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Abstract

Epigenetic observations are represented by the total number of reads from a given pool
of cells and the number of methylated reads, making it reasonable to model this data by
a binomial distribution. There are numerous factors that can influence the probability of
success in a particular region. Moreover, there is a strong spatial (alongside the genome)
dependence of these probabilities. We incorporate dependence on the covariates and the
spatial dependence of the methylation probability for observations from a pool of cells by
means of a binomial regression model with a latent Gaussian field and a logit link function.
We apply a Bayesian approach including prior specifications on model configurations. We
run a mode jumping Markov chain Monte Carlo algorithm (MJMCMC) across different
choices of covariates in order to obtain the joint posterior distribution of parameters and
models. This also allows finding the best set of covariates to model methylation probability
within the genomic region of interest and individual marginal inclusion probabilities of
the covariates.

Keywords: Bayesian binomial regression, latent Gaussian field, mode jumping Markov chain
Monte Carlo, integrated nested Laplace approximations, Bayesian variable selection, Bayesian
model averaging, epigenetic data, genetic patterns.

1. Introduction

Epigenetic modifications contribute to the generation of phenotypic plasticity, but the under-
standing of its contribution to phenotypic alterations and how the genome influences epige-
netic variants requires further investigation (Schmitz, Schultz, Urich, Nery, Pelizzola, Libiger,
Alix, McCosh, Chen, Schork et al. 2013). Epigenetic changes are crucial for the development
and differentiation of various cell types in an organism, as well as for normal cellular processes.
Epigenetic modifications modulate gene expression and modifications found in the promoter
or regulatory elements play a prominent role in activating or suppressing transcript levels.
This creates interesting research possibilities, which are often challenging from the statistical
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point of view. For example, Li, Cassese, Guindani, and Vannucci (2019) suggested a Bayesian
negative binomial regression model to study the influence of methylation (used as covariates)
on RNA-Seq gene expression counts (used as observations). Also, Tang, Zhou, Wang, Huang,
and Jin (2017) developed a Gaussian Bayesian regression model to link the differential gene
expression (measured as log2 fold change) to various exogenous variables including tumour
suppressor genes categories, mean methylation values and genomic segment distributions.
In turn, Ma, Liu, Zhang, Huang, and Tang (2017) suggested a multiple network for epige-
netic studies and implemented the Cox proportional hazard model to analyze the association
of methylation profile of each epigenetic module with the patient survival. Recently, high-
throughput epigenetics experiments have enabled researchers to measure genome-wide epi-
genetic profiles. This allows performing Epigenome-wide association studies (EWAS), which
also hold promise for the detection of new regulatory mechanisms that may be susceptible to
modification by environmental and lifestyle factors (Michels, Binder, Dedeurwaerder, Epstein,
Greally, Gut, Houseman, Izzi, Kelsey, Meissner et al. 2013).

A major task today is the development of models and statistical methods for linking epigenetic
patterns to genomic and/or environmental variables and interpreting them. Unlike the papers
mentioned above (Ma et al. 2017; Tang et al. 2017; Li et al. 2019), we use methylation
data as responses and link them to genomic and phenotypic variables (used as covariates).
Moreover, by means of performing careful statistical modelling, our model takes into account
that epigenetic data are spatially correlated (along locations in the genome) with high noise
levels. Due to the availability of the data, our focus will be on the model plant Arabidopsis
thaliana. For instance, Becker, Hagmann, Müller, Koenig, Stegle, Borgwardt, and Weigel
(2011) previously analysed Arabidopsis data consisting of epigenetic observations on a set
of 10 lines, which were separately propagated in a common environment for 30 generations.
These were compared with two independent lines propagated for only three generations. Their
analysis aimed at global summaries of structures but was based on individual and (site-
wise) hypothesis testing methods combined with false discovery rate control methodology. In
this paper, however, we limit ourselves to finding a pattern of signals appearing along the
single genome that significantly influences the methylation probability of the corresponding
organism. This is done by means of applying a binomial regression model with latent Gaussian
variables, which take into account both spatial dependence and variability that can not be
explained by the exogenous variables alone. The chosen latent Gaussian variable is a sum of
a random walk RW (1) component and an independent IG component. Model selection and
parameter estimation within models are performed simultaneously in a Bayesian framework,
applying the mode jumping Markov chain Monte Carlo (MJMCMC) algorithm developed by
Hubin and Storvik (2018) to perform the computations involved. MJMCMC outputs posterior
model probabilities allowing to find the best combination of explanatory genomic variables
and compute marginal inclusion probabilities for the importance of individual variables. Our
approach also allows to generate a model-averaged classification of the methylation status
at different locations and make imputations for those locations that do not have enough
observations, whilst the currently used approach is to simply ignore these locations.

2. Mathematical model

We model the number of methylated reads Yt ∈ {1, ..., nt} per position in the genome (nu-
cleotide base position) to be binomially distributed with the number of trials equal to the
number of reads, nt ∈ N, for position t ∈ {t1, ..., tT } (where T is the total number of genomic
positions in the addressed genomic region) and corresponding probability of success pt ∈ R[0,1].
The probability pt is modeled via the logit link to the covariates Xt = {Xt1, ..., Xtd}. These
covariates might be a position within a gene (e.g promoter or coding region), an indicator
of the underlying genetic structure, or other types of features (our choice of the covariates
is given in Section 3). A latent Gaussian RW (1) process δt ∈ R and a latent independent
Gaussian process (IG) ζt are included into the model in order to take into account spatial
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dependence of methylation probabilities along the genome and the variance which is not ex-
plained by the covariates. Other explored latent Gaussian variables were also tested prior to
variable selection on a full model before the selection of this structure was done (see the detail
in the Appendix A of the paper). This gives the following model formulation:

Pr(Yt = y|nt, pt) =

(
nt
y

)
pyt (1− pt)nt−y, (1)

logit(pt) =β0 +
d∑
j=1

γjβjXtj + δt + ζt, (2)

δt =δt−1 + εt, εt
iid∼ N(0, τ−1

ε ), (3)

ζt
iid∼N(0, τ−1

ζ ), (4)

where βj ∈ R, j ∈ {0, ..., d} are regression coefficients of the model showing whether and in
which way the corresponding covariate influences the probability of methylation on average,
γj ∈ {0, 1}, i ∈ {1, ..., d} are latent indicators, defining if covariate j is included into the model
(γj = 1) or not (γj = 0), {εt} are the error terms of RW (1) process {δt}, which are normally
distributed with zero mean and precision τ−1

ε . Finally, τ−1
ζ is the precision term of the IG

process {ζt}. We then put the following priors for the parameters of the model:

γi ∼ Bernoulli(q), βi|γi ∼ I(γi = 1)N(0, τ−1
β ), τβ, τε and τζ ∼ Gamma(1, 5 · 10−5). (5)

Here, q = 0.5 is the prior Bernoulli probability of including a covariate into the model, and
I(·) is the indicator function.

We perform analysis for the model defined by Equations (1)-(5) by means of the MJMCMC
algorithm (Hubin and Storvik 2018). The algorithm is capable of efficiently moving in the
defined model space by means of both accurately exploring the modes of the probability mass
and switching between these modes using large jumps combined with local optimization and
randomization.

3. Bayesian inference

Let γ = (γ1, ...γp), which uniquely defines a specific model. Assuming the constant term β0 is
always included, there are L = 2d different models to consider. Define θ = {β,ψ, τβ, τε, τζ} ∈
Θ, which describes the parameters of the models. Also let Y = (y1, ..., yn) and X =
(X1, ...,Xn). We want to make inference jointly on models and their parameters p(γ,θ|Y ,X).
We also want to find a set of the best models with respect to posterior marginal model
probabilities p(γ|Y ,X). Finally, we want to obtain the marginal inclusion probabilities
p(γj = 1|Y ,X), j ∈ {1, ..., d} for individual covariates.

By Bayes formula, p(γ,θ|Y ,X) = p(θ|γ,Y ,X)p(γ|Y ,X). In Section 3.1 we describe how
to compute p(θ|γ,Y ,X) and p(Y |X,γ). For the time being, we assume that marginal
likelihoods p(Y |X,γ) are available for a given γ. Then by Bayes formula:

p(γ|Y ,X) =
p(Y |X,γ)p(γ)∑

γ′∈Ω p(Y |X,γ ′)p(γ ′)
. (6)

In order to calculate p(γ|Y ,X) we have to iterate through the whole model space Ω, which
becomes computationally infeasible for large d. The ordinary MCMC estimate is based on a
number of MCMC samples γ(i), i = 1, ...,W :

p̃(γ|Y ,X) = W−1
W∑
i=1

I(γ(i) = γ)
d−−−−→

W→∞
p(γ|Y ,X). (7)
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An alternative, named the renormalized model (RM) estimates by Clyde, Ghosh, and Littman
(2011), is

p̂(γ|Y ,X) =
p(Y |X,γ)p(γ)∑

γ′∈V p(Y |X,γ ′)p(γ ′)
I(γ ∈ V)

d−−−→
V→Ω

p(γ|Y ,X), (8)

where now V is the set of visited models during the MCMC (or any other model space
exploration algorithm) run. Although both (8) and (7) are asymptotically consistent, (8) will
often be a preferable estimator since convergence of the MCMC based approximation (7) is
much slower, see Clyde et al. (2011); Hubin and Storvik (2018).

We aim at approximating p(γ|Y ,X) by means of searching for some subspace V of Ω making
the approximation (8) as precise as possible. Models with high values of p(Y |X,γ)p(γ) and
regions of relatively high posterior mass are important to be included into V. Missing them
in V can introduce significant biases in our estimates. Note that these aspects are just as
important for the standard MCMC estimate (7). The difference is that while the number of
times a specific model is visited is important when using (7), for (8) it is enough that the
model is visited at least once. In this context, the denominator of (8), which we would like to
be as high as possible, becomes an extremely relevant measure for the quality of the search in
terms of being able to capture whether the algorithm visits all of the modes, whilst the size
of V should be low in order to save computational time.

The marginal inclusion probability p(γj = 1|Y ,X) is defined as:

p(γj = 1|Y ,X) =
∑
γ′∈Ω

I(γ′j = 1)p(γ ′|Y ,X). (9)

It can be approximated either by the MCMC estimator:

p̃(γj = 1|Y ,X) = W−1
W∑
i=1

I(γ
(i)
j = 1)

d−−−−→
W→∞

p(γj = 1|Y ,X), (10)

or using the renormalized approach:

p̂(γj = 1|Y ,X) =
∑
γ′∈V

I(γ′j = 1)p(γ ′|Y ,X)
d−−−→

V→Ω
p(γj = 1|Y ,X), (11)

giving a measure of importance for the covariates of the model.

3.1. Integrated nested Laplace approximations

Within hierarchical models with latent Gaussian structures, integrated nested Laplace ap-
proximations (INLA) for efficient inference on the posterior distribution (Rue, Martino, and
Chopin 2009) can be used. Following the INLA terminology, we define z to be the set of
latent Gaussian variables and the regression parameters β while η contains the remaining
parameters (a low-dimensional vector). The INLA approach is based on two steps. First the
marginal posterior of the hyperparameters is approximated by

p(η|Y ,X,γ) ∝ p(z,η,Y ,X,γ)

p(z|η,Y ,X,γ)
=

p(z,η,Y ,X,γ)

p̃G(z|η,Y ,X,γ)

∣∣∣
z=z∗(η)

+O(T−3/2) . (12)

Here, p̃G(z|η,Y ,X,γ) is the Gaussian approximation of p(z|η,Y ,X,γ), and z∗(η) is the
mode of the distribution p(z|η,Y ,X,γ). The posterior mode of the hyperparameters is
found by maximizing the corresponding Laplace approximation using some gradient descent
method (like for example the Newton-Raphson routine). Then an area with a relatively high
posterior density of the hyperparameters is explored with either some grid-based procedure
or variational Bayes.
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The second step involves the approximation of the latent variables for every set of the explored
hyperparameters. Here, the computational complexity of the approximation depends on the
likelihood type for the data Y |X. If it is Gaussian, the posterior of the latent variables is
Gaussian, and the approximation is exact and fully tractable. In the case the likelihood is
skewed or heavy tails are present, a Gaussian approximation of the latent variables tends to
become inaccurate and another Laplace approximation should be used:

p̃LA(zi|η,Y ,X,γ) ∝ p(z,η,Y ,X,γ)

p̃GG(z−i|zi,η,Y ,X,γ)

∣∣∣
z−i=z∗−i(zi,η)

. (13)

Here, p̃GG is the Gaussian approximation to p(z−i|zi,η,Y ,X,γ) and z∗−i(zi,η) is the corre-

sponding posterior mode. The error rate of (13) is O(T−3/2). The full Laplace approximation
of the latent fields defined in equation (13) is rather time-consuming, hence more crude lower-
order Laplace approximations are often used instead (typically increasing the error rate to
O(T−1), Tierney and Kadane 1986). Once the posterior distribution of the latent variables
given the hyperparameters is approximated, the uncertainty in the hyperparameters can be
marginalized out using the law of total probability (Rue et al. 2009):

p̃(zi|Y ,X,γ) =
∑
k

p̃LA(zi|ηk,Y ,X,γ)p̃(ηk|Y ,X,γ)∆k, (14)

where ∆k is the area weight corresponding to the grid exploration of the posterior distribution
of the hyperparameters.

Computing the marginal likelihood

The marginal likelihood is defined as follows: For data {Y ,X} and model γ, which includes
some unknown parameters θ, the marginal likelihood is given by

p(Y |X,γ) =

∫
Θ
p(Y |X,θ,γ)p(θ|γ)dθ (15)

where p(θ|γ) is the prior for θ under model γ while p(Y |X,γ,θ) is the likelihood function
conditional on θ. Again, consider θ = (η, z).

INLA approximates marginal likelihoods by

p̃(Y |X,γ) =

∫
Z

p(Y , z,η|X,γ)

π̃G(η|Y ,X, z,γ)

∣∣∣∣
η=η∗(z|γ)

dz, (16)

where η∗(z|γ) is some chosen value of η, typically the posterior mode, while π̃G(η|Y ,X, z,γ)
is a Gaussian approximation to π(η|Y ,X, z,γ). The integration of z over the support Z
can be performed by an empirical Bayes (EB) approximation or using numerical integration
based on a central composite design (CCD) or a grid (see Rue et al. 2009, for details).

A toy example on computing the marginal likelihood. Consider an example from Neal
(2008), in which we assume the following model γ:

Y |z,γ ∼N(z, τ−1
1 ); z|γ ∼ N(0, τ−1

0 ). (17)

Then obviously the marginal likelihood is available analytically as

Y |γ ∼ N(0, τ−1
0 + τ−1

1 ), (18)

and we have a benchmark to compare approximations to. The harmonic mean estima-
tor (Raftery, Newton, Satagopan, and Krivitsky 2006) is given by

p̃(Y |γ) =
W∑W

i=1
1

p(Y |zi,γ)
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where zi ∼ p(z|Y,γ). This estimator is consistent, however, often requires unreasonably many
iterations to converge. We performed the experiments with τ1 = 1 and τ0 being either 0.001,
0.1 or 10. The harmonic mean is obtained based on W = 107 simulations. 5 runs of the
harmonic mean procedure are performed for each scenario. For INLA we used the default
tuning parameters from the package (Rue et al. 2009). As one can see from Table 1, INLA gives

Table 1: Comparison of INLA, harmonic mean and exact marginal likelihood

τ0 τ1 T Exact INLA H.mean

0.001 1 2 -7.8267 -7.8267 -2.4442 -2.4302 -2.5365 -2.4154 -2.4365

0.1 1 2 -3.2463 -3.2463 -2.3130 -2.3248 -2.5177 -2.4193 -2.3960

10 1 2 -2.9041 -2.9041 -2.9041 -2.9041 -2.9042 -2.9041 -2.9042

extremely precise results even for a huge variance of the latent variable, whilst the harmonic
mean can often become extremely crude even for 107 iterations. More examples showing the
accuracy of INLA are summarized in Hubin and Storvik (2016) and Friel and Wyse (2012),
which perform a comparison of a number of approaches to computing the marginal likelihood,
including Laplace approximations, harmonic mean approximations, Chib’s method, Chib and
Jelizkov’s method and INLA. The studies show that INLA is a fast method that enjoys giving
precise approximations to the marginal likelihood even if the number of samples T is limited.

3.2. Mode jumping Markov chain Monte Carlo

The main problem with the standard Metropolis-Hastings algorithms is the trade-off between
possibilities of large jumps (by which we understand proposals with a large neighbourhood)
and high acceptance probabilities. Large jumps will typically result in proposals with low
probabilities. In a continuous setting, Tjelmeland and Hegstad (1999) solved this by intro-
ducing local optimization after large jumps, which results in proposals with higher acceptance
probabilities. Hubin and Storvik (2018) adopted this approach to the discrete model selection
setting and suggested the following algorithm:

Algorithm 1 Mode jumping MCMC

1: Generate a large jump χ∗0 according to a proposal distribution ql(χ
∗
0|γ).

2: Perform a local optimization, defined through χ∗k ∼ qo(χ∗k|χ∗0).
3: Perform small randomization to generate the proposal γ∗ ∼ qr(γ∗|χ∗k).
4: Generate backwards auxiliary variables χ0 ∼ ql(χ0|γ∗), χk ∼ qo(χk|χ0).
5: Put

γ ′ =

{
γ∗ with probability rmh(γ,γ∗;χk,χ

∗
k);

γ otherwise,

where

r∗mh(γ,γ∗;χk,χ
∗
k) = min

{
1,
π(γ∗)qr(γ|χk)
π(γ)qr(γ∗|χ∗k)

}
. (19)

Here, a large jump corresponds to changing a large number of γj ’s while the local optimization
will be some iterative procedure based on, at each iteration, changing a small number of
components until a local mode is reached. For this algorithm, three proposals need to be
specified; ql(·|·) specifying the first large jump, qo(·|·) specifying the local optimizer, and
qr(·|·) specifying the last randomization. All of them are described in detail in Hubin and
Storvik (2018). The convergence of the MJMCMC procedures is shown in Theorem 1 in
Hubin and Storvik (2018).



52 A Bayesian Binomial Regression Model with Latent GP for Modelling DNA Methylation

●

●

●●

●●●
●

●●●●●

●

●

●●●●

●
●●●●●●

●

●●

●●
●

●

●

●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●

●●
●

●
●

●

●

●

●

●

●●

●●

●

●●●

●

●●●●●

●
●

●●

●

●●●●●●●●●●●●●●●●

●

●●●●
●●●

●●●
●●●●

●●

●●

●●

●

●

●

●●●

●
●●
●
●●
●●
●

●

●●●●●
●

●●●

●

●●●

●●●●

●

●

●

●

●

●●
●

●●

●●
●

●

●●●

●●
●●●
●
●
●
●
●
●
●●
●●
●●
●●

●●●
●●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●●
●
●

●

●
●
●

●
●
●●●●●

●

●
●

●

●

●
●

●

●
●

●●
●●●

●●●●●●

●

●

●

●●

●

●●●●

●●●

●●●●●●●

●

●●

●●

●

●●

●
●

●

●●●●

●●

●

●

●

●●

●

●●●●

●

●●●●●

●●

●●●●●●●●

●●

●

●

●●●●●●●

●●

●●●●●●●

●
●
●

●●
●●

●

●●

●

●

●●

●

●

●

●●

●●

●
●●

●●

●●●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●●
●

●●
●

●

●

●●●

●

●

●
●

●

●

●

●

●●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●●●●●

●

●

●
●●●●●●●●●
●
●

●

●
●●
●●
●●
●●

●●●

●●●●●●●

●●●
●●
●
●●●
●●
●●●●●●

●●●

●

●●●●●●

●●

●●●●

●●●

●●

●

●●●●

●

●

●●

●●

●●

●

●

●●●

●

●●●

●

●●●

●●
●

●
●●●●

●●

●●

●●

●●●
●●●
●●●
●
●
●●
●
●●●

●●●

●●

●●

●

●

●

●●

●●●

●●●

●●

●●

●

●

●

●●

●
●
●●●

●●

●

●

●●

●●

●●●●●
●●●●●●●
●
●

●

●

●

●●

●

●●●●●
●●●●
●
●●
●●
●
●
●●
●
●
●
●●
●●
●●
●●
●●●●●●●●●●
●●●

●●

●●

●

●
●
●●
●●

●●●

●

●

●●

●

●

●●●

●●●●

●

●

●

●

●●

●●
●

●●

●

●

●
●●
●●●

●
●●
●
●

●
●●●●

●
●●●

●

●●
●

●

●

●

●

●●

●●

●

●
●
●●●●

●
●●
●●●

●●

●

●●

●
●

●●

●
●

●
●●

●

●●

●

●●

●

●●●

●●

●

●

●●●

●●

●

●●
●●

●

●

●●

●

●●

●

●●●

●●●

●

●
●
●●

●
●●
●

●●

●
●●
●

●●●●●

●

●
●●●

●●
●
●

●

●●●

●●

●

●

●●

●●●

●●●●

●●●

●●

●
●

●●

●

●
●●

●●●

●●

●●●

●
●●

●

●

●

●

●●

●
●

●●●●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●●

●●
●
●

●●●●●●●●●●●●
●●●
●●●●●●
●●●●
●
●

●●
●
●
●
●
●
●
●
●●●
●●
●●●●●
●
●●
●
●●●●

●●●●
●●●●
●
●

●

●

●

●
●●●●

●

●

●●

●
●●●

●

●

●

●●●●●
●●
●●
●

●●
●●
●●

●

●
●●
●●

●●

●
●●
●
●

●●

●●

●●●

●●

●

●●

●

●●

●

●

●
●●●●

●

●●

●●

●

●●

●●
●●
●●
●●●
●●
●●

●

●

●
●
●
●●
●
●●●●

●

●●
●
●
●
●
●●●●●
●●●
●●●●
●
●
●●

●

●

●●●

●

●●●●

●●●●●●
●
●
●●
●
●
●●

●
●
●●●●●●●
●●●

●●

●●

●●●●

●●

●

●●●

●

●

●●
●

●●

●●●

●●●

●

●●
●●

●●

●●●
●
●

●

●

●

●●

●●

●
●●●●

●

●●

●

●●

●
●

●●
●●

●●●

●●
●
●

●●●
●●●
●●●

●●●
●●
●
●●

●

●●●

●●

●●

●●

●●

●

●●

●●

●

●

●●●●●●

●

●●●●

●

●

●●

●

●●●●

●
●

●

●
●

●

●

●

●●
●

●

●●

●●●

●

●●

●
●
●

●●●●●

●●

●

●

●●

●●

●

●
●

●●

●

●

●

●●

●●

●●●

●

●●
●

●

●●
●

●

●
●
●
●
●

●●
●

●●

●
●

●

●
●●

●

●

●
●
●
●●●●

●

●●

●●

●●●●●

●

●●●

●
●●

●

●●●

●●●●
●●

●●
●●
●

●

●
●●
●●
●
●

●

●
●
●●●

●

●●

●
●●

●

●
●

●●●●

●●

●

●●

●

●

●●

●

●

●
●

●

●

●●●

●●

●

●
●●

●●
●●

●

●

●

●

●

●●

●

●

●●●
●
●●●●
●
●
●

●
●

●

●

●

●
●

●
●●

●
●

●
●
●

D
at

a 
an

d 
m

et
hy

la
tio

n 
pr

ob
ab

ili
tie

s

1 51 10
1

15
1

20
1

25
1

30
1

35
1

40
1

45
1

70
00

70
50

71
00

71
50

72
00

72
50

73
00

73
50

74
00

74
50

75
00

10
04

9

10
09

9

10
14

9

10
19

9

10
24

9

10
29

9

10
34

9

10
39

9

10
44

9

10
49

9

0
5

10
15

20
25

30

0

1

Figure 1: Epigenetic observations, where blue dots are total number of reads, red dots -
number of methylated reads, the green line corresponds to 2 total reads distinguishing the
inference and the identification data, light blue line gives näıve probabilities as rates, brown
line - probabilities as the posterior mean of the probability of success parameter from the
posterior mode model.

4. Data description

The addressed data set consists of 1502 observations from chromosome one of the Arabidop-
sis plant belonging to five predefined groups of genes. This data set was divided into 950
observations (with more than 2 reads, see Figure 1) for inference and 552 observations (with
less than 3 reads) for model-based identification of methylation probabilities for the positions
with the lack of data.

Apart from the observations represented by the methylated versus the total number of reads
we have data on various exogenous variables (covariates). Among these covariates, we address
a factor with 3 levels corresponding to whether the location belongs to a CGH, CHH or
CHG genetic region, where H is either A, C or T and thus generating two covariates XCGH

and XCHH . The second group of factors indicates whether the distance to the previous
cytosine nucleobase (C) in DNA is 1, 2, 3, 4, 5, from 6 to 20 or greater than 20 inducing
six binary covariates XDT1, XDT2, XDT3, XDT4, XDT5, and XDT6:20. We also include such 1D
distance as a continuous covariate XDIST . The third addressed group of factors corresponds to
whether the location belongs to a gene from a particular group of genes of biological interest.
These groups are indicated as Ma, Mg and Md, yielding two additional covariates XMa , XMg .
Additionally, we have a covariate XCODE indicating if the corresponding nucleobase is in the
coding region of a gene and a covariate XSTRD indicating if the nucleobase is on a ” + ” or a
” − ” strand. Finally, we have a continuous covariate XEXPR ∈ R+ representing expression
level for the corresponding gene and interactions between expression levels and gene groups
XEXPR,a, XEXPR,g, XEXPR,d ∈ R+. Thus multiple predictors with respect to a strict choice
of the reference levels for categorical variables in our example induced d = 17 potentially
important covariates. The correlation structure for the addressed variables is depicted in
Figure 2, where one clearly sees multiple correlations, which in turn are likely to induce
multiple modes of the marginal likelihood.

5. Results

The MJMCMC algorithm was run until around 10 000 unique models (7.6% of the model
space) were explored. We parallelized the search on 10 CPUs. Default tuning parameterrs
from Hubin and Storvik (2018) were used.
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Figure 2: Heat-map correlation plot between the addressed covariates.

According to the marginal inclusion probabilities reported in Figure 3, only three factors
XCHG, XCGH and XCODE are clearly significant for inference on the methylation patterns
for the addressed epigenetic region, factors XMa and XMg also have some significance. Table 2
gives the marginal posterior model probability and posterior means of the parameters for the
best model in the explored subset of models from the model space. This model is both
the posterior mode model in the set of explored models and the median probability model
(Barbieri and Berger 2004). We have also compared the selected model with alternative
models based on the optimal sets of covariates but with other latent Gaussian structures and
found our model to be the best in terms of the marginal log likelihood (see the Appendix A
of the paper).

XDIST XCHG XCGH XDT1 XDT2 XDT3 XDT4 XDT5 XDT6:20 XMa
XMg XCODE XEXPR XSTRD XEXPR, a XEXPR, g XEXPR, d
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Figure 3: Barplots of RM estimates (Hubin and Storvik 2018) of marginal inclusion proba-
bilities of the covariates.

Table 2: Posterior means for the best model in terms of marginal posterior probability (PMP).

PMP β0 βCHG βCGH βCODE τε τζ
0.4276 -8.8255 2.4717 5.2122 6.4240 7.5075 1.2109

Based on the best model, we carried out computations of methylation probabilities for the
locations in both the inference set and the identification set. Highly methylated regions are
located between observations 7000-7050, 7250-7400, and 10150-10500, see Figure 1. Note
that the model is quite sceptical to the methylation status of locations 7051 - 7249, despite a
number of observations with a high proportion of methylated reads in this region. Further-
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more, we compared the results with the näıve approach based on computing the proportion
of methylated reads (light blue line in Figure 1), which is currently addressed in the biolog-
ical literature as a standard way to evaluate methylation probability of a given nucleobase.
The results show that the näıve approach should not be trusted in the presence of spatially
correlated data and the probabilities corresponding to it can be strongly biased.

6. Discussion

During cancer development, the changes in DNA methylation patterns occur within the gene
promoter, CpG islands and their shores (Tang et al. 2017). Hence in future, it would be of
interest to obtain additional covariates such as whether the corresponding nucleotide base
position belongs to a particular part of the non-coding gene region like a promoter, an intron
or remnants of transposable elements, and whether the nucleobase is within a CpG island, and
see how these covariates are influencing the underlying methylation patterns. At the same
time, in this paper we looked only at a subset of the genomic locations associated with the
groups of genes of biological interest, however, in the future, it would be of interest to address
the whole genome. That would induce working with extremely large data, which in turn
creates new methodological challenges. In particular, in order to make the efficient inference,
it will be important to allow sub-sampling for INLA within a given model and MJMCMC in
the discrete marginal space of models. It will also be of interest to allow logical expressions
for the binary covariates to be included in the model following Hubin, Storvik, and Frommlet
(2018). Finally, joint inference on the covariates and various latent Gaussian variables by
means of MJMCMC can be of interest.
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Appendix

Alternative latent models

We also looked at several alternative latent Gaussian variables. These are reported in Table 3
together with the marginal likelihoods (Bayes factors can be computed in a straight-forward
fashion). The default priors for the parameters from INLA (Rue et al. 2009) were used.
Here, we clearly see that the chosen structure of the latent Gaussian field is significantly
outperforming all other alternatives for both the null and the full models, which gives strong
evidence to our choice. This is also true for the model selected by MJMCMC, which is
reported in Table 2.
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Table 3: Estimates of the marginal log likelihood for different candidate latent processes, which
are Random Walk (RW (1)), Ornstein–Uhlenbeck (OU) and auto-regressive processes AR(p) of order
p from 1 to 3. Here FULL is the model with all covariates included, NULL is the model without
covariates, and BEST is the model with the covariates from Table 2.

IG + RW (1) OU AR(1) AR(2) AR(3)

FULL -771.7173 -1103.8190 -1116.8367 -1103.8188 -811.2963

NULL -875.4917 -876.5565 -876.8325 -876.5565 -875.4917

BEST -591.0837 -706.8185 -713.7015 -706.8185 -697.3347
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