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Abstract 
This study introduces an enhanced version of a two-stage modelling 
approach using artificial intelligence (AI) for breast cancer detection 
in mammography screening. Leveraging a large dataset of 
2,863,175 mammograms from the BreastScreen Norway, the 
approach uses two convolutional neural networks. The first one is 
trained to classify whole images, and an explainable-AI method is 
applied to this network to identify a region of interest (ROI). The 
second neural network subsequently classifies the ROI for 
malignancy. While a prior method used simple gradient saliency 
maps to identify ROIs, a key enhancement of the present 
methodology is the application of Layered GradCam, which 
identifies cancerous areas more consistently and allows smaller 
ROIs. Layered GradCam is also used to display identified cancers to 
the user. By the AUC criterion, our model performs well, 0.974 for 
screen-detected and 0.931 for all cancers (screen-detected and 
interval), compared to a commercial program; 0.959 and 0.918, 
respectively. Comparisons with the radiologist scores indicate that 
the model has equal performance with two radiologists, and 
superior performance to one, for the detection of all cancers 
(screening- and interval type). Our tests indicate that our model 
generalizes well for different breast centers, but so far only images 
from a single manufacturer have been tested.  
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Introduction 
International health authorities advocate 

mammography screening to detect breast cancer early and 
reduce mortality from the disease (1). The Cancer Registry of 
Norway administers the national program, BreastScreen 
Norway, where about 250,000 women participate annually 
(2). 

The screening program employs a manual process, 
where two radiologists independently interpret 
mammograms and assign a malignancy suspicion score. If 
both radiologists assign the lowest score, the screening 

result is deemed negative. Otherwise, a consensus meeting 
determines whether further assessment is necessary. 

Deep neural networks show promise in mammography 
screening, and commercial systems already exist. Previous 
research with access to larger datasets suggests AI 
performance can match that of radiologists (3). This has 
been confirmed through an intermediate analysis of an on-
going Swedish study, where AI-supported interpretation 
found more cancers than two radiologists (4). 

Compared to traditional mammogram analysis 
techniques, deep learning provides automated feature 
learning and the opportunity for more accurate models. 
However, it demands a substantial amount of annotated 
training data. Through BreastScreen Norway, we have access 
to a sizeable dataset. Still, our dataset only includes 
diagnoses and image or patient level annotations, not pixel-
level cancer delineations. Acquiring these pixel-level 
annotations is labor-intensive and burdens the already 
overloaded radiologists. We have therefore developed a 
methodology for training classifiers based on image-level 
labels, only.  

The present article presents a refined version of a two-
stage modelling approach that was introduced in (5). We use 
an improved procedure for identifying regions of interest 
(ROIs) and can report on substantially improved 
performance. 
 
Materials and methods 

Our data set was collected from 7 breast centers (BCs) 
across Norway over the period 2007 – 2018. Women aged 
50-69 were invited to screening biennially. A total of 249,110 
women are represented in the data set. We had access to 
pseudonymized ids, so that individual women could be 
traced, and the number of examinations per woman ranged 
from 1 to 8. The total number of examinations was 689,910. 
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Screen-detected cancer (n=4,105) was defined as cancer 
detected after a positive screening examination and a 
subsequent assessment. In addition, there were 1,199 
cancers screened negative, but detected between an 
examination and the planned next one, called interval 
cancers. All cancer cases were histologically verified. In 131 
examinations, cancer was found in both breasts, in which 
case the side with the primary tumor was defined as the side 
with cancer. There was no information on cancer location 
beyond left or right breast. 

Table 1 gives the distribution of screen-detected 
cancers, interval cancers and negative examinations by age 
groups, while Table 2 gives the same counts by BDS. 

 
Age at 

screening Screen-detected Interval Negative 
< 55 858 303 171,283 

55-59 829 289 175,927 
60-64 1098 293 170,417 
> 64 1320 314 166,979 

Table 1: diagnosis by age at screening. 

 
Breast center Screen-detected Interval Negative 

1 574 179 105,294 
2 463 146 72,602 
3 322 67 52,671 
4 652 186 115,831 
5 328 133 63,433 
6 998 276 145,724 

7* 768 212 129,051 
Table 2: diagnosis by BC, *=Østfold. 

 
In the manual process, each examination was routinely 

interpreted by two independent radiologists, where both 
gave an integer risk score of 1 to 5 for each breast, where a 
score of 2 or higher indicated suspicious findings requiring 
discussion in a consensus meeting.  

A standard examination includes a craniocaudal (CC) 
view and a mediolateral oblique (MLO) view of each breast, 
for a total of four images. In some cases, one or more views 
were missing, but more often additional images were 
included, e.g. retake or particularly large breasts. The total 
number of mammograms was 2,863,175, for an average of 
4.15 per examination. The mammograms were all digital x-
ray images produced with Siemens equipment. The image 
size varied, with 2082x2800 pixels the most common and the 
rest mainly 2800x3500.  

All examinations carried out at a single breast center 
(Østfold) were held out as a test set, and not accessed during 
any phase of the model development. The geographical 
mobility of women in the given age group in Norway is low, 
and only 2.7% of these examinations came from women who 
were also screened in other centers.  

The remaining data was randomized into five folds, with 
examinations of a given woman in the same fold. The folds 

were simultaneously stratified for an even distribution of 
screen-detected cancers, interval cancers and BDSs.  

In the training procedure we applied five-fold cross-
validation (6), which means that five separate models 
(actually model-pairs, as described below) were trained. 
Each of these were blinded to a single fold and trained on the 
four remaining ones. This design has the advantage that 
after training is completed, each mammogram can be 
evaluated by a model that did not see it during training. We 
can therefore provide sound model performance estimates 
on the full set of five folds. Also, the set of five slightly 
different models can be utilized as an ensemble for 
evaluating mammograms in the test set, when this is finally 
opened. 

In the following, we first give an outline of a model 
published previously  (5), before we describe the 
improvements made in the present one. A resnet101 (7) was 
trained to classify full-size mammograms that were center-
cropped and down-sampled to 976x976 pixels. The net was 
initialized with weights pretrained on ImageNet. Cross-
entropy loss was used with screen-detected cancer as 
positive and the rest as negative cases. This included interval 
cancers as negative training examples, which could be a 
problem. It is, however, a minor issue due to the large 
number of negative images and the balanced sampling 
explained below. The network output gave a positive and 
negative class score, and we defined a risk score as the 
difference between these (positive – negative).  

Given the low rate of cancers in mammography 
screening, the dataset was extremely imbalanced, with only 
0.3% positive images. The standard training approach of 
cycling through the data set would therefore be inefficient, 
so instead we implemented balanced sampling. This 
amounts to alternating between randomly drawn positive 
and negative images, with replacement.  

Although our data set was large, there was considerable 
benefit from data augmentation. Figure 1 from (5) illustrates 
how this was done. The leftmost image was the original 
mammogram in full resolution, while next was down-
sampled to a width of 976 and zero-padded. This image was 
randomly flipped and rotated, followed by random cropping 
down to 976x976. 

 

 
Figure 1: Data augmentation through random flipping, rotation and 

cropping. 
 

While the Holistic model was able to separate positive 
and negative images rather well, we were able to improve 
on this through a two-stage design. We used a gradient-
based method that traced the impact of all the pixel values 
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on the model’s risk score. We used this to identify a region 
of interest (ROI) in the image that contributed the most to 
the model’s output. Our reasoning was that this ROI would 
be likely to include the cancer if present in the image. We 
therefore trained a separate resnet101 to classify high-
resolution ROIs produced by the Holistic model instead of 
classifying full images. The approach was successful, as the 
second resnet performed better than the Holistic one. 

However, while the pixel-to-risk score gradient was able 
to identify relevant parts of an image to some extent, it was 
very irregular and fluctuated a lot. Also, the sign of the 
gradient did not convey any useful information, so we were 
only able to utilize information about its magnitude. In 
retrospect, this is not surprising, since the modification of a 
single pixel in isolation is unlikely to have a meaningful 
impact on the classification of an image. Consequently, the 
ROIs had to be relatively large to capture the relevant 
regions consistently. For the present model, we therefore 
looked for explainable-AI methods that could estimate 
relevant regions more smoothly and also distinguish 
between positive and negative contributions to the output 
of the Holistic model. We considered perturbation-based 
methods like LIME and Occlusion (8), but concluded that 
these were too computationally demanding for our purpose. 
Instead, we went for Layered GradCam (9), which utilizes the 
fact that CNN models synthesize a hierarchy of increasingly 
sophisticated features, which can be localized in the image. 
We ended up using the top convolutional layer, which had a 
resolution of 31x31. For a given image, this method 
quantifies the contribution that each location in the given 
layer gives toward a positive classification by the model. We 
used this to identify the 7x7 square that in sum contained 
the largest contribution toward a positive classification and 
defined this as the model’s ROI. For images that got a 
negative risk score by the model, this procedure tended to 
choose ROIs outside of the breast, since these gave the least 
negative risk score contribution. To avoid this, we restricted 
the candidate ROIs to those with center inside the breast. 
We considered the more complex method GradCAM++ but 
decided against it since it has been reported to be 
numerically unstable (10). This reference also claims that it 
adds little beyond the standard version, but we have not 
tested this ourselves. 

The second resnet101, called the Focused model, was 
trained on ROIs from the Holistic model, much like in the 
previous version. Cross-entropy loss and random flipping, 
cropping and rotation was used here as well. In Focused 
model, we were able to utilize the full image resolution 
without down-sampling. However, it was also advantageous 
to keep the same physical between-pixel distances, so that 
the model would not need to generalize over scales. We 
therefore rescaled all images to a width of 2082 pixels before 
cropping down the ROI. This had the benefit of keeping a 
constant physical size of the ROI and a constant number of 

input pixels for the model (512x512). By contrast, the 
Attention model of the previous publication had 
approximately four times as large ROIs (976x976 pixels), 
which is why we renamed the present one to “Focused”. 
Figure 2 gives a sample mammogram with a screen-detected 
cancer to the left. For the same mammogram, the middle 
image shows the gradient point cloud used in the previous 
model, while the more focused GradCam activation map is 
shown to the right.  

 
Figure 2: A mammogram, its gradient point cloud and GradCam 

activation map. 

 
Figure 3 illustrates how the fully trained model-pair 

works during inference. The lower left part shows Holistic 
model. It produces a ‘preliminary risk score’, which served as 
an auxiliary training task that facilitated the identification of 
the ROI. The top right part of the figure shows the process 
where the Focused model evaluates the ROI provided from 
Holistic model. The top left illustrates how Layered GradCam 
was applied also to the Focused model during inference, 
giving a heatmap for ROI, which was embedded into the full 
mammogram. Unlike the application of this method to the 
Holistic model, this had the purpose of explaining the model 
output to the radiologist or clinician in charge of the patient.  

 

 
Fig.3: Illustration of the two-stage model. 
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The illustrations of the Holistic and Focused models in 
the figure are deliberately ‘cartoonish’ and not intended to 
represent the full resnet101 architecture. For details on this, 
we refer to (7). 

The training procedure was split in two phases: First the 
Holistic model was fully trained end-to-end. In the second 
phase, the Holistic model was frozen, and served to produce 
the ROIs for the end-to-end training of the Focused model. 
In both phases, the image-level cancer status was the only 
learning signal. While it is often desirable to train a complex 
model in a single end-to-end process, with the present 
architecture we found no way of propagating the gradient 
signals from the Focused model through the ROI 
identification process and into the Holistic model. 

We suspected that the Layered GradCam procedure 
could fail to locate a cancer that the Holistic model was not 
able to classify correctly. We therefore implemented an 
option in Holistic model that produced multiple non-
overlapping ROIs, each with the maximum positive cancer-
signal in the remaining part of the image. With multiple ROIs, 
the Focused model evaluated them in sequence and 
returned the maximum output as its risk score. This was only 
applied during inference, as the top choice ROI was always 
used during training. 

It is well known that an ensemble of models will often 
perform better than the average performance of the 
individual models (11). To this end we use the five models 
that were trained on different sets of folds. Each of them 
evaluates the mammogram in question, and the ensemble 
score is defined as the mean of these risk scores.  

So far, we have only discussed risk scores for single 
mammograms, but real-world applications require 
examination-level risk scores. For each breast, we treat this 
in the spirit of the ensemble modelling above, taking the 
average risk score. For the examination level, we take the 
maximum of these averages. In the most common case of 
four images, this amounts to 
max(L-CC + L-MLO, R-CC + R-MLO)/2, where L-CC is the 
ensemble risk score for the left-side CC-image, L-MLO is the 
ensemble risk score for the left-side MLO image and so on. 

The performance of our model was compared with that 
of a commercially available system. We will refer to this 
commercial model as "Model X", as our terms of use in this 
study prevents us from disclosing its name. Model-X also 
assigned real-valued risk scores to each examination. 

We also compared our results with the radiologists’ 
interpretation. Both breasts in each examination had been 
interpreted by two independent radiologists on a 5-point 
scale. We defined the single-radiologist score of an 
examination as the maximum over the left and right scores. 
For two radiologists, we again used the ensemble approach, 
taking the average of the two scores for each breast, and 
used the maximum of these averages as the examination-
level radiologist score. 

We used the area under the ROC-curve (AUC) for 
examination classification as our evaluation criterion. AUC 
has the intuitive interpretation of the probability that a 
random positive examination be evaluated higher than a 
random negative one. It is commonly used in the research 
field and has the favorable property of not being sensitive to 
class imbalance. 

 
Ethical approval 

The research related to human use has been complied 
with all relevant national regulations, institutional policies 
and in accordance with the tenets of the Helsinki Declaration 
and has been approved by the authors’ institutional privacy 
ombudsman and a regional ethics committee for medical 
research (REC# 2017/2461). 

 
Results 

Table 3 gives the AUC performance estimates with 
confidence intervals for Model X compared to our ensemble 
model. Due to a technical issue with Model X, this analysis 
was performed on a restricted part of the data set with 
85,054 examinations. Confidence intervals were computed 
according to (12). 

 
  All cancers (screen-

detected and interval) 
Screen-detected 

cancers 

Ensemble 0.931 (0.919-0.943) 0.974 (0.968-0.980) 

Model X 0.918 (0.905-0.931) 0.959 (0.949-0.968) 
Table 3: AUC-performance on the restricted test set from Østfold. 
 

Figure 4 shows the distribution of the examination-level 
Ensemble risk score for negative cases, screen-detected and 
interval cancers. 

 
Fig 4: Distributions of examination-level Ensemble risk scores. 

 
The green, red and orange lines represent the 

distribution for negative cases, screen-detected cancers and 
interval cancers, respectively. Their areas are each scaled to 
sum to 1, so they do not represent the fact that negative 
cases are more numerous. The mean risk score for negatives 
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is -1.85, for interval cancer -0.14, and for screen-detected 
cancer 3.62. 

Figures 5 and 6 show ROC curves for the Holistic, 
Focused and Ensemble models for screen-detected cancers 
and all cancers, respectively. These were based on the set of 
124,615 examinations with the four standard views from 
Østfold. 

 
Fig 5: ROC-curves for screen-detected cancer. 

 
Since the radiologist scores are discrete, we show the 
specific levels as points, identified by blue circles (one 
radiologist) and red dots (two radiologists). 

 
Fig 6: ROC-curves for all cancers (screen-detected and interval cancer). 

 
Our training procedure enabled us to evaluate every 

examination in the cross-validation set by a Focused model 
in the ensemble that had not seen the mammograms in 
question. This enabled us to estimate the Focused model 
AUC-performance on the full cross-validation data set. This 
gave 0.962 for screen-detected cancers and 0.917 for all 
cancers, which was very close to the performance of a single 
Focused model on the test set (screen-detected cancers: 
0.965, all cancers: 0.917). Another test we performed was to 
increase the number of candidate ROIs from one to three, 
but the AUC performance was virtually unchanged with less 
than 0.002 difference. 

 

 
Figure 7: Model output image. 

 
Figure 7 shows an example of the model output for an 

examination, displayed in a way that is common in 
mammography. The left breast is shown on the right and vice 
versa. The top part shows the craniocaudal (CC) views, while 
bottom part shows the Mediolateral oblique (MLO) views. 
The squares indicate the ROIs chosen by Holistic model. The 
red dots indicate a cancer located in the right breast, located 
by Focused model. The square in the left breast is displayed 
in green since the Focused model found no signs of cancer 
there. Incidentally, the Holistic model also gave this 
mammogram a negative score, but it still identifies the most 
suspicious area as an ROI for the Focused model to 
investigate more closely. 

Figure 8 shows a false positive case, where the model 
gave a high score to a negative examination. The right image 
is the same as the left, with the model’s cancer indication 
added in red. 
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Figure 8: A false positive case without and with annotation by the model. 
 

This breast has a deep scar after surgery, which the 
model mis-evaluates as cancer. A radiologist would easily 
recognize this as a scar, partly due to the general shape of 
the breast. This might be a problem for the Focused model, 
which looks only at the ROI and loses the bigger picture. We 
are not very concerned with this type of error, however, 
since deep scars like this are relatively rare. Also, unlike the 
model, clinicians or screening personnel are likely to be 
aware of previous surgeries and may therefore disregard the 
model’s evaluation in cases like this. 

 
Discussion 

Over-all our model appears to be successful, as the 
Ensemble model performed significantly better than a 
commercial counterpart. The fact that only a subset of the 
Østfold data was included in the comparison was not likely 
to favor our model, since the selection was due to a technical 
issue with Model X.  

It is technically possible to calculate ROC curves and AUC 
values based on the radiologist scores, but this would not do 
them full justice. The resulting ROC curve would consist of 
straight lines between the discrete points in the figures, 
which would give lower AUC values compared to the curved 
lines for the models. It makes more sense to compare the 
points to the ROC curves of the models directly. When a 
radiologist’s point is below a model’s ROC curve, it means 
that if we tune the decision limit so that the model’s true 
positive rate (TPR) be equal to the radiologist’s, the model’s 
false positive rate (FPR) becomes lower. Alternatively, tuning 
the model’s FPR to the radiologist gives a higher TPR. When 
the point is above the curve, tuning the TPR gives a higher 

FPR than the radiologist and tuning the FPR gives a lower 
TPR. Figure 5 shows that for screen-detected cancer, the 
Ensemble model is comparable to a single radiologist since 
the blue circles are located on the ROC curve, while two 
radiologists perform better, as indicated by the red dots.  

Using screen-detected cancers as the gold standard is 
likely to favor the radiologists over our model since an 
elevated score by at least one radiologist is required for a 
cancer case to be labeled ‘screen-detected cancer’. Some of 
the interval cancers would have been possible to detect at 
the given examination, as demonstrated by the fact that the 
model gives them an elevated risk score. The two radiologist 
scores differ quite often, and a substantial number of the 
screening-detected cancers were flagged by only one of 
them (13). It is therefore likely that some actual cancers will 
have been flagged by neither, and some of these would turn 
up as interval cancers. When the model gives these a high 
score, it is unreasonable to insist that they constitute false 
positives and reduce the model’s AUC for flagging them. 
Therefore, the analysis of all cancers in Figure 6 may give a 
more balanced picture. Here we see that the two radiologists 
follow the Ensemble model curve closely, while one 
radiologist performs between the Holistic and Focused 
models. This indicates that one of the radiologists may safely 
be replaced by the Ensemble model. 

This approach coincides with the one taken in the on-
going Swedish study mentioned in the Introduction (4), 
where one of the two radiologists was replaced with a 
commercial AI product and used as a decision support in 
about 90% of the examinations, and used as a decision 
support for both radiologists in the 10% of the cases with the 
highest score. Their intermediate safety analysis after the 
inclusion of 80,000 women showed a higher cancer 
detection rate for the women that were randomized to the 
AI-supported study arm, without an increase in false 
positives. This is in line with our present results, as shown in 
Figure 2. Interval cancers are not yet analyzed in the study 
from Sweden. 

Compared to radiologist scorings, AI-models in general 
have the advantage of a continuous outputs, which makes it 
possible to adjust the desired fraction of cases that should 
be investigated further.  

The improvements from the Holistic to the Focused and 
Ensemble models, as shown in Figures 5 and 6, may seem 
modest. There is, however, a strong effect of diminishing 
returns, as each additional cancer case is harder to find.  

While the Holistic model separated positive from 
negative images rather well, it did an even better job at 
identifying the relevant ROIs. This means that the 
explainable-AI algorithm Layered GradCam applied to 
Holistic model succeeded in locating cancers that the model 
itself could not reliably classify as such. This conclusion was 
strengthened by the fact that multiple ROIs did not improve 
the performance in a meaningful way. Hence, our two-stage 
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procedure makes it possible to train a high-quality model 
without the need for time-consuming human pixel-level 
annotation of lesions.  

We believe the primary reason why the Focused model 
performed better than the Holistic one to be that it was able 
to utilize full (or close to full) image resolution. However, it 
will also have benefited from a more favorable signal-to-
noise ratio, in that a larger part of its input field contained 
signs of cancers. This is supported by the observation that it 
required fewer training epochs to converge (details not 
included).  

With machine learning, one is often worried that a 
model may perform worse on independent data. It is 
therefore very encouraging that our model performs no 
worse on the Østfold test set as on the cross-validation on 
the development set.  

It should be noted, however, that these analyses were 
restricted to images produced with Siemens equipment, and 
our model may be less robust for images from other 
manufacturers. 

We use the same Layered GradCam XAI-method also for 
communicating the model output to the radiologist or 
clinician responsible for the patient. Radiologists are familiar 
with the format presented in Figure 7 and has been useful in 
human expert validations of the model. 
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