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Utvidet sammendrag

Meteorologisk Institutt, Norsk institutt for luftforskning (NILU) og Statens veg-
vesen har utviklet et prognoseverktøy for beregning og spredning av luftforuren-
sning i de største norske byene på vinterstid gjennom FoU prosjektet Bedre Byluft
(Ødegaard et al., 2013). Den numeriske spredningsmodellen for luftforurensing
som inngår i Bedre Byluft systemet kalles EPISODE. Prognosemodellen kjøres
hver natt i vinterhalvåret og produserer daglige prognoser for 1–48 timer fram i
tid.

Denne rapporten er et samarbeid mellom NILU og Norsk Regnesentral (NR) for å
forbedre de numeriske prognosene av NO2, PM10 og PM2,5 i Bedre Byluft prosjek-
tet ved å undersøke to tilnærminger: Den ene kombinerer en skjevhetskorriger-
ing av prognosene og dataassimilering for å forbedre inngangsdata til EPISODE.
Det andre arbeidet er en statistisk etter-prosessering av utgangsprognosene fra
EPISODE, som korrigerer de opprinnelige prognosene basert på tidligere avvik
mellom målinger og prognoser. Hovedfunnene oppsummeres i dette kapittelet,
mens resten av rapporten er på engelsk og inneholder en mer detaljert beskrivelse
av analysene og de matematiske modellene.

Forbedring av inngangsdata
På oppdrag fra Statens Vegvesen (Vegdirektoratet) har NILU utviklet metoder for
å forbedre EPISODE modell-prognosene i Bedre Byluft, spesielt i perioder med
uforutsett stagnerende meteorologiske forhold. Rapporten beskriver resultatene
av en test av metodene i Oslo for en periode sist vintersesong.

Som ledd i Bedre Byluft prosjektet gjennomfører NILU hver dag i vinterhalvåret
(1. okt–1. mai) 48 timers prognoseberegninger med spredningsmodellen EPISODE
for flere norske byer og tettsteder i samarbeid med Meteorologisk Institutt. I de
fleste tilfeller gir modellen en rimelig bra overensstemmelse med målte konsen-
trasjoner på målestasjonene.

I noen situasjoner hver vintersesong kan det imidlertid oppstå forhold med mer
stagnerende luftmasser og svakere vind enn det som varsles av prognosemod-
ellen, noe som ofte resulterer i beregnede konsentrasjoner som er lavere, og til
dels mye lavere, enn det som observeres. I slike situasjoner er det viktig å kunne
korrigere de beregnede konsentrasjonene for de første 24 timene av 48 timers
prognoseperioden for å bringe de mer i overenstemmelse med målte verdier, og
som grunnlag for en forbedret prognose neste dag.

I denne delen av arbeidet er det utviklet to metoder for å forbedre EPISODE mod-
ell prognosene de første 24 timene basert på målinger: (1) Bias-korreksjon; og (2)
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data-assimilasjon ved å bruke ensemble Kalman filter.

Metodene er blitt testet ved å bruke målinger og 24 timers modellprognoser for
hver av de tre komponentene NO2, PM10 og PM2.5 i Oslo for perioden 2.– 8. de-
sember 2013. Resultatene viser at begge metodene fungerer bra, og at de klarer
å forbedre modellprognosene sammenlignet med målinger på de fleste av måle-
stasjonene i Oslo i testperioden.

Etter-prosessering av luftkvalitetsprognoser
I 2013 utviklet NR en stokastisk prototypmodell for avvik mellom prognoser for
og målinger av luftkvalitet i Oslo for komponentene NO2, PM10 og PM2,5, samt
grovfraksjonen PM10–PM2,5. Analysen viste at de statistiske etterjusterte prog-
nosene traff betydelig bedre enn de originale prognosene (Steinbakk et al., 2013).
Idéen er at vi kan lære av historiske avvik mellom observasjoner og tilhørende
prognoser i målestasjonene, og deretter bruke denne kunnskapen til å korrigere
de opprinnelige 1–48 timers prognosene. Analysen i denne rapporten er basert
på det samme datagrunnlaget som i Steinbakk et al. (2013), det vil si fra 10 måle-
stasjoner i Oslo fra vintersesongene 2011-2012 og 2012-2013.

Osloregionen har flere målestasjoner enn de andre byene i Norge som omfattes
av Bedre Byluft. I dette arbeidet har vi derfor undersøkt effekten av å etterjus-
tere de originale prognosene basert på data fra få målestasjoner. Det vil si at vi
kun har brukt en liten andel av målestasjonene i Oslo for å trene opp parame-
tere i den statistiske prototypmodellen og sammenlignet de justerte prognosene
med data fra målestasjoner som ikke ble brukt til å trene modellen. Denne tilnær-
mingen gjentas så for ulike grupper av målestasjoner. I hovedsak har vi brukt tre
stasjoner for å trene modellen, men appendiks D viser i tillegg valideringsresul-
tater oppsummert i tabeller ved å bruke to stasjoner.

Prognosene fra EPISODE i Bedre Byluft foreligger rundt klokken seks om morge-
nen en gang i døgnet. For å validere resultatene trenger vi et par dager i begyn-
nelsen av sesongen for å trene opp modellen. Vi trener derfor opp modellen fram
til klokken seks den femte dagen i observasjonsperioden for hver vintersesong.
Deretter sammenligner vi de justerte 1-24 timers prognosene med observasjoner
i målestasjoner som ikke er de samme som ble brukt til å trene modellen. Dette
gjentar vi så daglig for hele perioden, slik at treningssettet blir lengre utover vin-
tersesongen. Vi analyserer vintersesongene hver for seg.

Vi evaluerer prognosenes treffsikkerhet ved å sammenligne observerte verdier
mot tilhørende justert prognose med ulike deskriptive mål, og sammenligner så
tilsvarende resultater med de originale prognosene. De deskriptive målene vi
har brukt er kvadratroten av gjennomsnittlig kvadrert feil (RMSE) og lineær korre-
lasjonen (COR) mellom observert verdi og prognose, samt gjennomsnittlig absolutt
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feil (MAE). Lavere verdier av RMSE og MAE indikerer bedre tilpasning mellom
prognose og observasjon. RMSE og MAE er lik 0 dersom prognosene og obser-
vasjonene er helt like. Korrelasjonen COR er et tall mellom -1 og 1 hvor 1 er per-
fekt korrelasjon.

Selv ved å bruke få stasjoner til å trene modellen, blir treffsikkerheten til de et-
terjusterte prognosene nesten alltid bedre enn de originale prognosene. Korrela-
sjonene for de etterjusterte prognosene for NO2 er alltid bedre enn de originale
prognosene, men resultatene for RMSE blir dårligere. At forbedringen i korrela-
sjonen er så mye bedre enn RMSE, kan tyde på at forurensningsnivået i modellen
for NO2 ikke er helt korrekt tilpasset.

I tillegg til å forbedre prognosene kan dette rammeverket beskrive usikkerheten
til prognosene som en fordelingsfunksjon. En sannsynlighetsfordeling vil gi oss
mulighet til å beregne ulike størrelser, for eksempel å anslå sannsynligheten for
at forurensningnivået vil overskride en gitt verdi. Vanlige valg av punktestimat
i en sannsynlighetsfordeling er forventningen og medianen i fordelingen. Medi-
anen er ikke lik sensitiv for ekstreme verdier som forventningen og kan derfor
være en mer robust tilnærming, som kan være et viktig moment i en eventuell
implementering av metoden i Bedre Byluft.

Generelt viste denne analysen at medianestimatet i den prediktive sannsynligheten
for NO2 traff bedre enn forventningsestimatet, men for svevestøv var forvent-
ningsestimatet bedre. I en operasjonalisering burde det undersøkes nærmere hvilk-
et estimat som er best å bruke. Fordelingen til en luftforurensningskomponent
vil typisk være skjev med tung hale mot høyre (høyere forurensningsverdier). I
et videre arbeid bør også usikkerhetsmodellen for NO2 kalibreres bedre, slik at
modellen gir en realistisk beskrivelse av usikkerheten.

Anbefalinger ved en operasjonalisering og videre arbeid
Bias-korreksjonsmetoden uten dataassimilering kan, på samme måte som den
statistiske prototypmodellen, brukes til å etterjustere prognosene fra EPISODE.
Den statistiske prototypmodellen korrigerer også for bias i de originale prog-
nosene, men justerer for autokorellasjon (avhengigheter i tid) i prognosefeilen
i tillegg. Fokuset for bias-korreksjonsmetoden var å forbedre prognosene under
spesielle værsituasjoner (stagnerende meteorologiske forhold) som for eksempel
oppstod i Oslo 2.–8. desember 2013. Begge tilnærmingene viser forbedring i prog-
nosene etter justering, men er testet ut på data fra Oslo-regionene for ulike tidspe-
rioder.

Både bias-korreksjonsmetoden og den statistiske prototypmodellen kan imple-
menteres som en uavhengig modul som justerer de originale prognosene fra
EPISODE en gang i døgnet. Metodene krever ikke ensembler av modellbereg-

6



nede verdier, da den kan anvendes i kombinasjon med de eksisterende EPISODE
modellberegningene i det nåværende Bedre Byluft systemet. En slik modul vil
derfor være beregningsmessig rask og kreve minimalt med regnekraft. Det er
imidlertid flere praktiske problemstillinger vi må ta hensyn til for å få et op-
erasjonelt system. Blant annet bør måleverdiene til forurensningskomponentene
kvalitetssikres fortløpende.

Implementasjon av dataassimilasjon ved bruk av ensemble Kalman filter vil kreve
større endringer av beregningssystemet, siden vi da må utføre flere parallelle
kjøringer med EPISODE modellen (f.eks. minst 5-10) for hver varslingsperiode.
Dette vil kreve større endringer i modelloppsettet og skriptsystemet, og vil i til-
legg kreve mer regneressurser. Dataassimilering spiller imidlertid en viktig rolle
i arbeidet med å forbedre spredningsmodeller som EPISODE ved å sammenligne
og kombinere slike modeller med tilgjengelige observasjoner.

Den statistiske etter-prosesseringen kan beskrive usikkerheten til prognosene ved
en (prediktiv) sannsynlighetsfordeling, istedenfor et punktestimat. Dersom usikk-
erhetsvurderinger skal brukes i et operasjonelt system som Bedre Byluft, har dette
arbeidet vist at den prediktive sannsynlighetsfordeling til NO2 bør kalibreres
bedre mot empiriske data. Den prediktive fordelingen til svevestøvskomponen-
tene har derimot vist seg å passe mye bedre til de empiriske dataene. I denne
sammenhengen kan det også være lurt å undersøke om medianestimatet er mer
robust for endringer og store avvik i prognosefeilen enn forventningsestimatet.

Denne rapporten diskuterer også hvordan usikkerhet kan kommuniseres i kart.
Figur 9 viser et tenkt eksempel med sannsynligheten for å overskride luftforuren-
sningnivået med en gitt terskel. Det nåværende rammeverket gir bare mulighet
for å beregne usikkerheten i hvert gridpunkt. Dersom vi vil beregne usikkerheten
på tvers av et område, for eksempel langs en vei, trenger vi å utvide modellen til
å beskrive korrelasjonsstrukturen mellom gridpunktene.
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1 Introduction

Through the research project Bedre Byluft (Ødegaard et al., 2013), the Norwegian
Meteorological Institute (MET Norway), the Norwegian Institute for Air Research
(NILU) and the Norwegian Road Administration (VVS) provide numerical pre-
dictions for air quality in the largest cities of Norway. In this context, NILU has
developed an integrated air quality management system (AirQUIS)1 containing
a suite of tools for monitoring and predicting air quality. One of the AirQUIS
modules is the numerical dispersion model EPISODE which calculates spatial
distribution of hourly concentrations of NO2 and of particulate matter, PM, for
sizes less than 2.5 microns and 10 microns, PM2.5 and PM10 (Slørdal et al., 2003).

Each winter season, as part of the Bedre Byluft project, NILU applies the EPISODE
model to forecast air pollution in several Norwegian cities, in cooperation with
Met Norway. While there is generally a reasonable correspondence between ob-
served and modelled concentrations, some biases may be observed. For example,
occasionally, unforeseen stagnant meteorological conditions may occur, where
observed wind speeds are much lower than forecast, which leads to predicted
concentrations being much lower than observed (sometimes as much as between
a quarter and a half of observed values).

This report presents a joint work between NILU and the Norwegian Comput-
ing Center (NR) to improve the numerical predictions of NO2, PM2.5, and PM10

within Bedre Byluft by investigating two complementary approaches. A data as-
similation technique combined with bias correction aims to improve the input
data that enters into the EPISODE model, while the goal of the other approach, a
statistical post-processing of the EPISODE model output, is to correct the model
output by utilizing recent forecast errors.

NILU has developed a bias correction procedure and a data assimilation method
using the ensemble Kalman filter, EnKF (Evensen, 2007; Sakov and Oke, 2008).
Both of these methods have been tested, and results are shown, using observa-
tions and forecast model data from Oslo for NO2, PM2.5, and PM10 during a pe-
riod with stagnant meteorological conditions from the last Bedre Byluft season
(2013-2014). The improvement is typically in the range 20-80 % for root mean
squared errors, and an increase of 0.2-0.3 for the correlations overall. The de-
scription of the methods and the corresponding results are given in Section 2.
The EnKF data assimilation method readily provides the uncertainty of the pre-
dicted field, and provides diagnostics that allow to test assumptions about the
error characteristics of the input model and observational fields. We discuss in

1. http://www.nilu.no/airquis/what_is_airquis.htm
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Section 4 this role of uncertainty.

The statistical post-processing method developed by NR in 2013 provides ad-
justed forecasts which improved the root mean squared forecast error by 10-20%
and yield 10-40% better correlation for the particulate matter (Steinbakk et al.,
2013). In Section 3 we investigate whether the gain of post-processing is still sig-
nificant when only a few air quality observation stations are available. As most of
the cities in Norway have very few monitoring stations, this is an important test
to see whether post-processing of forecasts should be implemented in cities other
than Oslo.

The post-processing framework can provide fully probabilistic forecasts in the
form of predictive distributions. Additionally, we explore methods for assessing
an appropriate uncertainty distribution in Section 3. Predictive exceedance prob-
abilities can be, for example, an important decision-making tool for deciding if
pollution measures such as limiting traffic are necessary or not.

The use of ensembles and statistical post-processing for describing forecast uncer-
tainties, are now routinely used in many applications for numerical predictions,
such as weather forecasting. Section 4 illustrates and discuss how uncertainties
and other results derived from our predictive probabilistic prototype model can
be presented in maps. Section 5 provides conclusions and outlines further work
required to make operational the tools described.

2 Bias correction and data assimilation

In Section 2.1, we give a general introduction and background to data assimila-
tion including the need for bias correction. In Sections 2.2 - 2.3, we describe in
more detail the bias correction and data assimilation methods that NILU have
implemented. Section 2.4 shows the results of applying these methods using ob-
served and model data from Oslo for each of the three species NO2, PM10 and
PM2.5 from the last Bedre Byluft season (2013-2014).

2.1 Background
Observations are essential to estimate the state of the Earth System, including
air quality in an urban environment. Observations have two key limitations. The
first one is that they contain errors — these can be systematic (also called bias),
random, and of representativeness (see Cohn, 1997; Lahoz et al., 2010a; Ménard,
2010). Averaging reduces the random errors, but not the systematic errors. Model
bias is the systematic difference or error between model values and a underlying
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estimate of the system state, e.g., provided by observations, at a given time, or
over a given time period. It is important to correct the bias before applying data
assimilation, since the EnKF and other data assimilation methods, generally as-
sume that observations and model values are unbiased. The second limitation is
that observations have spatio-temporal gaps (Lahoz et al., 2010a). It is necessary
to fill in the gaps in the information provided by observations: (i) to make this in-
formation more complete, and more useful; and (ii), to provide information at a
regular scale to allow easier quantification of physical processes. One can use in-
formation at an irregular scale to quantify physical processes, but this procedure
is more tractable when done at a regular scale.

To fill in the gaps in the observations a model is needed (Lahoz et al., 2010a).
This model can be simple, e.g., linear interpolation, or take account of the sys-
tem’s behaviour. For example, the model could be a chemistry-transport model
(CTM), such as EPISODE (Slørdal et al., 2003), incorporating a suite of chemical
equations. The model extends the observations, fills in the observational gaps and
allows one to organize, summarize, and propagate the information from obser-
vations. The model, like the observations, also exhibits gaps in space and time.

We require methods that fill in the observational information gaps in a way that
makes use of quantitative concepts for combining information. For example, by
finding the state that minimizes a “penalty function” calculated from observa-
tional information and prior information (e.g., from a model forecast). We can
think of the model used for the forecast as an intelligent interpolator of the ob-
servational information. A methodology that allows this intelligent interpolation
is data assimilation (Kalnay, 2003; Lahoz et al., 2010b). It has strong links to a
number of mathematical disciplines, including control theory and Bayesian esti-
mation (Nichols, 2010).

Data assimilation adds value to the observations by filling in the observational
gaps, and adds value to the model by constraining it with observations (Lahoz
et al., 2010a) This allows self-consistent and realistic representation of the Earth
System on a regular grid. Data assimilation provides methods for combining in
an objective way observations and models with different spatio-temporal char-
acteristics and errors: local footprint vs. quasi-global footprint; local coverage
vs. global coverage; differences in sampling frequency; and errors arising from
matching different spatio-temporal scales. The weather forecasting agencies pro-
vide an example of how data assimilation combines heterogeneous observational
and model information (Kalnay, 2003). Dee et al. (2014) discusses the success of
data assimilation in providing weather forecasts. The result of data assimilation,
combining observational and model information and their errors, is termed the
“analysis.” In data assimilation, we never know precisely the observations, mod-
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els, and analyses have errors, so we need to estimate them. This means we must
state the data assimilation problem in probabilistic terms (see, e.g., Cohn, 1997).

The objective combination of information from a model and from observations
can be formulated mathematically using Bayesian estimation ideas (Rodgers, 2000).
Although Bayesian estimation defines a systematic and rigorous approach to
data assimilation (Evensen, 2007; Rodgers, 2000), its full-scale implementation in
many areas, including weather forecasting, is impossible, chiefly due to the size
of the problem. The typical dimension of current weather forecasting models is
∼ 107 elements, while the number of observations available over 24 h is ∼ 106–
107 (Lahoz et al., 2007). As a result, error covariance matrices for the model and
observational information have ∼ 1014 elements. Thus, in many practical appli-
cations it is necessary to make simplifying assumptions to the data assimilation
methodology.

Simplification of the data assimilation methodology follows two main lines: (i)
statistical linear estimation, principally involving variational methods (e.g., the
4-D variational method,4D-Var) and sequential methods (e.g., the Kalman filter,
KF), and (ii) ensemble assimilation (e.g., the ensemble Kalman filter, EnKF). In the
context of statistical linear estimation, 4D-Var and the KF methods are two differ-
ent algorithms for determining the BLUE (Best Linear Unbiased Estimate), and
they are equivalent only under the condition of linearity. Ensemble assimilation
is a form of Monte-Carlo approximation that attempts to estimate the probabil-
ity distribution functions (PDFs) using a finite number of elements. In the EnKF
(Evensen, 2003), used in this project, a Monte-Carlo ensemble of short-range fore-
casts is used to estimate the forecast error in the KF. In the EnKF, the size of the
analysed ensembles typically lies between a few tens to a few hundreds of model
states. The estimation becomes more accurate as the ensemble size increases. The
EnKF is attractive as, for example, it requires no derivation of a tangent linear
operator or adjoint equations and no integrations backward in time, as for 4D-
Var (Evensen, 2003). Several authors (e.g., Kalnay et al., 2007; Lorenc, 2003) have
compared 4D-Var and the EnKF, with an emphasis on their suitability for weather
forecasting.

2.2 Bias correction
The bias correction procedure implemented here first estimates the model bias at
a set of observation stations, before interpolating these station, or point, biases to
other regions of the model area using spatial interpolation.

The model bias, for a given species, station and time point (hour), is estimated by
calculating the average of the differences between observed and model calculated
concentrations over a given time period, chosen to be close to the time point of
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interest. Since air quality measurements are generally much more accurate than
modelled values (e.g., observed NO2 typically has an accuracy of about ±5%),
they can be used as reference against which model bias is estimated. Thus, for
each station si we estimate the model bias B̂si,t0 at the time point (hour) of interest
t0 by

B̂si,t0 =
1

T

t2∑
t=t1

{ysi,t −Msi,t};T = t2 − t1 + 1 (1)

for i = 1, . . . ,m , where m is the number of observation stations, and where ysi,t
and Msi,t denote, respectively, the observed and model calculated values at sta-
tion i and time (hour) t, for t1 ≤ t ≤ t2, a period of length T = t2 − t1 + 1 (in time
units).

The interval length T of the bias estimator should be chosen long enough to es-
timate the model bias, rather than short-term differences or errors between ob-
served and model calculated values; yet should be chosen short enough to be
able to estimate the bias, at the time point t0, with reasonable accuracy. Thus, we
want the average of the observed and modelled values to be representative of the
time point of interest.

In this work we use Eq. (1) with t1 = 13 and t2 = 23 (i.e., T = 11 hours) to
estimate the station biases at midnight (t0 = 24) between the first and second day
of forecasting.

Given biases estimated at each station as above, we can use spatial interpolation
to estimate, or predict, the model bias at any other point in the model domain.
For this purpose, we use ordinary kriging (Cressie and Wikle, 2011; Matheron,
1963). Thus, the model bias at an arbitrary spatial location (point) s0 and time
point (hour) t0 (here t0 = 24) is calculated by

B̂s0,t0 =
m∑
i=1

wiB̂si,t0 (2)

wherewi is the weight attached to the bias at station si, i = 1, . . . ,m, for predicting
the model bias at the point s0. We calculate the weights separately by solving
a linear system of equations for each point of interest. In ordinary kriging, the
weights w1 . . . , wm always sum up to one, which makes the predictor in Eq. (2)
unbiased for any spatially constant mean field of bias values.

To define the linear system of equations, and solve for the weights, we need to
specify the correlations between estimated biases at the stations, and between
stations and the spatial location s0 of interest. Here, the following exponential
correlation function is used

ρ(si, sj) = exp

(
−||si − sj||2

δ

)
(3)
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where ||si − sj||2 denotes the spatial distance between the points si and sj , and δ

is a scaling constant. If δ is small, station biases will only have a local influence
close to each station; while if δ is large, station biases will influence a larger region
around each station. Far away from the stations, however, the bias predicted by
Eq. (2) will be close to the average of the station biases.

In this work, we use δ = 3 km in the correlation function Eq. (3). Both smaller
(down to 1 km) and larger (up to 5 km) values of this parameter were also tested,
but it was decided to settle, at least tentatively now, for this value as a reason-
able compromise between a small and large influence of the various estimated
station biases. Ideally, we should estimate this parameter from data, i.e., using
correlations between the biases calculated at each station.

The spatial bias predictor (or interpolator) in Eq. (2) is mainly used to estimate
or predict the model bias at each grid point of the EPISODE 3D model grid (at
the lowermost layer near the ground) at midnight (t0 = 24) between the first and
second day of forecasting. We then calculate new bias-adjusted model values at
this time point by adding the estimated bias values to the model grid values MG

as follows
M̂G(i, j, 1) = MG(i, j, 1) + B̂s0,t0 (4)

where s0 represents the midpoint of grid cell (i, j), for i = 1, . . . , nx, j = 1, . . . , ny,
and where nx and ny denote the number of grid cells in the E-W (East-West) and
S-N (South-North) directions, respectively. We then use these new bias-adjusted
model grid values as initial concentrations in the EPISODE model for the next
48-hour forecast.

The spatial bias predictor (or interpolator) in Eq. (2) is also used to estimate or pre-
dict the model bias at midnight (t0 = 24) at other receptor points of interest, e.g.,
at observation stations where observations (and thus station biases) are missing,
or at any other receptor points used by EPISODE (e.g., building locations, etc.).

We then calculate new bias-adjusted model receptor values M̂r,i at this time point
by adding the estimated bias values to the model receptor values Mr as follows

M̂R,i = MR,i + B̂s0,t0 , (5)

where s0 successively represents each receptor point si, for i = 1, . . . , nr, and
where nr denotes the total number of receptor points.

Finally, all receptor biases (including station biases) calculated at midnight are
added to the EPISODE model receptor concentrations for time points (hours) 7-
23 (7 am to 11 pm) of the current day, and to time points (hours) 1-6 (1 am to
6 am) used by the next 48-hour forecast. Thus, we assume that the model bias is
constant over the time period ranging from 7 am (current day) to 6 am (next day).
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2.3 Data assimilation
The main application of data assimilation in this work is to update the bias-
corrected EPISODE model grid concentrations at midnight between the first and
second day of forecasting, using observations from all available stations at that
time point. To this end we use the EnKF method (Evensen, 2007; Sakov and Oke,
2008).

In the EnKF, we operate with a set, or ensemble, of N different model states
x
(i)
t , i = 1, . . . , N , (ideally) representing a (discrete) probability distribution of the

underlying true (but unknown) system state at each time point T over a given
period of time t = 1, . . . , T . We then use the observations to update the ensemble
at selected points in time, which (generally) will have the effect of reducing the
uncertainty in the ensemble, bringing the ensemble (in particular the ensemble
mean) closer to the true (but unknown) system state.

In our application of the EnKF, we define the model state xt as a vector of the 522
(29× 18) EPISODE model grid concentrations (lowermost layer of the 3D grid) at
each time point (hour) during the 2 days (48 hour) forecasting period, since this
is the output of the model that we wish to update using all available observations
(the update being at midnight). To apply the EnKF, we therefore need to create an
ensemble of N different model grid concentrations in the EPISODE model over
each forecasting period, representing a realistic discrete probability distribution
for the true state (true ground level grid concentrations) at each time point (hour).

We do this by creating corresponding ensembles of emissions (home heating and
traffic) and background concentrations as input data to the EPISODE model. We
generate these ensembles by randomly perturbing the deterministic model input
data using Monte Carlo random draw procedures to simulate model (input data)
uncertainties. The meteorological data used to force the model (i.e., the HAR-
MONIE model fields), are currently not perturbed. Therefore, these data are un-
changed for all ensemble members.

We currently use a Gaussian distribution with a 20% relative error standard de-
viation for the perturbation of emissions from both home heating and traffic for
all species (NO2, PM10 and PM2.5). We perform the perturbations on cube-root
transformed emission data, before being transformed back to the original scales.
For traffic, the perturbations are used both for area and line source emissions.
Emission values, which are exactly zero, are not perturbed.

For background concentrations (where the deterministic model values are based
on the MACC (Monitoring Atmospheric Composition and Climate)2 ensemble
mean) we use a Gaussian distribution with 5% relative error standard deviation

2. http://www.gmes-atmosphere.eu
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for all species (NO2, O3, PM10, PM2.5), again on cube-root transformed data be-
fore transforming the data back to the original scales. Background concentrations,
which are exactly zero, are not perturbed.

The EPISODE model is then run (in parallel) N times (with N different sets of
input data of emissions and background concentrations) over each 48-hour fore-
casting period, to propagate and update the ensemble of model states (ground
level grid concentrations). In these runs, we do not apply extra perturbations (i.e.,
stochastic physics errors) in the EPISODE model. The ensemble size chosen for
this work is N = 7. We mainly choose this number of ensemble members to per-
form the current calculations reasonably fast; we can easily increase the number
of ensemble members later.

At midnight (t0 = 24) between the first and second day of forecasting, all avail-
able observations at this time point (hour) are used by the EnKF to update the
model state, i.e., the ground level grid concentrations. We then use the updated
model state as a set of improved initial concentrations in the EPISODE model for
the next 48-hour forecast run (operationally in Bedre Byluft this starts at around
5 am).

Thus, if xft0 represents the forecast ensemble mean of model ground level grid
concentrations at time t0 (t0 = 24), the updated, or assimilated, ensemble mean of
these grid concentrations xat0 (at the same time point) is given by

xat0 = xft0 +K
{
yt0 −H(xft0)

}
(6)

where K is the Kalman gain matrix (Evensen, 2007; Sakov and Oke, 2008); yt0
is the vector of observations at time t0 (at the various stations); and H(·) is the
non-linear observation operator linking the model state with the observations.
Generally one may consider H(x) as the vector of expected observations (at the
various stations) if x represents the true model state.

In this work, we define the observation operator as

H(xfsi,t0) = xfsi,t0 + Lfsi,t0 , (7)

where xfsi,t0 represents the ground level grid concentration, and Lfsi,t0 represents
the ensemble average of the sub-grid scale line source model contribution, at each
observation station si at time t0 for i = 1, . . . ,m, where m is the number of sta-
tions. It is important and necessary to add sub-grid scale line source concentra-
tions to the grid concentrations in Eq. (7) since most of the stations in Oslo are
roadside stations.

The new updated, or assimilated, receptor concentrations at each receptor point
si for i = 1, . . . , n (here receptor points also include all observation stations) at
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time t0 (midnight) are given by

H(xasi,t0) = xasi,t0 + Lfsi,t0 .

In the numerical implementation of the data assimilation procedure, the obser-
vation operator variances σ2

R implicitly used in Eq. (6) are defined so that the
following equation

σ2
R + σ2

M = σ2
χ

is satisfied, where σ2
M denotes model ensemble variance, and σ2

χ denotes the chi-
square analysis variance. We calculate the latter two variances as follows

σ2
M =

1

N − 1

N∑
k=1

{
x
f,(k)
s,t0 − x̄

f,(·)
s,t0

}2

; σ2
χ =

1

T − 1

t2∑
t=t1

{
ys,t − x̄f,(·)s,t

}2

with t1 = 13, t2 = 23 and T = t2 − t1 + 1 = 11 (this is the same set up as for the
bias estimator defined in Section 2.2).

The above data assimilation procedure is local as it is only used to update grid
and receptor concentrations in the EPISODE model at midnight (between the first
and second day of the 48-hour forecasting period). We do no extrapolations to
other time points (hours), unlike what is done in the bias correction procedure.

2.4 Results
In this section we show the results of applying the bias correction and data assim-
ilation methods described in Section 2 using observations and EPISODE model 2
day (48 hour) forecasting data from Bedre Byluft in Oslo for the week 2 – 8 De-
cember 2013 (Monday - Sunday). In this report, we focus on the improvement of
model concentrations during the first 24 hours of each 48-hour forecasting period
during this week.

This period was chosen as it represents a period of (unforeseen) stagnant mete-
orological conditions, with lower observed wind speed as compared to model
simulations, especially during the first two days of the period (2 – 3 December).
This results in too low modelled concentrations compared with observations. It
is particularly during such periods that the bias correction and data assimilation
methods are important to use to bring modelled concentrations in line with ob-
servations.

Results of improvements in the EPISODE model concentrations as compared
with observations at stations in Oslo are shown separately for each of the three
species NO2, PM10 and PM2.5 in Sections 2.4.1 - 2.4.3, respectively.
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2.4.1 NO2

Figure 1 shows maps of the EPISODE model ground level grid concentrations
of NO2 in Oslo on 2 December 2013 at 24h (midnight), i.e., after 24 hours of the
model run for the 2 day (48 hours) forecasting period 2–3 December 2013. This
is used as the initial concentrations in the EPISODE model for the next 2 day (48
hours) forecasting period starting at the same time point (hour), i.e., 3 December
2013 at 0h.

The upper left map shows the original grid concentrations before we apply bias
correction and data assimilation, while the upper right map shows the grid con-
centrations after applying the bias correction. The middle right map shows the
difference between these two concentration fields. As can be seen this results in a
fairly large increase in the grid concentrations over central parts of the city, which
are the result of interpolating estimated model biases at the various stations in
Oslo during this day (from 13h – 23h).

The middle left map shows the grid concentrations after we apply both bias cor-
rection and data assimilation, while the bottom left map shows the impact of the
data assimilation procedure in this case. As can be seen, applying data assimila-
tion results in (only) a slight further increase in the concentrations. The bottom
right map shows the difference between the bias corrected and assimilated field
and the original field, which is very similar to the difference between the bias
corrected field and the original field.

Table 1 shows original and modified (after applying bias correction and data
assimilation) root mean square errors (RMSE) between observed and EPISODE
model receptor concentrations of NO2 at stations in Oslo based on values at 24h
(midnight) during the week 2 – 8 December 2013.

As can be seen from Table 1, bias correction works reasonably well overall, re-
sulting in improvements in the RMSE both in absolute terms, and in percentage
terms, at all stations in Oslo, except at Kirkeveien and Smestad, where the bias
correction leads to a higher RMSE. The reason for the higher RMSE at Smestad
after bias correction is that on some days (especially 7 December) observed con-
centrations are much higher than modelled concentrations during most of the
day, most likely due to too strong wind in the model at this station. This leads
to a high positive estimated bias, while closer to midnight, the model values are
more in line with observations. This leads to an increase in model bias after cor-
rection, rather than a decrease, and thus to a higher overall RMSE at this station.
Use of data assimilation, in addition to bias correction, however, generally leads
to significant improvements in the RMSE metric, except at the stations Hjortnes
and RV4 Aker sykehus, where there is only a slight increase.
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Figure 1. Maps of EPISODE model initial concentrations of NO2 in Oslo (ground level) on
3 December 2013 at 0h (midnight). Units: µgm−3. Upper left: uncorrected; Upper right:
after bias correction; Middle left: after bias correction and data assimilation; Middle right:
difference between bias correction and uncorrected; Bottom left: difference between data
assimilation and bias correction; Bottom right: difference between bias correction + data
assimilation concentration fields and uncorrected concentration fields.
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Table 1. Original and modified root mean square errors (RMSE) between observed and
EPISODE model concentrations of NO2 at stations in Oslo based on values at 24h (mid-
night) during the week 2 – 8 December 2013 (Mon. – Sun.). Negative values in the im-
provement column (identified by “Impr.”) indicate the procedure worsens the field repre-
sentation.

Original model After bias correction After bias correction
Station predictions and data assimilation

RMSE RMSE Impr. RMSE Impr.
µgm3 µgm3 % µgm 3 %

Alnabru 90.8 37.2 59.0 34.0 62.6
Bygdøy Alle 92.3 67.1 27.3 41.4 55.2
Grønland 100.9 56.0 44.5 52.3 48.2
Hjortnes 77.9 55.6 28.6 62.4 19.9
Kirkeveien 52.8 57.3 -8.6 35.6 32.6
Manglerud 75.7 42.2 44.3 36.6 51.7
RV4 Aker sykehus 57.6 39.2 31.9 39.6 31.2
Smestad 65.1 90.6 -39.2 73.8 -13.5
Sofienbergparken - - - - -
Åkebergveien 87.1 45.4 47.9 38.1 56.3

Table 2 shows original and modified correlations between observed and EPISODE
model receptor concentrations of NO2 at stations in Oslo, based on values at 24h
(midnight) during the week.

As can be seen from Table 2, bias correction works reasonably well overall, re-
sulting in improvements in correlation at all stations in Oslo. Use of data assimi-
lation, in addition to bias correction, generally leads to further improvements in
correlation, except at station Hjortnes. A reduction in correlation due to data as-
similation at a few stations is something that must be expected statistically since
the calculated correlations are based on only 7 values (at midnight each day). It
is more significant that we see an overall improvement in correlations.

As an example of the overall improvement in EPISODE model receptor concen-
trations after the combination of bias correction (with extrapolation of the esti-
mated bias to all hours during the first day of forecasting) and data assimilation,
we show results for NO2 at station Bygdøy Allé in Figure 2. The time series in
this figure compare the observed (blue curve) and EPISODE model receptor con-
centrations (red curve) for the week 2 – 8 December 2013.

In Figure 2, we show in the top panel observations and original model concen-
trations without corrections, while observations and model concentrations after
bias correction and data assimilation are shown in the bottom panel. As can be
seen from the figure, the modified model values (after bias correction and data
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Figure 2. Time series plots of observed (blue) and EPISODE model concentrations (red)
of NO2 at Bygdøy Allé for the week 2 - 8 December 2013 (Mon. - Sun.). Original model
values without corrections (top panel), and after bias correction and data assimilation
(bottom panel). Units: µgm−3.
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Table 2. Original and modified correlations between observed and EPISODE model con-
centrations of NO2 at stations in Oslo based on values at 24h (midnight) during the week
2 – 8 December 2013 (Mon. – Sun.).

Original model After bias correction After bias correction
Stations predictions and data assimilation

Correlation Correlation Correlation
Alnabru 0.89 0.96 0.97
Bygdøy Alle 0.69 0.72 0.91
Grønland 0.71 0.81 0.92
Hjortnes 0.50 0.90 0.80
Kirkeveien 0.72 0.77 0.90
Manglerud 0.30 0.71 0.79
RV4 Aker sykehus 0.75 0.87 0.91
Smestad 0.28 0.29 0.43
Sofienbergparken - - -
Åkebergveien 0.61 0.82 0.98

assimilation) are overall much closer to the observed values. Similar figures for
the other stations in Oslo, for this and the other two species, are provided in Ap-
pendices A and B, for the uncorrected and corrected model values, respectively.

2.4.2 PM10

In this section, similar plots and tables of results as for NO2 in Section 2.4.1, are
given for PM10.

Figure 3 show maps of the EPISODE model ground level grid concentrations of
PM10 in Oslo on 2 December 2013 at 24h (midnight), i.e., after 24 hours of model
run for the 2 day (48 hours) forecasting period 2 – 3 December 2013.

In Table 3 we show the original and modified (after applying bias correction
and data assimilation) root mean square errors (RMSE) between observed and
EPISODE model receptor concentrations of PM10 at stations in Oslo based on val-
ues at 24h (midnight) during the week 2 – 8 December 2013.

As can be seen from Table 3, bias correction works reasonably well overall, re-
sulting in good improvements in the RMSE both in absolute terms, and in per-
centage terms, at all stations in Oslo, except at Bygdøy Allé and Smestad, where
the bias correction leads to a higher RMSE. Again, the reason for the much higher
RMSE after bias correction at these stations is that on some days (especially 7 De-
cember) observed concentrations are much higher than modelled except close to
midnight. Again, this is most likely due to too strong winds in the model at this
station, leading to an increase in model bias after correction, and thus to a higher
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Figure 3. Maps of EPISODE model initial concentrations of PM10 in Oslo (ground level)
on 3 December 2013 at 0h (midnight). Units: µgm-3. Upper left: uncorrected; Upper right:
after bias correction; Middle left: after bias correction and data assimilation; Middle right:
difference between bias correction and uncorrected; Bottom left: difference between data
assimilation and bias correction; Bottom right: difference between bias correction + data
assimilation concentration fields and uncorrected concentration fields.
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Table 3. Original and modified root mean square errors (RMSE) between observed and
EPISODE model concentrations of PM10 at stations in Oslo based on values at 24h (mid-
night) during the week 2 – 8 December 2013 (Mon. – Sun.). Negative values in the im-
provement column indicate the procedure worsens the field representation.

Original model After bias correction After bias correction
Station predictions and data assimilation

RMSE RMSE Impr. RMSE Impr.
µgm3 µgm3 % µgm 3 %

Alnabru 93.8 46.8 50.1 32.9 65.0
Bygdøy Alle 34.7 61.5 -77.5 45.6 -31.5
Grønland - - - - -
Hjortnes 127.6 57.7 54.8 57.7 54.8
Kirkeveien 82.8 20.4 75.3 22.2 73.2
Manglerud 44.4 24.9 43.9 25.3 43.2
RV4 Aker sykehus 45.4 21.5 52.6 16.2 64.3
Smestad 19.5 67.1 -244.8 49.4 -154.1
Sofienbergparken 104.2 76.5 26.6 74.3 28.7
Åkebergveien 39.1 20.9 46.6 13.8 64.6

overall RMSE. Use of data assimilation, in addition to bias correction, however,
again leads to overall improvements in the RMSE metric, except at the stations
Kirkeveien and Manglerud, where there is a slight increase.

Table 4 shows original and modified correlations between observed and EPISODE
model receptor concentrations of PM10 at stations in Oslo, again based on values
at 24h (midnight) during the week.

As can be seen from Table 4, bias correction works reasonably well overall, result-
ing in improvements in correlation at all stations in Oslo, except at Bygdøy Allé
and Åkebergveien. Use of data assimilation, in addition to bias correction, gener-
ally leads to further improvements in correlation, except at station Bygdøy Allé.
Again, a reduction in correlation due to bias correction or data assimilation at a
few stations is something that must be expected statistically since the calculated
correlations are based on only 7 values (at midnight each day). More significant
is that we see an overall improvement in correlations.

We show in Figure 4 time series plots of observed (blue curve) and EPISODE
model receptor concentrations (red curve) of PM10 at station Hjortnes for the
week 2 – 8 December. As can be seen from the figure, the corrected model val-
ues are overall much closer to the observed values. Similar figures for the other
stations in Oslo, for this and the other two species, are provided in Appendices A
and B, for the uncorrected and corrected model values, respectively.
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Figure 4. Time series plot of observed (blue curve) and EPISODE model concentrations
(red curve) of PM10 at Hjortnes for the week 2 - 8 December 2013 (Mon. - Sun.). Original
model values without corrections (top panel), and after bias correction and data assimi-
lation (bottom panel). Units: µgm−3.
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Table 4. Original and modified correlations between observed and EPISODE model con-
centrations of PM10 at stations in Oslo based on values at 24h (midnight) during the week
2 – 8 December 2013 (Mon. – Sun.).

Original model After bias correction After bias correction
Stations predictions and data assimilation

Correlation Correlation Correlation
Alnabru 0.81 0.88 0.97
Bygdøy Alle 0.91 0.88 0.83
Grønland - - -
Hjortnes 0.34 0.84 0.84
Kirkeveien 0.64 0.96 0.98
Manglerud -0.11 0.66 0.67
RV4 Aker sykehus 0.64 0.92 0.95
Smestad 0.73 0.82 0.84
Sofienbergparken 0.67 0.82 0.95
Åkebergveien 0.99 0.86 0.98

2.4.3 PM2.5

In this section, similar plots and tables of results as given for NO2 and PM10 in
Sections 2.4.1-2.4.2, are given for PM2.5.

Figure 5 shows maps of the EPISODE model ground level grid concentrations
of PM2.5 in Oslo on 2 December 2013 at 24h (midnight), i.e., after 24 hour of the
model run for the 2 days (48 hours) forecasting period 2 – 3 December 2013.

Again, there is an increase in grid concentrations over the central parts of the city.
Applying data assimilation results in a further increase in the concentrations. The
difference between the bias corrected and assimilated field and the original field,
is now bigger than the difference between the bias corrected and original fields.

Table 5 shows the original and modified (after applying bias correction and data
assimilation) root mean square error (RMSE) between observed and EPISODE
model receptor concentrations of PM2.5 at stations in Oslo based on values at 24h
(midnight) during the week 2 – 8 December 2013.

As can be seen from Table 5, bias correction works reasonably well overall, re-
sulting in improvements in the RMSE both in absolute and percentage terms, at
all stations in Oslo, except at Smestad, where the bias correction leads to a higher
RMSE. Again, the reason for the higher RMSE after bias correction at this station,
is because at some days (especially on 4 December and 7 December) observed
values are much higher than modelled during most of the day. Again this most
likely due to too strong winds in the model at this station, leading to an increase
in model bias after correction at midnight. Use of data assimilation, in addition
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Figure 5. Maps of EPISODE model initial concentrations of PM2.5 in Oslo (ground level)
on 3 December 2013 at 0h (midnight). Units: µgm-3. Upper left: uncorrected; Upper right:
after bias correction; Middle left: after bias correction and data assimilation; Middle right:
difference between bias correction and uncorrected; Bottom left: difference between data
assimilation and bias correction; Bottom right: difference between bias correction + data
assimilation concentration field and uncorrected concentration field.
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Table 5. Original and modified root mean square errors (RMSE) between observed and
EPISODE model concentrations of PM2.5 at stations in Oslo based on values at 24h (mid-
night) during the week 2 – 8 December (Mon. – Sun.). Negative values in the improvement
column indicate the procedure worsens the field representation.

Original model After bias correction After bias correction
Station predictions and data assimilation

RMSE RMSE Impr. RMSE Impr.
µgm3 µgm3 % µgm 3 %

Alnabru 47.2 18.4 61.0 10.1 77.9
Bygdøy Alle 37.9 26.0 31.4 18.3 51.8
Grønland - - - - -
Hjortnes 22.6 16.9 25.3 15.1 33.4
Kirkeveien 38.1 24.1 36.7 16.1 57.7
Manglerud 13.1 5.8 55.7 6.9 47.4
RV4 Aker sykehus 32.8 19.4 40.9 14.5 55.8
Smestad 7.1 19.6 -174.7 21.6 -202.8
Sofienbergparken 56.4 41.6 26.3 36.7 34.9
Åkebergveien 33.7 21.6 36.0 16.7 50.5

to bias correction, however, again leads to overall improvements in the RMSE
metric, except at the stations Manglerud and Smestad, where there is a slight in-
crease.

Table 6 shows original and modified correlations between observed and EPISODE
model receptor concentrations of PM2.5 at stations in Oslo, again based on values
at 24h (midnight) during the week.

As can be seen from Table 6, bias correction works reasonably well overall, re-
sulting in improvements in correlation at all stations in Oslo, except at Smestad.
Use of data assimilation, in addition to bias correction, generally leads to further
improvements in correlation, except at station Smestad. Again, since the data set
is quite small (only 7 values), reduced correlations at a few stations after bias cor-
rection or data assimilation is something that must be expected statistically. More
significant is the overall improvement in correlations.

We show in Figure 6 time series plots of observed (blue curve) and EPISODE
model receptor concentrations (red curve) of PM2.5 at station Kirkeveien for the
week 2 – 8 December 2013. As can be seen from the figure, the corrected model
values are overall much closer to the observed values. Similar figures for the other
stations in Oslo, for this and the other two species, are provided in Appendices A
and B, for the uncorrected and corrected model values, respectively.
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Figure 6. Time series plot of EPISODE model concentrations of PM2.5 at Kirkeveien for
the week 2 - 8 December 2013 (Mon. – Sun.). Original model values without corrections
(top panel), and after bias correction and data assimilation (bottom panel). Units: µgm−3.

29



Table 6. Original and modified correlations between observed and EPISODE model con-
centrations of PM2.5 at stations in Oslo based on values at 24h (midnight) during the week
2 – 8 December 2013 (Mon. – Sun.).

Original model After bias correction After bias correction
Stations predictions and data assimilation

Correlation Correlation Correlation
Alnabru 0.80 0.95 0.97
Bygdøy Alle 0.72 0.81 0.90
Grønland - - -
Hjortnes 0.71 0.80 0.88
Kirkeveien 0.82 0.95 0.99
Manglerud 0.96 0.98 0.98
RV4 Aker sykehus 0.85 0.94 0.97
Smestad 0.93 0.76 0.74
Sofienbergparken 0.72 0.94 0.98
Åkebergveien ≈1.00 ≈1.00 ≈1.00

3 Statistical post-processing

NR has developed a prototype model for statistical post-processing of the air
quality forecasts within AirQUIS (Steinbakk et al., 2013). This work was based
on output data from the deterministic dispersion model EPISODE and observa-
tions from 11 stations in Oslo from the winter seasons 2011-2012 and 2012-2013.
In general, the statistical post-processing significantly improved the predictive
performance of the numerical model.

Other cities in Norway typically have only a few observation stations which
makes post-processing difficult due to lack of data. To investigate the perfor-
mance of the post-processing proposed by Steinbakk et al. (2013) in this situation,
we apply a cross-validation scheme to the Oslo data in which observed data are
assumed available at a few locations only within the region of interest. That is, we
use a small subset of the available stations in Oslo as a training data set to learn
the parameters of the statistical post-processing model and compare the adjusted
results against observations at stations not used for the training. This procedure
is then repeated for different groups of observation stations.

The air quality forecasts within AirQUIS used in this analysis are deterministic
such that at each location, the forecast is given by a point value without associ-
ated uncertainty. The post-processing method of Steinbakk et al. (2013), on the
other hand, provides full predictive distributions and thus includes procedures
for appropriate uncertainty assessment as described below. The availability of the
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Table 7. The measurement stations in Oslo.

Name Type Variables
Kirkeveien Road NO2, PM10, PM2.5

Smestad Road NO2, PM10, PM2.5

RV4 Road NO2, PM10, PM2.5

Bygdøy Allé Road NO2, PM10, PM2.5

Alnabru Road NO2, PM10, PM2.5

Hjortnes Road NO2, PM10, PM2.5

Manglerud Road NO2, PM10, PM2.5

Åkebergveien Road, NO2, PM10, PM2.5

background
Sofienbergparken Background PM10, PM2.5

Grønland Background NO2

full predictive distributions is especially valuable for threshold exceedances, as it
allows us to estimate the predictive probability of exceeding any given threshold.

3.1 Data
The data consist of forecasts from EPISODE and corresponding measurements
of NO2, PM2.5, and PM10 at different measurement sites in Oslo for the winter
seasons 2011-2012 and 2012-2013, see Table 7. For the first winter season, data
are available from 15th of January to 13th of April 2012, while the data from the
second season cover the period from 5th of October 2012 to 30th of April 2013.
The coarse fraction PMc is given by the difference PM10− PM2.5. In this work we
focus on the 1–24 hour ahead predictions of EPISODE, but the statistical post-
processing can also be applied to the 25–48 hour ahead predictions.

Negative observed values sometimes exist in the data set due to measurement
error. Since our analysis is performed on a logarithmic scale, small negative ob-
served values are truncated such that PM2.5 and PMc have 0.5 as the minimum
value, while 2 and 1 are used as minimum values for NO2 and PM10, respectively.

3.2 Model for statistical post-processing
Denote by yj,t the logarithm of the true concentration of an air pollutant located
at a geographical point j on a grid G and a time point t. Further, let ŷj,t be the
corresponding deterministic prognosis on a logarithmic scale. The relationship
between the true concentration and the prognosis can be written as

yj,t = β0 + β1ŷj,t + nj,t, (8)
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where β0 and β1 are unknown parameters, and nj,t is the error term. The param-
eters β0 and β1 are intended to adjust for systematic biases between the true con-
centration and the deterministic predictions. The error term in Eq. (8) is a function
of an underlying process lt given by

nj,t = lt + εj,t,

with the error terms εj,t assumed independently normally distributed with mean
zero and variance σ2

t . The underlying process lt is common for all grid points and
is assumed to follow an autoregressive process

lt = φ1lt−1 + φ24lt−24 − φ1φ24lt−25 + at. (9)

Here, the error at is an independent Gaussian process with mean zero and stan-
dard deviation τt, and φ1 and φ24 are unknown parameters. The underlying error
lt is thus a function of the error one hour ahead and the error 24 and 25 hours ear-
lier, where the parameters φ1, φ24, and φ1φ24 indicate the degree of dependence
on past errors. This model form is based on that of a multiplicative seasonal au-
toregressive model (Box and Jenkins, 1976).

3.3 Parameter estimation
The model in Eq. (8) for the statistical post-processing involves unknown parame-
ters and processes that are estimated from the observations and the deterministic
prognoses atmmeasurement stations located on a subset of the gridG. At a given
time point, say T , we fit the statistical model to historical data up to time T . Then,
we use the estimated statistical model to compute the predictive distributions
1-48 hours ahead.

The estimation of the unknown model parameters is performed in two steps. In
a first step, the regression parameters are estimated by ordinary least square es-
timation using the observations and the corresponding prognoses at all the m
measurement stations. Secondly, we use the resulting estimates in the model in
Eq. (8) to estimate the terms in the error process nt,j . As we have computed the
error n̂t,j at each observation site, we compute the common underlying error pro-
cess at each time point as

l̂t =
1

m

m∑
j=1

n̂t,j.

Finally, we estimate the unknown parameters φ1 and φ24 in equation Eq. (9) us-
ing l̂t as the error process (using standard statistical software, for instance the
function "Arima" in the statistical software R).
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3.4 Probabilistic forecasts
Our predictive distribution on a logarithmic scale is normal with mean µ̂j,t|T and

variance ŝd
2

j,t|T , see Appendix C for details. Here, the sub-script j, t|T indicates a
predicted value at a grid point j and a time point t given information up to time
point T . A random variable from the predictive distribution for an air pollutant
on the original scale is thus given by

Yj,t|T = exp(µ̂j,t|T + ŝdj,t|TZt,j), (10)

where Zt,j is a standard normal variable. Given the estimates µ̂j,t|T and ŝdj,t|T , it is
straightforward to obtain a sample of any size from the predictive distribution by
first sampling standard normal variates and then transforming them according
to Eq. (10). Two examples of such distributions are shown in Figure 7, illustrating
that the predictive distribution of an air pollutant on the original scale is non-
symmetric with a heavy, right tail. An algorithm for estimating the unknown pa-
rameters in the predictive distribution in Eq. (10) and simulating its distribution,
is given in the Appendix C.

Different quantities and estimates can be computed from the full probabilistic
distribution for an air pollution component, such as its mean, quantiles and stan-
dard deviation. Following Steinbakk et al. (2013) we use the mean of the full pre-
dictive distribution as our adjusted predictions. In addition, we investigate the
predictive performance of the median estimate. Furthermore, a full probabilistic
distribution can provide exceedance probabilities as demonstrated in Section 4.

3.5 Evaluation of predictive performance
The deterministic prognosis system in AirQUIS provides daily prognosis about
six o’clock in the morning during the winter. This time point is denoted by T .
We evaluate the post-processed predictions by estimating the model on (histori-
cal) data for a time period up to time T and compare the post-processed predic-
tions to actual observations for t = T + 1h, . . . , T + 48h. Thus, we use data from
t = 1, . . . , T to train the model (training data set) and assess how the predictions
fit to real data up to 48 hours ahead (validation data set). This procedure is re-
peated daily, resulting in a longer training set as the season progresses. To have a
sufficiently long training set to estimate the model at the beginning of the season,
the validation starts after 14 days (i.e. T = 14 · 24 hours) each season.

We apply a cross-validation scheme by assuming available data at a few locations
only. Thus, the model is trained or estimated on a small subset of the available
stations in Oslo, and then we compare these post-processed results against obser-
vations at stations not used for training. The scheme is repeated for groups of air
quality stations.

33



Alnabru, 23.01.2013, 7:00

PM 2.5

0 10 20 30 40 50 60 70 80 90 100

Predictive mean
Predictive median
AirQUIS
Observation

16% probability of exceeding 20

Manglerud, 23.01.2013, 7:00

PM 2.5

0 10 20 30 40 50 60 70 80 90 100

Predictive mean
Predictive median
AirQUIS
Observation

46% probability of exceeding 20

Figure 7. Two examples of full predictive distributions of hourly PM2.5 concentrations using
the statistical post-processing framework of Steinbakk et al. (2013). The full distributions
are indicated in green with the part exceeding a threshold of 20µm−3 indicated in blue.
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The following descriptive measures are used to compare the prognosis ŷj,t and
the observations yobsj,t , t = 1, . . . , n at each measurement station j:

• Square root of the mean squared error

RMSEj =

√√√√ 1

n

n∑
t=1

(yobsj,t − ŷj,t)2.

• Correlation coefficient between the observed values and the prognoses:

CORj =
1

n− 1

n∑
t=1

(
yobsj,t − ȳobsj,·

) (
ŷj,t − ¯̂yj,·

)
sobsj sj

,

where ȳobsj,· and ¯̂yj,· are the means of all observations and prognosis, respec-
tively, over all time points n, while sobsj and sj are the corresponding standard
deviations.

• Mean absolute error

MAEj =
1

n

n∑
t=1

|yobsj,t − ŷj,t|.

Following Gneiting (2011), we use the predictive mean of the post-processed fore-
cast when the predictive performance is measured by the RMSE and the predic-
tive median under the MAE. The correlation coefficients are calculated using both
the predictive mean and the median.

3.6 Results
Here, we show the results from the statistical post-processing based on only a
small sub-group of the measurement stations in Table 7, using the cross-validation
scheme described in Section 3.5. Results from the statistical post-processsing method
based on all measurement stations in Oslo are presented in Steinbakk et al. (2013).

We show the performance of the statistical post-processing at the stations RV4,
Åkebergveien and Hjortnes, where Åkebergveien is almost regarded as a back-
ground station due to low traffic (annual average daily traffic is about 7000).
These three target stations are left out when estimating the models based on
sub-groups of neighbouring sites different from the target stations. The adjusted
predictions at the target stations are then compared to their corresponding obser-
vations. The two groups of neighbouring stations that are used for training the
model are:

Group 1 Sofienbergparken, Kirkeveien, Manglerud

Group 2 Smestad, Bygdøy Allé, Alnabru
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Further results where the parameter estimation is based on data from only two
stations are given in Appendix D.

Hence, we estimate the model based on data from one of these two groups and
validate the 24 hours ahead predictions and the observations at the target sta-
tions, with the results summarised in Table 8. The values in the parentheses are
the percentage improvements compared to the same measure computed with the
original prognoses. The results for group 1 and group 2 are also compared to the
results using all stations (see the column "All st."). The adjusted predictions are
here defined as the mean of the predictive distribution.

The adjusted root mean squared forecast errors for the particulate matters, PM,
are always better than (or at least as good as) the original predictions except for
PM2.5 at RV4 in season 2 based on group 2. In this case, the estimated variances
were higher in season 2 than in season 1. The mean estimate is a function of the
standard deviations on a logarithmic scale, resulting in a greater difference at the
original scale. A more robust estimate in this case might be the median estimate
discussed below, since the median prediction is not so sensitive to outliers as the
mean.

Figure 8 shows a histogram of the RMSE values and the correlations between pre-
dictions and observations based on all possible unique combinations of groups of
three stations (training data sets) for PM2.5 at RV4 (all together 54 combinations).
The red vertical line indicates the same measure based on the original prognosis.
The correlation is almost always better than the original prognosis for all groups
of stations and the same holds for RMSE in season 1. We also see that the RMSE
for group 2 in season 2 are amongst the higher ones of all the combinations of
groups of validation data set in Figure 8, but that the adjusted prognoses are bet-
ter on average. In this context, we should also mention that the improvements for
PM2.5 in season 2 at RV4 based on all the other stations was amongst the smallest
of all the target stations (i.e., 5% in Steinbakk et al. (2013)).

The RMSE for the adjusted predictions of NO2 in Table 8 shows that RMSE in
season 2 is better than in season 1. The adjusted prognosis based on all the other
measurement stations for these three target stations had higher RMSE than the
original prognosis in season 1. The correlations, on the other hand, show im-
provements compared to the original prognosis similarly to the results based on
all stations, which may indicate that the level of air pollution concentration is not
very well fitted.

Note that in Steinbakk et al. (2013) the RMSE for the original prognosis for PM2.5

at Åkebergveien in season 1 was 7.6 (see Table A.3 in Steinbakk et al. (2013))
which is much lower than the value 9.2 in Table 8 of the current report. The reason
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Table 8. Root mean squared error (RMSE) and correlation (COR) for prognosis of PM10,
PM2.5, PMc and NO2 for the post-processed prognosis (mean value estimate) and based
on different groups of neighbouring stations and the original prognosis from AirQUIS.
The numbers in the parentheses indicate improvement (in %) compared to the original
prognoses.

PM10 RMSE COR
Season 1 Orig. Gr. 1 Gr. 2 All st. Orig. Gr. 1 Gr. 2 All st.
RV4 23.0 18.8 (18%) 18.9 (18%) 18.8 (18%) 0.59 0.67 (12%) 0.66 (11%) 0.67 (13%)
Åkeberg. 25.9 23.8 ( 8%) 23.1 (11%) 23.0 (11%) 0.49 0.53 ( 9%) 0.54 (11%) 0.56 (15%)
Hjortnes 59.0 32.5 (45%) 31.9 (46%) 32.3 (45%) 0.29 0.36 (24%) 0.36 (25%) 0.36 (25%)
PM10

Season 2
RV4 20.3 18.1 (11%) 18.4 (10%) 18.0 (11%) 0.52 0.61 (16%) 0.61 (17%) 0.62 (19%)
Åkeberg. 19.5 16.4 (16%) 16.5 (16%) 16.0 (18%) 0.47 0.64 (35%) 0.64 (35%) 0.66 (39%)
Hjortnes 39.5 28.3 (28%) 27.4 (31%) 28.3 (28%) 0.29 0.43 (45%) 0.44 (49%) 0.44 (50%)

PM2.5

Season 1
RV4 7.9 5.4 (31%) 7.0 ( 10%) 5.5 (30%) 0.57 0.63 (11%) 0.57 ( 1%) 0.63 (11%)
Åkeberg. 9.2 8.5 ( 8%) 8.7 ( 5%) 8.4 ( 9%) 0.57 0.65 (12%) 0.58 ( 1%) 0.65 (13%)
Hjortnes 11.5 6.6 (42%) 8.9 ( 22%) 7.0 (39%) 0.42 0.49 (18%) 0.42 ( 0%) 0.49 (17%)
PM2.5

Season 2
RV4 6.1 5.1 (16%) 7.6 (-25%) 5.8 ( 5%) 0.46 0.52 (13%) 0.47 ( 1%) 0.52 (13%)
Åkeberg. 8.9 8.2 ( 8%) 8.3 ( 8%) 7.9 (12%) 0.49 0.60 (22%) 0.55 (12%) 0.61 (25%)
Hjortnes 8.5 6.2 (28%) 8.5 ( 0%) 6.8 (20%) 0.42 0.48 (15%) 0.42 ( 0%) 0.47 (12%)

PMc

Season 1
RV4 19.4 17.0 (12%) 16.8 (14%) 16.6 (15%) 0.61 0.68 (12%) 0.69 (14%) 0.70 (15%)
Åkeberg. 22.2 20.9 ( 6%) 20.6 ( 7%) 19.9 (11%) 0.48 0.53 (11%) 0.54 (13%) 0.57 (20%)
Hjortnes 51.7 33.7 (35%) 30.0 (42%) 31.7 (39%) 0.29 0.36 (23%) 0.38 (31%) 0.36 (25%)
PMc

Season 2
RV4 18.2 16.6 ( 9%) 16.9 ( 7%) 16.4 (10%) 0.52 0.60 (16%) 0.60 (17%) 0.62 (20%)
Åkeberg. 15.3 12.9 (16%) 14.8 ( 3%) 12.6 (18%) 0.45 0.66 (46%) 0.63 (38%) 0.69 (52%)
Hjortnes 35.0 25.9 (26%) 24.3 (31%) 26.5 (24%) 0.27 0.41 (50%) 0.45 (65%) 0.41 (50%)

NO2

Season 1
RV4 27.9 31.0 (-11%) 32.7 (-17%) 28.8 ( -3%) 0.59 0.60 ( 2%) 0.62 ( 5%) 0.62 ( 5%)
Åkeberg. 28.5 35.8 (-26%) 40.3 (-41%) 35.5 (-25%) 0.50 0.58 (16%) 0.56 (12%) 0.60 (19%)
Hjortnes 38.8 42.9 (-11%) 44.0 (-13%) 39.6 ( -2%) 0.45 0.48 ( 7%) 0.50 (11%) 0.49 ( 8%)
NO2

Season 2
RV4 28.6 25.5 ( 11%) 27.3 ( 4%) 24.6 ( 14%) 0.63 0.66 ( 4%) 0.66 ( 5%) 0.68 ( 7%)
Åkeberg. 31.6 22.8 ( 28%) 33.2 ( -5%) 27.3 ( 14%) 0.64 0.71 (11%) 0.66 ( 2%) 0.71 (10%)
Hjortnes 32.1 29.7 ( 8%) 29.7 ( 7%) 28.5 ( 11%) 0.63 0.65 ( 2%) 0.66 ( 5%) 0.67 ( 6%)
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Figure 8. Histogram of root mean squared error (RMSE) (top row) and correlation (COR)
(bottom row) between post-processed prognosis (mean value estimate) and data for
PM2.5 at RV4, for parameter estimation based on all possible combinations of groups
of three stations. The red vertical line indicates the corresponding result for the original
24 hour prognosis.

is that the results in this report and in Steinbakk et al. (2013) are based on slightly
different data sets. Steinbakk et al. (2013) presented an additional local method
only useful for grid points that included measurement stations. For comparing
the regional model presented in this report and the local model, Steinbakk et al.
(2013) used exactly the same data points for both model frameworks, where the
other local method could not predict for all time points.

An alternative measure is to use the median of the predictive distribution as our
estimate rather than the mean. The median is a generally a more robust estimate
as it is less sensitive to outliers than the mean. This might have an effect here
as the predictive distributions are usually skewed with a heavy upper tail, see
Figure 7.

The results for the median prognoses are given in Table 9. As mentioned above,
the predictive performance is here measured by the MAE rather than the RMSE.
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Table 9. Mean absolute error (MAE) and correlation (COR) for prognosis of PM10, PM2.5,
PMc and NO2 for the post-processed median prognosis based on different groups of
neighbouring stations and the original prognosis from AirQUIS. The numbers in the
parentheses indicate improvement (in %) compared to the original prognoses.

PM10 MAE COR
Season 1 Orig. Gr. 1 Gr. 2 Orig. Gr. 1 Gr. 2
RV4 23.0 20.0 (13%) 19.8 (14%) 0.59 0.67 (12%) 0.66 (11%)
Åkeberg. 25.9 25.3 ( 2%) 24.8 ( 4%) 0.49 0.54 (11%) 0.55 (12%)
Hjortnes 59.0 32.0 (46%) 31.2 (47%) 0.29 0.36 (25%) 0.36 (26%)
PM10

Season 2
RV4 20.3 18.7 ( 8%) 18.5 ( 9%) 0.52 0.61 (17%) 0.61 (17%)
Åkeberg. 19.5 17.8 ( 9%) 17.4 (11%) 0.47 0.64 (35%) 0.64 (35%)
Hjortnes 39.5 29.3 (26%) 28.7 (27%) 0.29 0.43 (46%) 0.44 (49%)

PM2.5

Season 1
RV4 7.9 5.3 (33%) 5.3 (33%) 0.57 0.64 (12%) 0.62 ( 9%)
Åkeberg. 9.2 9.5 (-3%) 8.9 ( 3%) 0.57 0.65 (13%) 0.63 (10%)
Hjortnes 11.5 5.6 (51%) 6.2 (46%) 0.42 0.50 (19%) 0.47 (11%)
PM2.5

Season 2
RV4 6.1 4.6 (24%) 5.0 (18%) 0.46 0.53 (14%) 0.45 (-3%)
Åkeberg. 8.9 9.2 (-2%) 9.2 (-3%) 0.49 0.60 (22%) 0.53 ( 9%)
Hjortnes 8.5 6.1 (29%) 6.5 (24%) 0.42 0.49 (16%) 0.40 (-5%)

PMc

Season 1
RV4 19.4 19.2 ( 1%) 20.9 (-8%) 0.61 0.68 (12%) 0.69 (13%)
Åkeberg. 22.2 22.6 (-1%) 24.1 (-8%) 0.48 0.53 (11%) 0.53 (12%)
Hjortnes 51.7 30.1 (42%) 30.4 (41%) 0.29 0.35 (23%) 0.38 (30%)
PMc

Season 2
RV4 18.2 18.3 ( 0%) 18.9 (-4%) 0.52 0.59 (15%) 0.58 (13%)
Åkeberg. 15.3 14.2 ( 7%) 15.0 ( 2%) 0.45 0.66 (46%) 0.60 (33%)
Hjortnes 35.0 28.0 (20%) 28.0 (20%) 0.27 0.42 (52%) 0.44 (62%)

NO2

Season 1
RV4 27.9 26.8 ( 4%) 28.4 ( -2%) 0.59 0.61 ( 4%) 0.63 ( 6%)
Åkeberg. 28.5 25.5 (10%) 32.7 (-15%) 0.50 0.59 (18%) 0.57 (13%)
Hjortnes 38.8 37.1 ( 5%) 38.9 ( 0%) 0.45 0.50 (10%) 0.51 (13%)
NO2

Season 2
RV4 28.6 26.0 ( 9%) 24.8 ( 13%) 0.63 0.66 ( 5%) 0.67 ( 5%)
Åkeberg. 31.6 17.3 (45%) 24.9 ( 21%) 0.64 0.71 (10%) 0.66 ( 2%)
Hjortnes 32.1 33.8 (-5%) 28.5 ( 11%) 0.63 0.65 ( 3%) 0.66 ( 5%)
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The MAE is less sensitive to outlying prediction errors than the RMSE such that
single instances in which a forecast performs poorly have less influence on the
overall average performance than under the RMSE. However, we see that the
correlation results based on the predictive median are equal to the correlation
results based on the predictive mean in Table 8.

Overall, the relative performance of the median prediction is better than that of
the mean prediction for NO2 while the relative improvement compared to the
original prognosis is better for the mean prediction for the particulate matters.
For a potential operationalization of the method, it should thus be investigated
further whether the mean or the median is the best measure more to determine
the most likely forecast.

4 Communicating uncertainty

The air quality forecasts within AirQUIS may be associated with a varying degree
of uncertainty due to, e.g., the meteorological conditions, the day of the week or
the hour of the day, and hence are not complete without a description of their
uncertainty.

Observations have errors which are characterized as random (also known as pre-
cision), systematic (also known as bias) and of representativeness (or represen-
tativity). We sometimes term the sum of these errors the accuracy. A property of
random errors is their reduction when averaged. This is not the case of systematic
errors; commonly, we subtract them from an observation if known. The represen-
tativeness error is associated with differences in the resolution of observational
information and the resolution of the model interpreting this information.

Models also have errors. These errors arise through the construction of models,
as models can be incomplete due to a lack of understanding or due to omission of
processes to make the problem tractable; and through their imperfect simulation
of the “real world”, itself sampled by observations or measurements. Thus, infor-
mation, whether in the form of observations or models has errors, and we must
consider them. In data assimilation, the observations, models, and analyses have
errors, never known precisely; we must estimate them. This means we must state
the data assimilation problem in probabilistic terms (see, e.g., Cohn, 1997).

Typically, there are biases between different observations types, and between the
observations and the model. Ménard (2010) discusses bias estimation in data as-
similation. These biases vary in space and time, and it is a major challenge to
estimate and correct them. Despite this, and mainly for pragmatic reasons, in
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data assimilation we often assume that the errors in the observations and the
background or model are unbiased. For numerical weather prediction, however,
many assimilation schemes now incorporate a bias correction, which from the
point of view of general estimation theory is the proper way to deal with biased
data. There are various techniques to correct observations by removing the bias
(e.g, Dee and da Silva, 1998); Dee (2005) reviews the treatment of biases in data
assimilation systems.

The statistical post-processing approach of Steinbakk et al. (2013) returns fulls
predictive distributions and the predicted most likely value may thus be supple-
mented with information regarding the corresponding predictive uncertainty as
shown in Figure 7. That is, at a given location or in a fixed grid cell, we have ac-
cess to supplementary information such as prediction intervals or the predictive
probability of exceeding a given threshold.

This information may then, to a certain extent, be expanded to the entire region
covered by the EPISODE model output. A simulated example of such information
for PM2.5 over the Oslo region is shown in Figure 9. Here, the most likely forecast
for each grid cell given by the mean prediction is supplemented with the corre-
sponding predictive uncertainty as represented by the standard deviation of the
local predictive distribution. As expected, the forecast is highly non-stationary in
space with the largest concentrations predicted along the busiest roads through
the city. The uncertainty follows a similar spatial pattern revealing a strong spa-
tial variability in the variance of the forecast.

The bottom plot in Figure 9 presents the point-wise probability of the realized
value exceeding a threshold of 20 µm−3. Again, we see a similar spatial pattern
as in the two previous plots, the exceedance probability is higher than 20% over
most of the city with the highest values over the busiest roads reaching approx-
imately 45%. This aligns with the top plot showing the predicted mean values
within the highlighted region ranging from approximately 15 µm−3 to 25 µm−3.
The simulated example in Figure 9 is just to illustrate how probabilites can be
visualised in a map. A realistic threshold for PM2.5 has to be chosen according to
guidelines developed through interaction between the scientific and regulatory
communities.

In addition to the local uncertainty information conveyed in Figure 9, many ap-
plications require uncertainty information regarding derived or composed quan-
tities which again requires multivariate probabilistic forecasts with a physically
coherent spatial structure. Examples of such applications include the predicted
maximum or minimum value within a region, and the probability of exceeding a
threshold at least once or everywhere within a region. The region of interest may,
for instance, consist of a stretch of road such as the Ring 3 in Oslo.
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Figure 9. Simulated example of post-processed mean predictions of PM2.5 over the entire
Oslo region (top plot), the associated predicted standard deviation (centre plot), and the
probability of exceeding a threshold of 20 µm−3 in each grid point (bottom plot).
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Multivariate physically coherent forecasts are required in applications in various
fields and several alternative approaches have been proposed. This subject is,
e.g., a very active area of research within weather forecasting, see Schefzik et al.
(2013) for a recent review. A physically based approach consists of running the
deterministic numerical model multiple times using slightly varying initial and
boundary conditions or, potentially, alternative parameterizations of the numeri-
cal model (Palmer, 2002). This results in a so-called ensemble forecast where each
ensemble member is considered an equally likely representation of the future
state. In this approach, the ensemble Kalman filter method described in Section
2 is commonly used to generate equally likely perturbations of the initial and
boundary conditions.

Statistical techniques can be used to generate multivariate probabilistic forecast
based on a single output from a numerical model. Gel et al. (2004) propose a
geostatistical method to perturb the output of a numerical model rather than the
input. The method may then be combined with a local post-processing technique
such as that proposed by Steinbakk et al. (2013) in order to obtain post-processed
forecast fields (Feldmann et al., 2015). While such an approach is computation-
ally much more efficient than having to perform repeated runs of the numerical
model, the original version of the technique as proposed by Gel et al. (2004) re-
quires an observational dataset that provides a good representation of the spa-
tial forecast error structure. Alternatively, the spatial structure may be assumed
given as is the case in the bias correction method described in Section 2.2. The
highly non-stationary structure apparent in Figure 9 suggests that this might not
be appropriate for general regions. However, it might provide an attractive op-
tion when the region of interest can be assumed homogeneous, e.g. a stretch of
road.

A third option to obtain physically coherent probabilistic forecast fields is to com-
bine the local predictive distributions shown in Figure 7 with a multivariate struc-
ture learned from past observational data or the output of the numerical model
without assuming a specific multivariate statistical model. This approach was
first proposed by Clark et al. (2004) who used a large observational dataset to
find a representative subset in which the underlying conditions may be assumed
similar to the current conditions. The multivariate structure is then given by the
empirical structure in the subset of interest and it can be combined with the post-
processed marginal distributions using a copula structure. Schefzik et al. (2013)
consider the case where a large forecast ensemble is available and the multivari-
ate structure may be obtained directly from the ensemble forecast.

In the current setting, we have neither a large forecast ensemble nor a large, rep-
resentative observational database. However, it might be feasible to combine the
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approaches of Clark et al. (2004) and Schefzik et al. (2013) in that an appropriate
similarity measure may be applied in order to select a subset of past forecast cases
that represent states similar to the current state. This would yield an arbitrarily
large ensemble which could be combined with the probabilistic marginal predic-
tions of Steinbakk et al. (2013) to yield post-processed forecast fields as described
in Schefzik et al. (2013). Such an approach would be computationally extremely
efficient. However, it would require the existence of a database of past outputs
from the numerical model over the entire forecast region.

5 Discussion and concluding remarks

5.1 Discussion
The two complementary approaches, a data assimilation technique combined
with bias correction and a statistical post-processing of model output, presented
in this report, significantly improve the predictive performance of the numeri-
cal forecasts within Bedre Byluft. The first approach has been tested on a short
period in the winter season 2013-2014 with a focus on a specific meteorological
condition, namely stagnant conditions ocurring during wintertime. The statisti-
cal post-processing is tested on a longer, but different, period than the one used
in the first approach. The bias correction approach can be used alone without
data assimilation, and can in this context be seen as a post-processing of the out-
put from EPISODE similar to the statistical post-processing. Note that the latter
method also corrects for bias in the original forecasts, based on an alternative
approach, but adjusts for auto-correlation in the forecast error as well.

The data assimilation technique combined with a bias correction (Section 2), has
been developed for improving EPISODE model concentrations. This approach
has been tested using observations and 2 day (48 hour) EPISODE model forecast-
ing data from Bedre Byluft in Oslo for the week 2 – 8 December 2013. The results,
where we focus on the first 24 hours of the 48 hour forecasting period, show
that both data assimilation and bias correction work reasonably well in that they
manage to improve model concentrations as compared to observations at most
stations in Oslo during this period. The amount of improvement is typically in
the range of 20 - 80 % for the RMSE, and 0.2 - 0.3 for the correlations overall.

Since the model concentrations produced by EPISODE are highly biased dur-
ing large parts of the test period, due to the unforeseen stagnant meteorological
conditions, the bias correction method leads to the largest improvements in the
modelled concentrations. However, use of data assimilation applied to the bias
corrected model values, also helps to improve the modelled concentrations fur-
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ther.

Except for Oslo, the other cities in Norway typically have only a few measure-
ment stations for air quality. To assess the usefulness of post-processing in such
situations, we have tested the performance of the statistical post-processing pro-
posed by Steinbakk et al. (2013) assuming data is available only at a few loca-
tions in Oslo (Section 3). We tested the approach by applying a cross-validation
scheme using a small subset of stations as a training set to fit the statistical post-
processing model and then compared the results against stations not used for
training the model. This procedure was repeated for different groups of measure-
ment stations.

Even with only a few stations to train the model, the predictive performance of
the post-processed prognosis for the particulate matters were almost always bet-
ter than the original prognosis. The post-processed prognosis for NO2 showed
improvement in correlation compared to the original prognosis, but showed poorer
fit under the RMSE disgnostic. In general, the relative predictive performance us-
ing the median prediction is better than that of the mean prediction of NO2 com-
pared to the original prognosis, while the mean prediction shows greater relative
improvement for the particulate matters, PM2.5 and PM10. Whether to use mean
or median predictions should be investigated further for a potential operational-
ization of the statistical post-processing method. The predictive performance of
the post-processed NO2-predictions showed much higher improvements in cor-
relation than in RMSE compared to the original prognosis, which may indicate
that the level of NO2 concentration is not appropriately fitted.

The statistical post-processing of air quality forecast from EPISODE proposed by
Steinbakk et al. (2013) provides a full predictive distribution, rather than merely
a forecast of the most likely value. A full predictive distribution allows us to es-
timate the predictive probability of exceeding any threshold of interest. For a po-
tential operationalization, we suggest further work on an improved calibration
of the full predictive distributions for NO2 to better fit the empirical data dis-
tributions. The predictive distributions of particulate matters have, on the other
hand, shown to be more appropriate for describing the uncertainty throughout
this study.

The methods data assimilation, bias correction and statistical post-processing,
presented in this report, can all be implemented in the operational Bedre Byluft
forecasting system. This is most easily done for the bias correction and statisti-
cal post-processing, since these procedures can be used together with the single
deterministic EPISODE model run used in the current system. Thus, this can be
regarded as an independent module in the Bedre Byluft forecast system. We ex-
pect that such a module would be fast and computationally efficient.
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Implementation of data assimilation using the Ensemble Kalman Filter requires
more changes to the Bedre Byluft system, since we then will need to be able to
run parallel runs with the EPISODE model for the ensemble members (at least 5-
10) during each forecasting period. Thus, this will require changes in the current
model set up and script system, and additional computational resources. How-
ever, there is very good experience of making data assimilation operational for
example, in the weather forecasting community.

In general, there are some technical issues relating to a possible operationalization
that need to be considered, such as data flow and data quality. The statistical
post-processing module, for instance, would rely on daily data of good quality
entering the system in real time.

5.2 Future work
NILU and NR suggest the following areas of further work, some of which involve
further collaboration between NILU and NR:

• Compare the capabilities of the two methods (NILU bias correction and data
assimilation system; NR statistical post-processing) to communicate uncer-
tainties associated with the air quality forecasts in Bedre Byluft. The period
or periods selected should be sufficiently challenging and long to provide
significant and robust results.

• Extend the statistical post-processing method of Steinbakk et al. (2013) to
include a spatial correlation structure for a more flexible uncertainty assess-
ment. If only homogeneous regions, such as sections of roads, are of interest,
a first approach might consider a fixed spatial correlation structure. For a
general spatial model over the entire forecast region, we suggest an applica-
tion of the methods proposed by Clark et al. (2004) and Schefzik et al. (2013)
given that a database of past model outputs is available.

• Implementation of a first version of the bias correction and EnKF data assim-
ilation system (for improved initial conditions) as a part of the operational
AirQUIS forecast system in Bedre Byluft. Perform further testing of the EnKF
assimilation system using the implemented system in Oslo (and elsewhere
in Norway), including analysis of the quality and robustness of the ensem-
ble system, and evaluation of the analyses against independent observations.
The system would be set up to allow extension to other cities in Norway.

• Apply the statistical post-processing method developed by NR to the new
improved AirQUIS forecasts. In weather forecasting, we have seen that com-
bining ensemble predictions with statistical post-processing gives a better
predictive performance than each individual method, see e.g. Schefzik et al.
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(2013). We thus assume that similar results will hold here. We should also
investigate the effect of different meteorological conditions in improving the
performance of the statistical post-processing method.

• Test the possibility of incorporating aspects of the statistical methods devel-
oped at NR into the NILU data assimilation system to process the results
from data assimilation, that is, analyses and forecasts. This might involve
improving the production of ensemble members, and testing assumptions
such as the Gaussianity of the probability distribution functions.

• Improve aspects of the EPISODE model implemented in the data assimila-
tion system. These aspects include: (i) implementing suggested improved
traffic volume curves into NILU’s AirQUIS emission database system (this is
a part of the EPISODE model); and (ii) analysing systematic errors and biases
in modelling of particulate matter, PM, in Oslo, and implementing improved
correction algorithms for this in the model output. Improving the EPISODE
model would be beneficial to the data assimilation work at NILU.
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A Time series plots of observed and uncor-
rected model concentrations

The figures in this appendix show observed (blue curve) and uncorrected model
concentrations (red curve) at each station in Oslo for the period 2–8 December
2013 for each of the three species NO2, PM10 and PM2.5.
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B Time series plots of observed and cor-
rected model concentrations

The figures in this appendix show observed (blue curve) and corrected (using
both bias correction and data assimilation) model concentrations (red curve) at
each station in Oslo for the period 2–8 December 2013 for each of the three species
NO2, PM10 and PM2.5.
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C Algorithm for computing the predictive dis-
tribution

The algorithm for computing the predictive probability distribution in Eq. (10)
is given in Algorithm 1. We estimate the model for time points t = 1, . . . , T and
simulate the calibrated predictive distribution for time points t = T + 1h, . . . , T +

48h. The deterministic prognoses are given in a gridG, where themmeasurement
stations are located in a unique subset Gobs of G.

Model adaptation based on historical data
• Compute the least squares estimates β̂0 and β̂1 in (8) based on all ob-

servations yobsj,t and their corresponding prognoses ŷj,t for time points
t = 1, . . . , T and grid points j ∈ Gobs.

• Compute the error term n̂j,t = yobsj,t − β̂0 − β̂1ŷj,t for j ∈ Gobs and
t = 1, . . . , T .

• Estimate the underlying process l̂t = 1
m

∑
n̂j,t for all time points t =

t0, . . . , T .
• Estimate the parameters φ1 and φ24 from l̂t.

Predictive distribution at all grid points G for t = T + 1, . . . , T + 48:
• Compute l̂t|T = φ̂1l̂t−1|T + φ̂24l̂t−24|T − φ̂1φ̂24l̂t−25|T .
• Estimate nj,t by n̂j,t|T = l̂t|T

• Compute the estimated mean µ̂j,t|T = β̂0 + β̂1ŷj,t|T + n̂j,t|T

• Compute the estimated variance ŝd
2

j,t|T = τ̂t|T + σ̂t|T .
• Simulate Yj,t ∼ exp{N (µ̂j,t|T , ŝdj,t|T )} where N is the normal distri-

bution

Algorithm 1. Algorithm for simulating predictive distribution of an air pollutant.

We need the prediction variances, given as τ̂t|T + σ̂t|T , to compute the predictive
distribution on the original scale. Here, the sub-script j, t|T indicates a predicted
value at a grid point j and a time point t given information up to time point T .
The first term is the prediction error of l̂t|T that can be estimated by a standard
statistical software for auto regressive models. The other term is the estimated
variance of εj,t which we compute as the empirical variance of (n̂j,t − l̂t):

σ̂t|T =
1

Ne − T

T∑
t=1

∑
j∈Gobs

Ijt(n̂j,t − l̂t)2.
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Here, Ij,t is an indicator function given as

Ij,t =

1 if n̂j,t is known

0 if n̂j,t is missing

andNe = (
∑

j

∑
t Ij,t), which means we are only counting those time points with-

out missing values.

D Results for two neighbouring measure-
ment stations

The model is estimated based on data from two groups containing two stations:

Group 1 Sofienbergparken, Kirkeveien

Group 2 Kirkeveien, Manglerud

The results are summarized in the Tables D.1-D.4.
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Table D.1. RMSE and COR for PM10 using the mean estimate. The training data sets in
group 1 and group 2 contain two stations.

PM10 RMSE COR
Season 1 Orig. Gr. 1 Gr. 2 All st. Orig. Gr. 1 Gr. 2 All st.
RV4 23.0 19.0 (17%) 18.5 (19%) 18.8 (18%) 0.59 0.65 ( 9%) 0.68 (14%) 0.67 (13%)
Åkeberg. 25.9 23.9 ( 7%) 24.0 ( 7%) 23.0 (11%) 0.49 0.50 ( 3%) 0.53 ( 8%) 0.56 (15%)
Hjortnes 59.0 34.7 (41%) 32.5 (45%) 32.3 (45%) 0.29 0.34 (16%) 0.37 (28%) 0.36 (25%)

Season 2
RV4 20.3 18.1 (11%) 18.5 ( 9%) 18.0 (11%) 0.52 0.61 (16%) 0.59 (12%) 0.62 (19%)
Åkeberg. 19.5 16.5 (15%) 16.8 (14%) 16.0 (18%) 0.47 0.63 (33%) 0.62 (30%) 0.66 (39%)
Hjortnes 39.5 28.5 (28%) 28.5 (28%) 28.3 (28%) 0.29 0.42 (42%) 0.43 (45%) 0.44 (50%)

Table D.2. RMSE and COR for PM2.5 using the mean estimate. The training data sets in
group 1 and group 2 contain two stations.

PM2.5 RMSE COR
Season 1 Orig. Gr. 1 Gr. 2 All st. Orig. Gr. 1 Gr. 2 All st.
RV4 7.9 5.8 (26%) 5.1 (35%) 5.5 (30%) 0.57 0.61 ( 7%) 0.64 (13%) 0.63 (11%)
Åkeberg. 9.2 8.6 ( 6%) 9.1 ( 1%) 8.4 ( 9%) 0.57 0.60 ( 5%) 0.64 (12%) 0.65 (13%)
Hjortnes 11.5 7.1 (38%) 5.8 (50%) 7.0 (39%) 0.42 0.46 (10%) 0.51 (22%) 0.49 (17%)

Season 2
RV4 6.1 5.6 ( 8%) 4.7 (23%) 5.8 ( 5%) 0.46 0.50 ( 8%) 0.53 (15%) 0.52 (13%)
Åkeberg. 8.9 8.1 (10%) 8.8 ( 2%) 7.9 (12%) 0.49 0.58 (19%) 0.59 (20%) 0.61 (25%)
Hjortnes 8.5 6.6 (23%) 5.9 (31%) 6.8 (20%) 0.42 0.47 (13%) 0.49 (17%) 0.47 (12%)

Table D.3. RMSE and COR for PM10-PM2.5 using the mean estimate. The training data
sets in group 1 and group 2 contain two stations.

PMc RMSE COR
Season 1 Orig. Gr. 1 Gr. 2 All st. Orig. Gr. 1 Gr. 2 All st.
RV4 19.4 22.2 (-14%) 17.7 ( 9%) 16.6 (15%) 0.61 0.63 ( 4%) 0.67 (10%) 0.70 (15%)
Åkeberg. 22.2 25.3 (-14%) 21.6 ( 3%) 19.9 (11%) 0.48 0.48 ( 1%) 0.54 (13%) 0.57 (20%)
Hjortnes 51.7 55.9 ( -8%) 34.4 (34%) 31.7 (39%) 0.29 0.30 ( 5%) 0.38 (31%) 0.36 (25%)

Season 2
RV4 18.2 16.7 ( 8%) 18.9 (-3%) 16.4 (10%) 0.52 0.59 (14%) 0.57 (10%) 0.62 (20%)
Åkeberg. 15.3 13.2 ( 14%) 14.1 ( 7%) 12.6 (18%) 0.45 0.64 (42%) 0.64 (41%) 0.69 (52%)
Hjortnes 35.0 25.8 ( 26%) 28.2 (19%) 26.5 (24%) 0.27 0.40 (46%) 0.39 (44%) 0.41 (50%)

Table D.4. RMSE and COR for NO2 using the mean estimate. The training data sets in
group 1 and group 2 contain two stations.

NO2 RMSE COR
Season 1 Orig. Gr. 1 Gr. 2 All st. Orig. Gr. 1 Gr. 2 All st.
RV4 27.9 31.2 (-12%) 36.4 (-31%) 28.8 ( -3%) 0.59 0.57 ( -4%) 0.60 ( 2%) 0.62 ( 5%)
Åkeberg. 28.5 33.9 (-19%) 45.9 (-61%) 35.5 (-25%) 0.50 0.54 ( 8%) 0.57 (12%) 0.60 (19%)
Hjortnes 38.8 45.4 (-17%) 49.7 (-28%) 39.6 ( -2%) 0.45 0.41 (-10%) 0.50 (11%) 0.49 ( 8%)

Season 2
RV4 28.6 25.7 ( 10%) 27.0 ( 6%) 24.6 ( 14%) 0.63 0.65 ( 3%) 0.66 ( 4%) 0.68 ( 7%)
Åkeberg. 31.6 22.0 ( 30%) 29.4 ( 7%) 27.3 ( 14%) 0.64 0.70 ( 9%) 0.69 ( 7%) 0.71 (10%)
Hjortnes 32.1 30.5 ( 5%) 30.4 ( 5%) 28.5 ( 11%) 0.63 0.63 ( 0%) 0.63 ( 0%) 0.67 ( 6%)

66


	Contents
	Introduction
	Bias correction and data assimilation
	Background
	Bias correction
	Data assimilation
	Results
	NO2
	PM10
	PM2.5


	Statistical post-processing
	Data
	Model for statistical post-processing
	Parameter estimation
	Probabilistic forecasts
	Evaluation of predictive performance 
	Results

	Communicating uncertainty
	Discussion and concluding remarks
	Discussion
	Future work

	References
	Time series plots of observed and uncorrected model concentrations
	Time series plots of observed and corrected model concentrations
	Algorithm for computing the predictive distribution
	Results for two neighbouring measurement stations

