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Abstract. Classical assessments of trends in gridded temperature data perform independent evaluations across
the grid, thus, ignoring spatial correlations in the trend estimates. In particular, this affects assessments of trend
significance as evaluation of the collective significance of individual tests is commonly neglected. In this article
we build a space–time hierarchical Bayesian model for temperature anomalies where the trend coefficient is
modelled by a latent Gaussian random field. This enables us to calculate simultaneous credible regions for joint
significance assessments. In a case study, we assess summer season trends in 65 years of gridded temperature data
over Europe. We find that while spatial smoothing generally results in larger regions where the null hypothesis
of no trend is rejected, this is not the case for all subregions.

1 Introduction

Analyses of temperature data in space and time play a cru-
cial role in the study of climate change. Quantifying temper-
ature trends globally and regionally is still part of the global
warming debate and challenges policymakers and stakehold-
ers in their efforts to postulate adequate adaptation and mit-
igation initiatives. In particular, sound and robust decision
making calls for extending point estimates by also speci-
fying their uncertainty (Thorarinsdottir et al., 2017). Most
assessments of changes in historical climate are performed
by assessing trends in time series of observational data or
observation-based data products (see e.g. the most recent as-
sessment report of the Intergovernmental Panel on Climate
Change – IPCC; Stocker et al., 2013). The trend modelling is
commonly performed by estimating the linear component of
the change over time even if this simple approach has many
well-known shortcomings. Trends in the large-scale state of
the climate system may reflect systematic changes or low-
frequency internal variability of the system, particularly for
short time series (von Storch and Zwiers, 1999). Longer time
series may include breakpoints which change the nature of

the trend (Seidel and Lanzante, 2004). Aiming for a more
general approach to trend estimation, Wu et al. (2007) define
the trend as a monotonic function and suggest to estimate the
trend by decomposing the data into so-called intrinsic mode
functions in a non-parametric manner where the trend com-
ponent is the residual (see also Franzke, 2014). Similarly,
Craigmile and Guttorp (2011) build a wavelet-based hierar-
chical Bayesian model to estimate both seasonality and trend,
while Scinocca et al. (2010) estimate a non-linear trend using
smoothing splines.

The trend assessment additionally requires an appropriate
modelling of the serial correlation in the data (von Storch
and Zwiers, 1999; Chandler and Scott, 2011). In the most re-
cent assessment of atmospheric and surface observations, the
IPCC chose to employ a linear trend model with a first-order
autoregressive, or AR(1), error structure following Santer
et al. (2008) “because it can be applied consistently to all
the data sets, is relatively simple, transparent and easily com-
prehended, and is frequently used in the published research
assessed” (Hartmann et al., 2013a, pp. 180). A comparison
of various analysis methods for global mean annual temper-
ature series revealed that allowing AR(1) dependence in the
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data yields confidence intervals for the trend estimates that
are roughly twice the width of those obtained under assump-
tions of independence (Hartmann et al., 2013b). Alternative
approaches to model the temporal correlation include long-
term memory models (e.g. Bunde et al., 2014; Craigmile
and Guttorp, 2011; Franzke, 2010, 2012; Ludescher et al.,
2015) which are more appropriate for data with natural low-
frequency variability (Lorenz, 1976).

A standard approach in climatology is to work with grid-
ded data products (e.g. New et al., 2000). For gridded data
and multi-site analyses, the trend modelling and the sub-
sequent testing of trend significance are usually performed
independently in each grid point location (Hartmann et al.,
2013a), with a few exceptions (e.g. Craigmile and Guttorp,
2011). Livezey and Chen (1983) and later Wilks (2006, 2016)
rightfully argue that collections of multiple statistical tests,
such as individual tests at many spatial grid points, are often
interpreted incorrectly and in a way that overstates research
results. Wilks (2006, 2016) suggests controlling the false dis-
covery rate (FDR) (Benjamini and Hochberg, 1995) to deal
with this problem. We propose to take this a step further and
perform a joint spatial analysis and construct simultaneous
credible regions to assess the significance of the trend esti-
mates jointly in space.

We employ the same basic trend assessment model as the
IPCC uses in its most recent assessment report (Hartmann
et al., 2013a). That is, we apply a Gaussian model with a lin-
ear trend and an AR(1) temporal correlation structure. Addi-
tionally, we assume a spatial structure in the trend coefficient
and add a spatial error term. Parameter estimation is obtained
using Bayesian methodology, combining the stochastic par-
tial differential equation (SPDE) approach of Lindgren et al.
(2011) with the methodology of integrated nested Laplace
approximation (INLA) (Rue et al., 2009). Based on the pos-
terior distribution of the spatial trend coefficient, we then
perform a simultaneous assessment over the spatial domain
following Bolin and Lindgren (2015). We compare the joint
assessment to independent assessments in each grid point
location based on the marginal posterior distributions. In a
case study, we apply our approach to a gridded data product
for summer mean temperatures in Europe. There is a con-
sensus that temperatures in Europe are generally warming.
However, to which extent depends on the region or spatial
scale, the time frame and the data source considered (e.g.
Böhm et al., 2001; Craigmile and Guttorp, 2011; Franzke,
2015; Gao and Franzke, 2017; Lorenz and Jacob, 2010; Ti-
etäväinen et al., 2010; van der Schrier et al., 2011, 2013).

The remainder of this paper is organized as follows. The
data used in our analysis is described in Sect. 2. The follow-
ing Sect. 3 provides a description of the model, a review of
the Bayesian estimation approach, and a description of the
methods for assessing the significance of the trend estimates.
The results are provided in Sect. 4, and conclusions are given
in Sect. 5.

2 Data

We analyse the European gridded observation dataset (E-
OBS) gridded daily temperature data product version 11.0
for the time period 1 January 1950 through 31 December
2014 (Haylock et al., 2008). E-OBS is a land-only gridded
version of the European Climate Assessment (ECA) data set
which contains series of daily observations at meteorological
stations throughout Europe and the Mediterranean collected
by the Royal Netherlands Meteorological Institute (KNMI).
The original data product covers the area 25–75◦ N× 40◦W–
75◦ E on a 0.25◦ regular grid. The details of the gridding pro-
cedure are given in Haylock et al. (2008) and Hofstra et al.
(2008). The gridding involves a three-step approach that in-
cludes a data homogenization step. Assessments of uncer-
tainties related to measurements or gridding procedures are
not included in E-OBS version 11.0, and we have, thus, not
considered these here.

Prior to the statistical analysis, we compute a seasonal
mean based on the daily data for the summer season cover-
ing June through August (JJA). This results in a time series of
length 65 in each grid point. Finally, each time series is mean
centred and standardized prior to the analysis, leaving series
of local anomalies for investigation of trends on a decadal
scale. To investigate the effects of spatial scale on the result-
ing trend estimates, we consider spatially upscaled versions
of the data where the 0.25◦ gridded anomalies have been up-
scaled to a regular 1◦ grid and a regular 5◦ grid over the entire
European domain as well as data on a regular 0.5◦ grid over
Fennoscandia and Iberia. The upscaling is performed by av-
eraging up so that, for example, a 1◦ gridded value is given by
the average of the corresponding set of 16 values at the 0.25◦

resolution. Ideally we would like to keep the finer scale anal-
ysis at the original 0.25◦ resolution, but for computational
reasons, full resolution is traded off for spatial extent.

3 Methods

Let {Yst } denote a set of temperatures, in our case standard-
ized seasonal mean temperature anomalies, at spatial loca-
tions s ∈ {s1, . . .,sn} ⊂ R2 and time points t ∈ {t1, . . ., tm} ⊂
R+. The aim of the current study is to assess the spatial ex-
tent of potential trends in the data set. For this, we perform a
spatial analysis in which both the model estimation and the
subsequent significance testing are performed in a spatially
coherent manner.

3.1 Linear trend estimation

For a spatial linear trend estimation, we employ a space–time
model of the type

Yst = gs(t)+ εst ,

εst ∼N (0,σ 2
ε ), (1)
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where gs(t) describes the trend at location s, while εst de-
notes Gaussian noise which is uncorrelated in space and time.
More explicitly, we assume the following specification for
the trend term gs(t),

gs(t)= (β0+βs) t + τst ,

τst = ϕτs(t−1)+ ξst ,

β ∼N (0,6β ),
ξ t ∼N (0,6ξ ), (2)

where β = (βs1 , . . .,βsn )> and ξ t = (ξs1t , . . ., ξsnt )
> for t ∈

{t1, . . ., tm}. That is, the trend gs(t) follows an AR(1) pro-
cess in time with noise terms that are zero-mean and tempo-
rally independent but spatially correlated Gaussian random
fields (GRFs). We denote the continuously indexed GRFs
by {ξt (s), s ∈ R2

}
tm
t=t1

, where ξt (si)= ξsi t for i = 1, . . .,n.
The model also assumes a spatially correlated GRF denoted
{β(s), s ∈ R2

} for the trend coefficient, again with β(si)=
βsi for i = 1, . . . , n. Here, β0 denotes the overall trend, while
the random field β(s) models the deviations from the overall
trend across space. We assume that each of the GRFs for the
noise and trend coefficients has a stationary Matérn covari-
ance structure (Matérn, 1960). This implies that the covari-
ance between two components of the GRF at spatial locations
si and sj is modelled by the covariance function

c(si,sj )=
σ 2

2ν−10(ν)
(κd(si,sj ))νKν(κd(si,sj )), (3)

where 0 is the gamma function, Kν is the modified Bessel
function of the second kind, d(si,sj ) denotes the Euclidean
distance between the locations si and sj , σ 2 is the marginal
variance parameter, ν controls the smoothness, and κ is a
spatial scale parameter.

3.2 Statistical inference using the SPDE–INLA
approach

Spatial analyses involving high-dimensional covariance ma-
trices are often not computationally feasible due to the dense
structure of such matrices. A computationally efficient alter-
native in fitting Eqs. (1)–(2) is to make use of the SPDE ap-
proach introduced by Lindgren et al. (2011). A key idea of
this approach is to construct continuously indexed approxi-
mations of GRFs by solving SPDEs. The solution is then rep-
resented as a Gaussian Markov random field (GMRF) having
a sparse precision (inverse covariance) matrix. The GMRF
representation is used for practical computation, and the so-
lution retains a well-defined continuous interpretation.

For illustration, we take a brief look at how the GMRF rep-
resentation of the trend coefficient field is constructed. The
construction for the noise field is obtained in exactly the same
manner. For general dimension d let {β(s), s ∈ Rd} denote a
continuously indexed GRF with Matérn covariance, also re-
ferred to as a Matérn field. This field represents an exact and

Table 1. Overview over the data resolution, the size of the spatial
data grid and the mesh size for the four data sets analysed in this
study.

Area Resolution Grid size Mesh size

Europe 5◦ 70 203
Europe 1◦ 1213 711
Fennoscandia 0.5◦ 949 1153
Iberia 0.5◦ 324 430

stationary solution to the stochastic partial differential equa-
tion

(κ2
−∇)α/2(τβ(s))=W(s), s ∈ Rd , (4)

where ∇ is the Laplacian and W(s) is a Gaussian white noise
process. The parameters in the two formulations of Eq. (3)
and Eq. (4) are coupled in that the Matérn smoothness equals
ν = α− d/2 and the marginal variance is given by

σ 2
=

0(ν)
0(α)(4π )d/2κ2ντ 2 . (5)

Furthermore, the range of the covariance structure can be de-
scribed by

ρ = (8ν)1/2/κ, (6)

the distance for which the correlation function has fallen
to approximately 0.13, for all ν > 1/2 (Lindgren and Rue,
2015). Here, we set α = 2, which is the most natural choice
for d = 2 according to Whittle (1954). Alternative models
are discussed in e.g. Lindgren et al. (2011) and Lindgren and
Rue (2015).

An approximate solution of Eq. (4) can be found using the
finite element method by first defining a triangular mesh with
G vertices on the relevant continuous domain and then using
the piecewise linear representation.

β(s)=
G∑
g=1

ψg(s)β̃g

Here, the basis functions {ψg(s)} are chosen to have the
value of 1 at vertex g, while being 0 at all other vertices.
The weights {β̃g}, giving the heights of the triangles, have
a Gaussian distribution with zero mean. The resulting dis-
cretely indexed vector for the trend coefficients at the ver-
tices, β̃ = (β̃1, . . ., β̃G), will be a GMRF, as the SPDE solu-
tions of Eq. (4) are Markovian when α is integer valued (see
Lindgren et al., 2011, for further details). Examples of the
triangular mesh used in our analysis are shown in Fig. 1, and
a list of the data sets used for the analysis is given in Table 1.

A major benefit of the SPDE approach is its implementa-
tion within the computational framework of latent Gaussian
models using the R package R-INLA (Rue et al., 2009; Rue
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Figure 1. The triangular meshes used in our full European domain analyses for data on a 5◦ grid (a) and data on a 1◦ grid (b). Data locations
are indicated by red dots; those coinciding with mesh vertices are superimposed in green.

et al., 2017). In general, latent Gaussian models represent a
subclass of structured additive regression models (Fahrmeir
and Tutz, 2001) having a three-stage hierarchical structure.
First, the observations {Yst } are assumed to be conditionally
independent given a latent field x and hyper-parameters θ1.
In our case, the likelihood is then specified by

π (y | x,θ1)=
m∏
j=1

n∏
i=1
π (ysi tj | x,θ1),

in which we assume a Gaussian distribution for the observa-
tions. Second, all random variables in Eq. (2), including the
predictor ηst = E(Yst ), are incorporated into the latent field
x = {β0,β, {ξ t }, {ηst }}. A crucial assumption of latent Gaus-
sian models is that x is a Gaussian Markov random field, i.e.

π (x | θ2)∼N (0,Q−1(θ2)),

where the precision matrix Q(θ2) is sparse.
Finally, the third stage specifies a prior π (θ )= π (θ1,θ2)

for the hyper-parameters, typically being non-Gaussian. In
Eq. (2), we have five hyper-parameters, including the first-
lag autocorrelation coefficient ϕ and the parameters τ and κ
related to the variance (Eq. 5) and range (Eq. 6) of the Matérn
fields. The resulting posterior is then expressed by

π (x,θ | y)=
m∏
j=1

n∏
i=1
π (ysi tj | x,θ )π (x | θ )π (θ ),

where the hyper-parameters are given independent pri-
ors. Specifically, we set log((1+ϕ)/(1−ϕ))∼N (0,0.15−1)
to ensure that |ϕ|< 1 and log(τ )∼N (log(τ0),1.5−1) and
log(κ)∼N (log(κ0),1.5−1) for both the trend coefficient

field and the noise field. Here, log(τ0) and log(κ0) are deter-
mined automatically in the inference procedure depending on
properties of the mesh (see Lindgren and Rue, 2015, as well
as Figs. 6 and 7 for further details).

The INLA methodology is a deterministic approach that
combines numerical approximations, interpolation and in-
tegration to provide accurate estimates of the posterior
marginals for all components of the latent field and all the
hyper-parameters. Implementation is greatly facilitated by
the R-INLA package, which in general can be used to fit
SPDE models of different complexity and combine these
with various latent model components to build the linear
predictor (see Blangiardo and Cameletti, 2015, and Krainski
et al., 2018, for recent updates to the SPDE–INLA approach).

3.3 Assessing significance of trend estimates

Denoted by �⊂ R2 is our full study region, that is the union
of the n grid cells for which we have data. The uncertainty
in the latent trend coefficient process β is commonly as-
sessed using a credible band or an associated p value un-
der a null hypothesis of no trend, separately for each loca-
tion s ∈� (Hartmann et al., 2013a). Such a pointwise cred-
ible band for β can be defined by the equi-tailed intervals
{[qα/2(si),q1−α/2(si)]}ni=1, where qα(si) denotes the α quan-
tile of the posterior marginal distribution of βsi . In our ap-
plication, it is then of interest to assess for which locations
s ∈ {s1, . . .,sn} the pointwise credible band does not contain
the level u= 0.

However, as such pointwise credible bands do not provide
a joint interpretation, we also construct a simultaneous credi-
ble region so that with probability 1−α, the trend coefficient
field β stays inside the credible band at all spatial locations

Adv. Stat. Clim. Meteorol. Oceanogr., 6, 1–12, 2020 www.adv-stat-clim-meteorol-oceanogr.net/6/1/2020/



O. Haug et al.: Spatial trend analysis of temperature 5

within the region. The simultaneous credible band is defined
as the region {(s,β) : s ∈�, qρ(s)≤ β ≤ q1−ρ(s)}. Here, ρ
is chosen such that the posterior probability P(qρ(s)< βs <

q1−ρ(s),s ∈�)= 1−α. Thus α controls the probability that
the trend coefficient field is inside the credible band at all
locations in �. Similarly as above, we are here interested in
the spatial region where u= 0 is not contained in the credible
band. This region is also called the avoidance excursion set
for the level u= 0. The simultaneous credible bands and the
associated avoidance excursion sets are calculated using the
sequential integration method of Bolin and Lindgren (2015),
as implemented in the R package excursions (see also
Bolin and Lindgren, 2018).

4 Results

Here, we present and compare the results for the four differ-
ent data sets described in Table 1. To facilitate readability,
we first establish precise terminology for referencing the in-
put data, the intermediate computations, and the results. The
E-OBS data are aggregated from their original 0.25◦ resolu-
tion, and the input data grid refers to the locations at either
of those aggregate levels (5, 1, and 0.5◦). As mentioned in
Sect. 3.2, a mesh specifies the triangulation on which the pa-
rameter estimation is carried out. Results presented in mesh
maps are obtained by rasterizing the meshes to images with
pixel resolution reflecting that of the underlying input data.
Introducing a common 1×1◦ lattice structure makes it possi-
ble to consistently compare maps across different underlying
data sets and meshes. Lattice maps are established from pro-
jecting mesh fields onto that 1× 1◦ structure in space. What
distinguishes mesh from lattice maps is that the former is
made from simple spatial extrapolation of the field values at
the mesh vertices, whereas the latter consists in projecting a
continuous, triangulated surface representation of the mesh
field directly onto the lattice locations.

4.1 Fennoscandia and Iberia at 0.5◦ resolution

Figure 2 shows the results for data covering Fennoscandia,
i.e. Norway, Sweden, and Finland, on a 0.5◦ grid. The pos-
terior mean of the trend estimates are positive overall and
range from 0.08 to 0.21 ◦C decade−1 with the highest poste-
rior mean close to Stockholm on Sweden’s east coast. The
posterior standard deviation is quite constant over the region
at around 0.12 ◦C. As a result, the avoidance excursion set
where the spatial null hypothesis of no trend is rejected at
level α = 0.05 consists of a small region around Stockholm
only.

The posterior mean trend estimates for the Iberian Penin-
sula in Fig. 3 are somewhat higher than in Fennoscandia and
range from 0.12 to 0.29 ◦C decade−1. The lowest values oc-
cur in northern Spain, while the highest trends are estimated
in northern Portugal and in the Júcar River basin in eastern
Spain. The posterior standard deviation of the trend estimates

is somewhat lower than in Fennoscandia at approximately
0.10 ◦C decade−1 over the region. The avoidance excursion
set for the level α = 0.05 now covers slightly less than 50 %
of the area, indicating a greater degree of warming compared
to Fennoscandia. Note that results for areas outside of the
Iberian Peninsula are based on the extrapolation of the data
from Iberia and should thus be interpreted with care.

4.2 Europe at 5 and 1◦ resolutions

Posterior mean estimates of trend coefficient fields for the
coarser input data grid resolutions of 5 and 1◦ are shown in
Fig. 4. For comparison, we consider results both on raster-
izations of the meshes used for the parameter estimation as
well as projected onto a regular 1◦ lattice. For the 5◦ data,
the posterior mean trend estimates on the lattice range be-
tween 0.07 and 0.34 ◦C decade−1, while the range is slightly
lower at [−0.05, 0.30] for the higher 1◦ data resolution. At
the coarser data resolution the lowest trends are estimated in
Romania and Bulgaria in Eastern Europe. When these esti-
mates are extrapolated to the finer-scale lattice, the lowest
estimates seem mostly concentrated over Bulgaria. However,
for a data resolution of 1◦, the lowest trend estimates con-
centrate somewhat further north over Romania. Furthermore,
we see that the finer-resolution data results in a higher spatial
variability in the trend estimates, as one might expect.

Several other studies have assessed temperature trends in
Europe using a range of methodologies and data sets (see
e.g. Hartmann et al., 2013a, and references therein). For stud-
ies that use observation-based data sets and consider a sim-
ilar time period to ours, Tietäväinen et al. (2010) estimate
a summer season warming of 0.13 ◦C decade−1 for 1959–
2008 in Finland using spatially interpolated station data with
a quadratic trend model with a 95 % confidence interval
of (−0.08, 0.34). For comparison, our posterior mean esti-
mates across lattice cells that cover Finland have a range of
(0.19, 0.21) for the coarser 5◦ data resolution and a range
of (0.17, 0.22) for the finer resolution. Estimations from
van der Schrier et al. (2011) show a summer warming trend
of 0.24 ◦C decade−1 for 1950–2008 in the Netherlands, ap-
plying a linear trend model to the Central Netherlands Tem-
perature time series. These estimates are slightly higher than
those obtained here, which for the 1◦ lattice cells covering
the Netherlands have a range of (0.22, 0.23) when based on
5◦ data and a range of (0.17, 0.21) for 1◦ data. Some of these
differences might be due to slightly different time periods
considered.

In Fig. 5 we compare a classical significance assessment
of the trend estimates, where a test is performed based on the
marginal posterior distribution in each lattice cell indepen-
dently, and assessment based on excursion sets as proposed
by Bolin and Lindgren (2015). Note that the spatial test is ap-
plied to estimates of continuous trend fields so that the result-
ing avoidance excursion sets are subsets of continuous fields,
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Figure 2. Trend estimates for Fennoscandia based on input data on a 0.5◦ grid. (a) Posterior mean estimates of the trend coefficient (in
◦C decade−1) projected on a regular 1◦ lattice. (b) Posterior standard deviation of the trend coefficient on the same lattice. (c) Avoidance
excursion set where the spatial null hypothesis of no trend is rejected for the level α = 0.05 (red). Note that the estimates outside Fennoscandia
are based on extrapolation of the data for these three countries.

Figure 3. Trend estimates for the Iberian Peninsula based on input data on a 0.5◦ grid. (a) Posterior mean estimates of the trend coefficient
(in ◦C decade−1) projected on a regular 1◦ lattice. (b) Posterior standard deviation of the trend coefficient on the same lattice. (c) Avoidance
excursion set where the spatial null hypothesis of no trend is rejected for the level α = 0.05 (red). Note that the estimates outside Iberia are
based on data extrapolation.

while the sets generated by the marginal testing inherit the
spatial resolution of the 1◦ lattice.

In the spatial test, the interpretation is that for a large set
of realized trend fields, only 5 % of the fields should exhibit
no trend anywhere within the avoidance set for α = 0.05,
and 1 % of the fields should exhibit no trend for α = 0.01.
This is a much stricter condition than that of assessing the
marginal credible intervals. Consequently, the avoidance ex-
cursion sets are significantly smaller than the corresponding
collection of grid cells where a null hypothesis of no trend
is rejected. For example, the avoidance excursion set for a
5◦ data grid and α = 0.05 is similar in size and shape than
to of the set for the marginal assessment of the same data at
α = 0.01.

The avoidance excursion sets are widely different for the
two data resolutions. At the higher data resolution, the avoid-
ance excursion set has a smaller total area and a more irreg-
ular structure. However, the avoidance excursion set for the
1◦ data at a given α level is not a subset of the avoidance
excursion set of the coarser data at the same α level (see for
instance the area that comprises southern Bulgaria, the east-
ern part of Greece, and Turkey north of the Sea of Marmara).

For Fennoscandia and the Iberian Peninsula, we see a sys-
tematic decline in the size of the avoidance excursion set

as the data resolution gets finer. For the 5◦ data, the entire
Iberian Peninsula is included in the avoidance excursion set
for the level α = 0.05 (cf. Fig. 5a), with less than half cov-
ered for the finest data resolution of 0.5◦ (cf. Fig. 3c). While
the data from Fennoscandia is generally found to exhibit less
of a trend, a similar effect of the data resolution is appar-
ent. However, note that for the coarsest data resolution of 5◦

and α = 0.05, the area around Stockholm on the east coast
of Sweden is not included in the avoidance excursion set (cf.
Fig. 5a), while this small region comprises the entire avoid-
ance excursion set at the finest data resolution of 0.5◦ (cf.
Fig. 2c). Considering the intermediate data resolution of 1◦

reveals that the Stockholm area is part of the avoidance ex-
cursion set at this stage as well (see Fig. 5c). Furthermore,
there is an area in the southern part of the Lappland district
up north in the country that goes into the avoidance excursion
set of the 1◦ resolution data (see again Fig. 5c). Interestingly,
this area is included in the avoidance excursion set of neither
the coarser 5◦ nor the fine-scale 0.25◦ resolution maps (cf.
Fig. 5a and c and Fig. 2c).

4.3 Posterior distributions of hyper-parameters

A further assessment of the difference between the four anal-
yses can be made through a comparison of the respective
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Figure 4. Posterior mean estimates of trends (◦C decade−1) in the summer season for 1950–2014 for 5 and 1◦ input data grids resolutions.
(a, c) Results on the respective rasterized meshes. (b, d) Results projected onto a common 1◦ lattice.

Figure 5. Significance assessment of trend estimates with red areas denoting locations where the null hypothesis of no trend is rejected
based on avoidance excursion sets for simultaneous credible regions and marginal credible intervals for 5 and 1◦ data. All estimates have
been extrapolated to the same 1◦ lattice prior to the significance assessment. The excursion set maps (a, c, e, g) are produced via the
continuous() function of the R package excursions, thus reflecting their continuous nature as opposed to the lattice structure kept
for the marginal credible intervals (b, d, f, h). The upper panels display results at the 5 % significance level, whereas 1 % significance levels
are found in the bottom row.

posterior distributions of the hyper-parameters of the statis-
tical model. The model has five hyper-parameters; the first-
lag autocorrelation coefficient and two parameters describe
the spatial structure of each of the two latent GRFs. For in-
terpretability, we consider the posterior distributions of the
marginal variance (Eq. 5) and the range parameter (Eq. 6)
for each GRF rather than those for the model parameters τ
and κ .

The posterior distributions for the marginal variance and
the range parameter for the spatial trend coefficient are given
in Fig. 6. Recall that the range parameter is defined as the
distance at which the correlation has fallen to approximately
0.13. The posterior mean estimates of the range are 13.4◦

for the 5◦ data, 7.1 for the 1◦ data, 6.7 for the 0.5◦ data in
Iberia, and 4.4 for the 0.5◦ data in Fennoscandia. This in-
dicates a substantial correlation between the trend estimates
across neighbouring grid cells irrespective of the input data
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Figure 6. Posterior distributions of the marginal variance (a; Eq. 5)
and the range parameter (b; Eq. 6) for the spatial trend coefficient
for all four data sets. Prior distributions for each data set are indi-
cated with dashed lines.

Figure 7. Posterior distributions of the marginal variance (a; Eq. 5)
and the range parameter (b; Eq. 6) for the spatially structured error
term for all four data sets. Prior distributions for each data set are
indicated with dashed lines.

grid resolution, with the neighbourhoods growing in size
with finer data resolution. The posterior distributions for the
marginal variances are somewhat more similar, with the pos-
terior mean of the marginal spread varying between 0.05 and
0.08. The uncertainty in the estimates of the marginal vari-
ance is much higher in Iberia than in Fennoscandia for iden-
tical data resolutions. While this might be an indication of
structural non-stationarities across Europe, it is also worth
noting that the Fennoscandia data set is roughly 3 times
larger than that for Iberia (cf. Table 1).

The results for the spatial error terms are presented in
Fig. 7. The spatial error field has a much larger range pa-
rameter than the spatial trend field (cf. Fig. 6). In particular,
the range reaches across nearly the entire study region for
the coarsest data resolution. Here, the posterior mean of the
marginal spread ranges from 0.86 for the Iberia data to 1.06
for the Fennoscandia data, and the posterior uncertainties are
comparable. Note that the marginal variance estimates for the
two latent fields cannot be compared, as the associated units
are different.

The posterior distributions of the first-lag autocorrelation
coefficient ϕ are given in Fig. 8. As expected, the posterior
mean of ϕ decreases with increased spatial averaging for a
coarser grid resolution. ϕ has a posterior mean of 0.42 for
the European grid at 1◦ resolution, while it reduces to 0.17
for the 5◦ resolution. At the finest resolution of 0.5◦, the
posterior mean is 0.50 for Iberia and 0.59 for Fennoscan-
dia. Furthermore, these two posterior distributions are non-
overlapping, indicating that the assumption of a constant au-

Figure 8. Posterior distributions of the first-lag autocorrelation co-
efficient for all four data sets. The prior distribution is indicated with
a black dashed line.

tocorrelation coefficient across all of Europe might generally
not hold. However, it is not apparent that there is a direct re-
lationship between the size of the data grid and the spread
of the posterior distribution, as the distribution for the largest
data grid (1◦ grid over Europe) has a fairly small spread.

The prior distributions for the marginal variances and the
autocorrelation coefficients are very flat around the support
of the respective posterior distributions, indicating little in-
fluence of the priors on the posterior distributions of these
quantities. The prior distributions for the range are automat-
ically adjusted so that the prior median range is a fifth of the
approximate diameter of the mesh. We thus get slightly vary-
ing shapes of the prior distributions for the different data sets
as shown in Fig. 6, with the priors for the high-resolution
data sets somewhat more concentrated and centred closer to
zero. For the trend fields, all the posterior distributions are
more concentrated than the prior distributions. The mean is
shifted to lower values for the 5◦ data, for the 1◦ data, and for
the 0.5◦ data in Fennoscandia. For the 0.5◦ data in Iberia, the
posterior mean of 6.7 is slightly larger than the prior mean
of 5.8. For the error fields, all the posterior distributions are
substantially shifted to much larger values.

4.4 Residual analysis

A simple model assessment can be performed by considering
the in-sample temperature anomaly residuals. Specifically,
we define the standardized residuals for spatial location s at
time point t as

rst =
yst − (β̂0+ β̂s)t√

σ̂ 2
τ + σ̂

2
ε

,

where σ 2
τ = σ

2
ξ /(1−ϕ

2) is the variance of the error term τst
and all parameter estimates are given by the respective pos-
terior mean.

Comparing the distribution of the residuals from the first
30 years of the data period to that in the last 30 years gives an
indication as to whether the trend in the data has been cap-
tured by the model in Eqs. (1) and (2). Standardized resid-
ual quantile plots for the different data sets are displayed in
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Figure 9. Quantiles of standardized temperature anomaly residuals for the different data resolutions in Iberia (a, b, c) and Fennoscandia (d,
e, f). Quantiles from the first 30 years of the data period are shown along the x axis, and quantities from the last 30 years are along the y axis.
Plots are shown for 5◦ data (a, d), 1◦ data (b, e), and 0.5◦ data (c, f).

Fig. 9. For all the data sets, there is a very good match in
the bulk of the distributions between the two time periods.
This indicates that the model assumptions regarding tempo-
ral changes in the anomalies seem to match the main trends
in the data. However, there are some mismatches in the tails
of the distributions without there being an overall tendency.
For the Iberia plots, the upper tail of the distributions over the
period 1950–1979 turn increasingly more heavy than the dis-
tributions over the period 1985–2014 as the resolution of the
input data increases. The distributions of the Fennoscandia
residuals are stable over the various input data sets.

A further assessment concerns the assumption that the
residuals follow a Gaussian distribution. This may be as-
sessed by comparing the distribution of the residuals from
a certain data set (certain area and grid resolution) to that
of a Gaussian distribution with the same first two moments.
Such an analysis shows the somewhat expected results that
the residuals for the 5◦ data appear nearly perfectly Gaus-
sian, while the residuals for the 1◦ data are slightly heavier
tailed, and those for the 0.5◦ data are even further so (results
not shown).

Finally it is necessary to remark on the calculation of the
residuals for the various resolutions. The computational bur-
den of fitting the temperature trend model in Eq. (1) and
Eq. (2) is closely linked to the mesh design used for the es-
timation. The mesh for the 5◦ and the 0.5◦ data are designed
so that there is a near one-to-one correspondence between

mesh points and data locations in areas where data are avail-
able. Ideally, an analogous setup would be implemented for
the 1◦ Europe data. However, to keep the computational load
at a manageable level, a design with fewer mesh points than
data locations is adopted: there are 1213 data locations, while
the entire mesh has 711 mesh points. As a result, each mesh
point is associated with positive weights for multiple data
points in the INLA data stack that connects data points and
mesh points (e.g. Lindgren and Rue, 2015). For ease of com-
parison across the data resolutions, we have only included
data locations that overlap with mesh point locations in our
residual analysis (see Fig. 10). Note that this effect does not
affect the estimate of the marginal variance in Fig. 7 in that
the result there provides a consistent story across the data
resolutions.

5 Conclusions

In this article we propose a spatial trend analysis approach for
gridded temperature data, adding spatial components to the
univariate trend model used by the IPCC (Hartmann et al.,
2013a). While the model and inference approaches are not
new, the joint significance assessment of Bolin and Lindgren
(2015) has, to the best of our knowledge, not been used in
this context before. The latent trend coefficient field is found
to have a range far beyond the grid resolution of the data,
warranting the spatial structure of the model. The avoid-
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Figure 10. Triangular mesh with 711 mesh points for the 1◦ Eu-
rope data set with data locations indicated in red, except locations
included in the 1◦ residual analysis in Fig. 9 which are highlighted
in blue for Iberia and green for Fennoscandia.

ance excursion sets for the spatial significance assessment
are overall much smaller than corresponding sets resulting
from marginal assessments, supporting previous claims on
the need to protect against overstatement and the overinter-
pretation of multiple-testing results in this setting (Wilks,
2016). For comparison, we have also investigated using the
Bonferroni correction to counteract the problem of multiple
marginal comparisons (Bonferroni, 1936). This correction–
which has been criticized for being conservative–resulted in
no rejections of the null hypothesis of no trend.

As an alternative to what is proposed here, controlling the
false discovery rate has been shown to work well when the
model estimation is performed independently in each grid
point location in a frequentist manner (Wilks, 2006, 2016).
While its Bayesian interpretation is not entirely straight-
forward (Storey, 2003), it has been used successfully in
Bayesian settings as well (e.g. Müller et al., 2004). In a re-
cent work, Risser et al. (2019) propose an FDR procedure
for spatially dependent multiple testing in an application to
detect anthropogenic influence on extreme climate events.

The overall area of the avoidance excursion sets decreases
with a finer data resolution. However, the finer-resolution sets
are not subsets of those obtained using a coarser data reso-
lution with a higher degree of spatial smoothing. This result
stresses the necessity of using context-appropriate data to an-
swer questions related to climate change adaptation decision
making whenever such data is available. Specifically, higher-
resolution data over a smaller area may be used when local

information is required. We found it challenging to analyse
data sets much larger than those studied here under the cur-
rent model, indicating that it may be necessary to make the
choice between high resolution and spatial extent in the anal-
ysis. Simultaneously, our results emphasize the point that any
climate change assessment should be accompanied by the ap-
propriate uncertainty quantification.

The model we have applied in this study is fairly simple in
structure. When models of this type are estimated indepen-
dently in each grid point location, it is commonly found that
the first-order autocorrelation coefficient ϕ varies over space.
Our results in Fig. 8 for Fennoscandia and Iberia support
this claim. However, we found that it was not feasible to in-
clude a latent spatial field structure for ϕ under our inference
scheme. The model currently includes two latent GRFs, and
adding the third proved computationally challenging. Further
generalization of the modelling structure may also be appro-
priate. For instance, Gneiting et al. (2007) show that a non-
separable covariance structure provides a better fit for spatial
wind speed data, indicating that similar results may hold for
temperatures.

Our analysis focuses on trends in summer temperatures.
It is standard practice in climate change studies to focus
on annual (e.g. Böhm et al., 2001; Hartmann et al., 2013a;
Lorenz and Jacob, 2010; Tietäväinen et al., 2010) and/or sea-
sonal (e.g. Lorenz and Jacob, 2010; Tietäväinen et al., 2010;
van der Schrier et al., 2011) changes. In contrast, Craigmile
and Guttorp (2011) propose a space–time modelling frame-
work where seasonality is specified as a component of the
model. Craigmile and Guttorp (2011) apply their model to
17 locations in southern Sweden and find variations in the
seasonal patterns across these locations. While we expect
that a careful modelling of seasonality would yield more in-
formation about the trend patterns, an analysis over Europe
would certainly require spatially varying seasonal compo-
nents, which, again, are computationally challenging under
our inference scheme.
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