by gathering additional training data 

that covers misclassified cases.  

Misclassifications can be costly in a medical setting. They 

can lead to confusion when analyzing patient data and mistrust 

in artificial intelligence-based tools. To attempt to reduce 

misclassifications, several measures were taken. First, a No 

Organ (NO) class was included in the training dataset to avoid 

classifying images of air and gel into another class. Second, 

cutoff limits were set based on output values from the last fully 

connected (“pre-softmax”) layer for each class. Images with a 

score below the cutoff were ignored rather than classified. 

Overall, results indicated that the proposed confidence metric 

can significantly reduce the error rate by ignoring missed 

images in the test set at a much higher rate than correctly 

classified ones. The confidence metric also ignores the 

unknown and extra image sets at an approximately three times 

higher rate than those from the test set. Our method 

demonstrates one way to handle inputs from unseen 

distributions in a classification problem. Moreover, it allows a 

user to easily set the quantile limit depending on the desired 

tradeoff between the error and ignored rates.  

Results testing ensemble networks showed these methods 

ignore fewer images for the same error rate compared to 

quantile cutoffs. Ensemble methods are a more robust 

confidence predictor for environments without resource 

constraints. Moreover, ensemble methods could easily be 

combined with the quantile cutoff approach discussed above to 

provide a robust, tunable ignored vs. error rate tradeoff. 

In future work, we hope to extend this method to public 

Dicom data (and thus multi-vendor). This is much easier 

because we don’t use the Doppler spectra in our pipeline; the 

B-mode image, Doppler cursor location, mode, and baseline are 

# Architecture Error 

rate  

Ignored 

rate 

Size 

(MB) 

Time 

(ms) 

C1 Single ResNet18,  

0% quantile 

3.4% 0% 740 3.5 

C2 Single ResNet18, 

5.2% quantile 

1.2% 11.4% 740 3.5 

C3 Single ResNet18, 

8% quantile 

0.9% 16.5% 740 3.5 

C4 Ensemble ResNet18, 
Majority vote 

3.2% 0% 3700 3.5 

C5 Ensemble ResNet18, 

Matching output 

1.3% 4.8% 3700 3.5 

Table 4. Comparison of selected quantiles to ensemble methods using 5 

networks. Size and time estimates for ensemble approaches assume that 
inference can be run for all networks simultaneously which depends on the 

implementation.  
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the only data needed. Although we extracted this information 

from raw data in the present work, all of it is also available from 

public Dicom tools. The information  could thus be extracted 

from any vendor’s Doppler data. The main difference in using 

publicly available data (and thus scan-converted images) is 

some overlay on the public B-mode image, potentially 

including color-flow. However, with a little effort we anticipate 

the ability to overcome this and make our method fully multi-

vendor. 

V. CONCLUSION 

In this work, we demonstrated a CNN-based method for the 

automated classification of Doppler measurement types. An 

example integration within a clinical workflow is presented in 

Appendix C of the supplementary material. Notable 

performance gains were shown on the task by encoding the 

Doppler cursor as a heatmap and introducing a post-processing 

mapping scheme to simplify the problem. These methods would 

also be applicable to other tasks including location information 

as an input parameter and/or with linearly separable classes. We 

design a confidence metric capable of discarding a large 

proportion of images with high uncertainty to create a more 

reliable classification system. Our method performs fast and 

accurate classification of Doppler measurement types. In the 

same way automatic echocardiographic view recognition 

unlocked fully automated processing of many B-mode images, 

our work unlocks fully automated Doppler spectra analysis, 

bringing increased efficiency and statistical power to clinical 

workflows. 
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