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Abstract
There are few computational and methodological tools available for the analysis of general multi-state
models with interval censoring. Here, we propose a general framework for parametric inference with
interval censored multi-state data. Our framework can accommodate any parametric model for the
transition times, and covariates may be included in various ways. We present a general method
for constructing the likelihood, which we have implemented in a ready-to-use R package, smms,
available on GitHub. The R package also computes the required high-dimensional integrals in an
efficient manner. Further, we explore connections between our modelling framework and existing
approaches: our models fall under the class of semi-Markovian multi-state models, but with a
different, and sparser parameterisation than what is often seen. We illustrate our framework through
a dataset monitoring heart transplant patients. Finally, we investigate the effect of some forms of
misspecification of the model assumptions through simulations.

Keywords
competing risk, interval censoring, multi-state models, panel data, semi-Markov models, survival
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1. Introduction
Multi-state models are widely used in biostatistical applications to model phenomena where the units
of observation, typically patients, transition through a set of discrete states on their way towards one or
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more absorbing states. The states may constitute various stages of a disease, from perfect health through
various stages of dementia for example. In many applications the transition times between states are not
observed exactly; instead, the current state of the patients is queried at arbitrary times. These types of
data are often referred to as panel data1. The transition times are then interval censored, and this makes
inference and modelling challenging. There are few methodological and computational tools available for
a user studying a multi-state phenomenon where the observation times are interval censored. If the user is
willing to assume that the phenomenon is Markovian, i.e. that the future depends only on the present state,
there are computational tools available, primarily the msm package in R2. Further, if the transition times
are not interval censored, but observed exactly, there exist several frameworks accommodating models
which relax the Markov assumption3–5. In addition, some papers have worked out the likelihood for
semi-Markov multi-state models with interval censored data6–10, but most of those papers treat particular
cases or datasets, and none provide general computational implementations of their methods. This is a
limitation which we have sought to address. In this paper we propose a novel modelling framework for
multi-state data with interval censoring, we describe a general algorithm for constructing and maximising
the log-likelihood, and we explore connections with other semi-Markovian models in the literature.

Our framework can accommodate a wide range of different parametric models for the transition times.
Further, covariates may influence the transition times in various and flexible ways. The user needs to
provide two sets of inputs: (1) the multi-state structure in the form of a graph, which provides the
possible transitions between states, see for example Figure 1; (2) a set of parametric models for the
transition times, which can be of various types, as we will come back to. In this paper, we limit ourselves
to multi-state models without cycles, i.e. directed acyclic graphs (DAGs). In the multi-state literature
such graphs may be referred to as unidirectional models7. Even with this limitation we still cover a
wide range of different real-life phenomena, for example irreversible diseases like dementia11, HIV12

and cirrhosis13. Our framework can be extended to accommodate cycles, but this requires additional
assumptions - we will briefly come back to this potential extension in the discussion. Apart from this
limitation, we do not have further restrictions on the types of graph we can accommodate. We assume
that the graph has one, or more, initial states, and one or more absorbing states. We allow for unobserved
transitions, meaning that some patients may have transitioned through several states without being
observed in them. For some graphs, this introduces the possibility of multiple potential paths, which
increases the complexity of the likelihood, as we will see. We assume that the observation process is
independent of the multi-state process, and that there exist a natural and common time-origin for all
patients, see discussions by Commenges14 and by Aralis and Brookmeyer10.

Contrary to most of the literature, we prefer to construct our models based on the transition densities,
rather than the transition intensities as is commonly done. Nonetheless, we obtain models that fall into
a known class, i.e. that of semi-Markov models. Semi-Markov models relax the Markov assumption by
allowing future transition probabilities to depend on the time spent in the current state15. There exists two
general types of semi-Markov models in the literature, and our approach belongs to the one leading to a
smaller number of parameters. We will explore the relationship between the two types of semi-Markov
models in Section 4 and also in the simulations.

The rest of the paper is structured as follows. In Section 2 we describe our modelling framework: the
construction of the likelihood in a simple example first, and then the general recipe for tackling a general
multi-state graph. In Section 3 we briefly describe our algorithm and computational choices. Note here
that the interval censoring leads to high-dimensional integrals which constitute a major computational
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challenge. Further, in Section 4 we draw connection between our approach and the simple homogeneous
Markov model, and between our approach and other semi-Markov models. We then illustrate the use of
our framework through an application in Section 5. In Section 6, we present results from simulations
where we have studied the effect of some forms of model misspecification: first, to what degree wrongly
assuming a simple Markov model leads to erroneous statements, and next whether the choice between
the two semi-Markov approaches changes our inference to a large degree. Finally, we discuss limitations
and potential extensions of our framework in Section 7.

2. Methodology

2.1. The Framework
To each edge in a multi-state graph we assign a continuous random variable, Tij , with i indicating the
current state and j indicating the potential next state. See for example Figure 1 representing the three-state
illness-death model. There we have three random variables T01, T02 and T12. In the following, we will
refer to these random variables as transition times, but a more precise definition is the time from entering
state i to the transition to state j occurs, or would have occurred. The definition indicates that we let the
random transition times compete with each other to determine the next state. Say for example we have
the illness-death model from Figure 1 and a patient who is currently in state 0. If T01 < T02 the patient
will proceed to state 1, while in the opposite event the patient will proceed to state 2. The time from the
time origin to entering the absorbing state will be the sum of transition times belonging to the path the
patient has travelled, for instance T01 + T12 for a patient having reached the absorbing state via state 1.
All patients are assumed to enter the initial state at time zero.

Healthy (state 0) Sick (state 1)

Dead (state 2)

T02 T12

T01

Figure 1. A three-state illness-death model

The transition times Tij are latent and may refer to transitions that do not in fact take place (if the
patient takes a different path). They are assumed to be independent and drawn from distributions over the
positive half-line,

Tij ∼ fij(· ; θij)

with density functions fij(t; θij) and transition-specific parameter vector θij . For ease of notation,
we will often omit θij in the following. The different fij(t; θij) may come from different classes
of parametric distributions, like Weibull, Gamma or even threshold-hitting-models like the Gamma
processes threshold-models used by Aastveit16. We will denote the associated survival functions by
Sij(t), and the transition intensity functions by hij(t). These may be interpreted in similar ways as
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hazard functions, but with the caveat that they relate to events that might not take place. As usual, we
have hij(t) = fij(t)/Sij(t).

We will index the units of observations, which we will refer to as patients in the rest of the paper,
by k = 1, . . . , n. If covariates xk have been recorded, these variables may be allowed to influence the
transition times. This can be achieved in various ways. One option is to let some or all model parameters
θij be functions of the covariates, for example by

θij,k = exp (xt
kβij), k = 1, . . . , n,

with xk the vector of covariates for patient k and βij the corresponding vector of coefficients (here we
assume that θij is a one-dimensional parameter; if it is multi-dimensional the user must choose whether
to let covariates influence all parameters, or only some). Other link functions than the log link may
be considered depending on the situation. Another option is to include covariates on the scale of the
transition intensity functions, assuming proportionality:

hij,k(t) = hij,0(t) exp (x
t
kβij), k = 1, . . . , n.

The user may choose to let covariates influence all, or only a selected subset of transitions. This choice
may be guided by model selection criteria.

For each patient one has recorded a number of observations of state occupancy, at observation times
tr, with r = 1, . . . ,mk. The observation times live on the common time-scale, starting at zero when the
patient entered the initial state(s), while the transition times have their own time-scales, starting at zero
upon entering a new state. Now we will derive the likelihood in a simple example, before giving the
general recipe.

2.2. The likelihood for the three-state illness-death model
A frequently studied multi-state structure is the illness-death model illustrated in Figure 1. Here we will
present the likelihood for that model in a situation where we assume that all transitions are interval
censored. For the graph in Figure 1, four combinations of states may be observed, ‘0’, ‘01’, ‘02’ and
‘012’. Each patient belongs to one of these four combinations: ‘0’ denotes patients who are only observed
in state 0, ‘01’ patients who are observed in state 0 and then in state 1, and so on. The log-likelihood will
then be the sum of four different types of likelihood contributions,

ℓn(θ) =

n0∑
k=1

logL0,k(θ) +

n01∑
k=1

logL01,k(θ) +

n02∑
k=1

logL02,k(θ) +

n012∑
k=1

logL012,k(θ),

with n0 indicating the number of patients observed only in state 0, and so on; θ indicates the full parameter
vector for the model under consideration. It follows directly from the framework described in the previous
section that the likelihood contribution of a patient only observed in state 0 can be given as,

L0,k(θ) = Pr(T01 > t0M , T02 > t0M ) = S01(t0M )S02(t0M ),

where t0M is the last observed time-point in state 0 (these time-point are typically different for each
patient, and could therefore have been denoted as t0M,k, but we let these indices be implicit). The next
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type represents patients which are observed in state 0 from time-point 0 to t0M , then in state 1 at a later
time-point t1m,

L01,k(θ) = Pr(t0M < T01 < t1m, T01 + T12 > t1M , T02 > T01) (1)

=

∫ t1m

t0M

f01(s)S12(t1M − s)S02(s) ds,

where t1M is the last observed time-point in state 1. Here, we have to integrate over the unobserved
transition time T01. The third type represents patients which are observed in state 0 from time-point 0
to t0M , and in state 2 at a later time-point t2m. In this case, the combination of observed states must
have originated from one out of two possible paths in the graph. The first possibility is that the individual
transitioned directly from state 0 to state 2, the second that the individual transitioned through state 1, but
was not observed there. Because of these two possibilities the likelihood contribution consists of the sum
of two probabilities.

L02,k(θ) = Pr(t0M < T01 < t2m, t0M < T01 + T12 < t2m, T02 > T01)

+ Pr(t0M < T02 < t2m, T01 > T02)

=

∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)S02(s) du ds+

∫ t2m

t0M

f02(s)S01(s) ds (2)

=

∫ t2m

t0M

f01(s)[1− S12(t2m − s)]S02(s) ds+

∫ t2m

t0M

f02(s)S01(s) ds

The inner integral in the first probability can be written out explicitly as [S12(0)− S12(t2m − s)]. Finally,
we have patients which are observed in all three states: in state 0 from time-point 0 to t0M , then in state 1
from time t1m to t1M , and finally in state 2 at time t2m,

L012,k(θ) = Pr(t0M < T01 < t1m, t1M < T01 + T12 < t2m, T02 > T01)

=

∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)S02(s) du ds (3)

=

∫ t1m

t0M

f01(s)[S12(t1M − s)− S12(t2m − s)]S02(s) ds

Again, the inner integral can be written out explicitly in this case.
In many applications, the transition time into the absorbing state is not censored, but observed exactly.

This is typically the case when the absorbing state represents death of the patient, whose timing is often
recorded precisely. In the example here this entails that realisations of T12 and T02 are observed exactly
and that we no longer need to integrate over these random variables. Specifically, we would need to
replace 1− S12(t2m − s) and S12(t1M − s)− S12(t2m − s) in Equations (2) and (3) by f12(t2 − s),
where t2 is the exact time of entry into state 2. Further, the second integral in Equation (2) would simply
be replaced by its integrand evaluated in t2.

In the appendix, we provide the likelihood for the four-state illness-death, and for some other
multi-state graphs. These are meant to illustrate the large variety in these expressions and the need for a
general recipe. The four-state illness-death model for example has eight types of likelihood contributions,
each being the sum of up to three terms.
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2.3. The general recipe
As the illustration in Section 2.2 indicates, the likelihood is built up in a systematic manner. The
integrands are products of densities and survival functions, and the integral limits come from the
observation time-points bounding the unobserved transition times. We can therefore derive a set of rules
for the construction of the likelihood belonging to a specific multi-state graph.

1. Enumerate all possible combinations of states that one might observe. These define the likelihood
contribution types, for example ‘0’, ‘01’, ‘02’ and ‘012’ as we saw in Section 2.2.

2. Determine which of these combinations contain multiple possible paths. If there is more than one
possible path, the contribution will be a sum of terms corresponding to each path. Each term will
be an integral (possibly of dimension zero in which case it is simply a function to evaluate). The
dimension of the integral is equal to the number of edges that have been travelled, so for example
type ‘0’ leads to a zero dimensional integral, while type ‘012’ leads to a two dimensional integral
(with the possibility of some simplification as we will see in step 5.).

3. Construct the integrand for each given path. It will be the product of:

(a) The density functions of the variables belonging to edges that have been travelled. These
densities are evaluated at the (unobserved) transition time belonging to the travelled edge.
See for example the term f02(s) in Equation (2), where s stands for the unobserved T02,
which is integrated over.

(b) The survival functions of the variables belonging to edges that could have been travelled, but
were instead passed-by. These survival functions are evaluated at the (unobserved) transition
time belonging to the edge that was travelled instead of the one which was passed-by. See for
example the term S01(s) in Equation (2), where s again stands for the unobserved T02, which
is integrated over.

(c) The survival functions of the variables belonging to edges that may be travelled in the next
step. If the edge between state i and j may be travelled in the next step, the corresponding
survival functions will be evaluated at tiM , the last observation time-point in state i, minus
all the variables belonging to edges that have been travelled before state i. See for example
the term S12(t1M − s) in Equation (1).

4. Determine the limits of integration based on the time-points bounding each unobserved transition
time, for example in Equation (3) T01 is bounded by t0M , the last observed time-point in state 0,
and t1m, the first observation in state 1. Further, T12 is bounded by t1M − s and t2m − s, where
s stands for the unobserved T01, which is integrated over in the outer integral. Often, the lower
limit will correspond to negative values, since two subsequent transitions are bounded by the same
limits, see for example Equation (2). In that case we replace the lower limit by zero.

5. Sometimes, the innermost integral can be written out explicitly, as we saw in Equations (2) and (3).
This happens when an absorbing state is reached from a state where there is only a single option,
meaning that the next-to-last state only has a single edge going out of it. This is a quite common
situation, but see Appendix B for a situation where this type of simplification is not possible.

If some of the transition times, typically the one belonging to the entrance into the absorbing state,
are observed exactly, the likelihood must be modified in a similar manner to what is explained in
the end of Section 2.2. We show some examples of such likelihoods in the appendix. Further, if all
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transition times are observed exactly, then the likelihood simplifies to a well-known form, found in several
contributions10,15,17, consisting of the product of density and survival functions, without any integrals.

2.4. Maximum likelihood estimation
Once we have workable expressions for the log-likelihood functions, these may be maximised with
respect to the parameters, yielding maximum likelihood (ML) estimators θ̂ for the full parameter vector
θ of a given multi-state model. The traditional theory works for these, under reasonable regularity
conditions, via suitable extensions of standard theory to the present cases with interval censored data.
For the special case of there being a fixed finite set of intervals, where one for each transition time
T in question knows in which of these intervals T falls, the setup can be translated to a multinomial
setting, involving cell probabilities, say pi,j(xi, θ) for individuals i and cells j. This again leads to a clear
log-likelihood function where standard maximum likelihood theory applies; see e.g. chapters 2 and 3 in
Claeskens and Hjort20. More general setups require more elaborate extensions; see e.g.18,19.

Specifically, assuming the model holds, with θ0 the true underlying parameter value, of dimension
p, the ML estimator θ̂ is approximately multinormal Np(θ0, Ĵ

−1), where Ĵ = −∂2ℓn(θ̂)/∂θ∂θ
t is

the observed Fisher information matrix. This leads upon using the delta method also to approximate
normality of any consequent estimator µ̂ = µ(θ̂), for any focus parameter quantity µ = µ(θ), along with a
consistent estimate of its standard deviation. Furthermore, model selection methods and theory associated
with the AIC and the BIC (the Akaike and Bayesian information criteria) will also work essentially as
usual, see Claeskens and Hjort20. In our smms package we fit models by maximum likelihood, and we
use the theory alluded to here for inference and model selection, see also Section 3. The approximate
normality of the estimators in this type of multi-state model was investigated extensively in Aastveit16,
for several different graphs. We also include a brief simulation in Section 6.3 where we check whether
the ordinary approximate confidence intervals obtain the correct coverage rates.

2.5. Quantities of interest
After having fitted a multi-state model, one may want to compute various quantities of interest both for
the sake of interpreting the fitted model, and also for discovering potential lack of fit. Here we will briefly
present three such quantities, (i) the overall survival curve, (ii) the state occupancy probabilities, and (iii)
the transition probabilities.

The overall survival curve gives the probability of not having reached an absorbing state at time t. For
the simple three-state illness-death model from Figure 1, we get

Pr(survival) = Pr(T01 > t, T02 > t) + Pr(T01 + T12 > t, T01 < t, T01 < T02) (4)

= S01(t)S02(t) +

∫ t

0

f01(s)S12(t− s)S02(s) ds.

In our package smms, we have implemented a general function giving the overall survival curve for any
graph and models. When the times of entrance into absorbing states are observed exactly, the fitted curve
in (4) may be compared to the non-parametric Kaplan–Meier estimate. This may indicate whether the
parametric modelling assumptions appear to be reasonable, at least for the entire process from initial to
absorbing states, see for example Figure 5 for an illustration.
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The state occupancy probabilities pi(t) give the probability that a patient is found in state i at time t.
These functions are referred to as the prevalence in parts of the literature2. Again, the exact expressions
of these functions will depend on the multi-state graph, but for the three-state illness-death model from
Figure 1 we have for example

p0(t) = Pr(T01 > t, T02 > t) = S01(t)S02(t)

p1(t) = Pr(T01 + T12 > t, T01 < t, T01 < T02) =

∫ t

0

f01(s)S12(t− s)S02(s) ds

p2(t) = Pr(T01 + T12 < t, T01 < t, T01 < T02) + Pr(T02 < t, T01 > T02)

=

∫ t

0

f01(s)[1− S12(t− s)]S02(s) ds+

∫ t

0

f02(s)S01(s) ds.

We have implemented a general function for the state occupancy probabilities in smms. The occupancy
probabilities can be estimated non-parametrically using the Aalen–Johansen estimator21. This estimator
does not rely on the Markov assumption22, but requires that all transition times have been observed
exactly. With interval censoring, this non-parametric estimator will be biased, but may still be compared
to the fitted state occupancy curves to give an indication of potential lack of fit, see for example Figure 4.

Further, one is often interested in looking at the transition probabilities, namely given that a patient is
found in state j at time v, what is the probability of occupying state i at a later time-point t: Pij(t, v) =
Pr(Z(t) = i|Z(v) = j), with Z(t) indicating the state at time t. For the three-state illness-death model
from Figure 1 we can for example express the probability of being in state 2 at time t after having been
in state 1 at time v,

Pr(Z(t) = 2|Z(v) = 1) =
Pr(Z(t) = 2, Z(v) = 1)

Pr(Z(v) = 1)
=

Pr(v < T01 + T12 < t, T01 < v, T01 < T02)

Pr(T01 < v, T01 < T02)

=

∫ v

0
f01(s)[S12(v − s)− S12(t− s)]S02(s) ds∫ v

0
f01(s)S02(s) ds

,

and similarly for other pairs of states and multi-state graphs (we have a general function for this in smms).
After having fitted a multi-state model, our smms package provides pointwise approximate confidence

bands for each of the quantities presented here using the delta method, see Section 2.4.

3. Computational considerations
Even though we provide a clear recipe for constructing the likelihood, as presented in Section 2.3, the
steps may be somewhat involved and time-consuming to follow when faced with a new multi-state graph.
The number of likelihood contribution types increases rapidly with the number of states in the graph, and
the number of potential paths too. The efforts involved are too complex for many users of statistical
methods, and we have therefore aimed at making our framework more widely available by implementing
the recipe, and the maximisation of the likelihood, in an R package. The package consists of two main
parts: (i) automatically writing out all the different likelihood contributions when faced with a given
multi-state graph, (ii) efficiently evaluating and maximising the log-likelihood when faced with a graph
and a dataset with states, time-points and covariates. The package is called smms, and the code and
documentation is available on Github23.
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For part (i), we have implemented an efficient ‘function factory’ which provides the integrands, as
R functions, for all possible paths in a given graph. We use the recipe from Section 2.3. The user is
required to input the multi-state structure in the igraph format24; see vignettes on Github23 for detailed
explanations on the use of the igraph package, and other details on the use of smms.

Our package can currently handle any acyclic graph with up to six edges between the initial and
absorbing state, but can easily be extended to larger graphs. Further, to make the code ready for part
(ii), we have implemented a function which identifies the correct integral limits and other time-points
necessary for the evaluation of the likelihood. The relevant time-points are the first and last time-points
where each person is observed in a given transient state. For initial state(s) only the last time-point
matters, for absorbing state(s) only the first. The main use of the integrands and time-points is the
evaluation and maximisation of the likelihood in part (ii), but we additionally make use of the same
functions for automatically writing out the full log-likelihood in latex format, as demonstrated for a
variety of different models in the appendix.

In part (ii), we are optimising the log-likelihood to find the maximum likelihood estimates. The main
challenge in this part is the computation of potentially high dimensional integrals. Currently, the package
supports integrals up to dimension five, but may easily be extended. For the computations of integrals,
we have chosen to use the cubature package in R25, to benefit from their efficient C implementation
of several numerical integration methods. In order to use this package, we have had to transform our
formulas in order to obtain integrals with only numerical limits (as opposed to limits where variables
are present in the inner integrals). This is achieved with a change-of-variable from the transition times
to the cumulative transition times (for example R = T01, V = T01 + T12 and so on). This leads to
transformations of the following type, for the likelihood contribution of a patient observed in state 0,
1 and 2 (type ‘012’) in a four-state illness-death model (see Appendix A for the full likelihood)∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)S23(t2M − u− s)S03(s)S13(u) du ds

=

∫ t1m

t0M

∫ t1m

t1M

f01(r)f12(v − r)S23(t2M − v)S03(r)S13(v − r) dv dr.

In the cubature package the user can choose which numerical method to use and we mostly keep
this option in our package. The exception is for integrals where the patient has travelled through transient
states without being observed in them. For example, a patient may have travelled through states 0, 1, 2
in the three-state illness-death model, even though the patient is only observed in 0 and 2. Cases like
these lead to two consecutive integrals over the same limit, but with constraints that one variable has to
be larger than the other, and this is problematic for some of the numerical methods in the cubature
package. For these integrals we have to use Monte Carlo methods, specifically the vegas option in the
cubature package. An additional complication is that for one- and two dimensional integrals, the built-
in R function integrate is actually faster than the numerical methods in the cubature package, and
we therefore use that function for integrals of low dimension.

To minimise the computational time, we have included the possibility of parallel computations
when evaluating the likelihood. The general idea is to use more than one processor to execute the
computations26. We do this using the mclapply function in the R package parallel. Paralellisation
is straightforward since the likelihood contribution of each patient in a dataset may be computed
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independently of the rest of the patients. The mclapply function works on Unix-style operating systems
via a fork mechanism. Therefore, parallelisation will not be available on Windows machines, and there
the number of cores must be set to one. For more information about parallelisation in R and mclapply,
see for example26 and27.
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Figure 2. Time (in seconds) required to fit multi-state models for datasets of n = 10 patients as a function of
integral dimension and number of parameters. Here we have not used the parallel computing option (so only a
single core). We present three settings: one parameter per transition (using the exponential model for all
transitions, light blue line), one parameter per transition plus one additional parameter (i.e. letting the first
transition be Weibull and the rest exponentials, blue line), two parameters per transition (using Weibull for all
transitions, green line). Coloured numbers indicate the total number of parameters to estimate in each setting.

The time and computational resources required to fit a model using the smms package will depend
on many aspects of the multi-state graph and model. In general, the number of parameters to estimate
and the maximal dimension of the integrals involved will be of prime importance, and we have striven
to illustrate their effect in Figure 2. There, we record the time required to maximise the log-likelihood
belonging to simulated datasets of n = 10 patients for progressive multi-state models with two to seven
states, leading to one to six consecutive edges, meaning that the integral dimension ranges from zero
to five. Progressive models are simple multi-state graphs where each state, except the initial state, only
has a single possible transition into it (see for example Appendix C). For this example we do not use
the parallel computing option. The light blue line gives the computational times for the case where we
have one parameter per transition; here we use the exponential model for all transitions. The dark blue
line gives the computational times for the case where we have one parameter per transition plus one
additional parameter in total (giving two to seven parameters), meaning that we have a Weibull model for
the first transition and exponential models for the remaining transitions. Finally, we also consider the case
where we have two parameters per transition, and here we use the Weibull model for all transitions (green
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line). The computational time increases slowly with integral dimension when the number of parameters
increases by one for each additional edge in the graph (blue lines), but rather quickly when the number
of parameters increases by two for each additional edge.

If one assumes that all transition times are exponentially distributed, one can find explicit expressions
for all the integrals in the likelihood, see Section 4. We have currently not implemented these explicit
solutions in our smms package, but as one can see from Figure 2 the optimisation with exponential
distributions is reasonably fast anyway.

4. Connections to other multi-state frameworks

4.1. The time-homogeneous Markov model
The simplest parametric multi-state model is the homogeneous Markov model. That model relies on the
Markov assumption, i.e. that the future evolution depends on the history only through the present state28,
and assumes that the transition intensity functions are time-independent, i.e. time-homogeneous. The
homogeneous Markov model may be fit using the msm package2; the package also allows the user to
relax the assumption of time-homogeneousness by letting the transition intensity functions be piecewise
constant.

The framework presented in Section 2 constitutes a natural generalisation of the simple homogeneous
Markov model: if one lets all Tij be exponentially distributed, all the integrals in our likelihood
construction simplify and one obtains the exact same likelihood as for the homogeneous Markov model
(the one that is used in the msm package for example). This is expected from theory, see for instance
Asanjarani et al.15, and in the following we demonstrate the result in the context of the simple three-state
illness-death model from Figure 1. With

T01 ∼ Expo(θ0), T12 ∼ Expo(θ1), and T02 ∼ Expo(θ2),

we obtain the following likelihood contributions using the formulas and notation from Section 2.2,

L0(θ) = e−(θ0+θ2)t0M ,

L01(θ) =
θ0e

−θ1t1M

θ0 + θ2 − θ1
[e−(θ0+θ2−θ1)t0M − e−(θ0+θ2−θ1)t1m ],

L02(θ) = e−(θ0+θ2)t0M − e−(θ0+θ2)t2m − θ0e
−θ1t2m

θ0 + θ2 − θ1
[e−(θ0+θ2−θ1)t0M − e−(θ0+θ2−θ1)t2m ],

L012(θ) =
θ0

θ0 + θ2 − θ1
[e−θ1t1M − e−θ1t2m ][e−(θ0+θ2−θ1)t0M − e−(θ0+θ2−θ1)t1m ].

These are the same contributions one obtains using the method described by Jackson29.

4.2. Two types of semi-Markov models
Semi-Markov models relax the Markov assumption by allowing the future evolution to depend on the time
spent in the current state; see Asanjarani et al.15 and Putter28 for general reviews covering semi-Markov
multi-state models. The most immediate specification of a semi-Markov model relies on defining an
embedded Markov chain with jump probabilities πij (from state i to j), as well as probability distributions
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for the sojourn times T ∗
ij . We denote these variables with an asterisk to emphasise that they do not have

the same interpretation, or role, as our Tij . When a patient enters state i, its next state will be j with
probability πij , and given that the next state is j, the time spent in state i is given by T ∗

ij
15. We will

refer to this approach as the embedded Markov chain approach. Several recent contributions dealing with
semi-Markov models and interval censoring make use of the embedded Markov chain approach7,9,10. If
one assumes parametric models for the T ∗

ij , the total number of parameters required with this approach
is equal to the number of parameters governing the T ∗

ij plus a number of πij . The number of free πij

depends on the graph; naturally, the sum of all πij originating from the same state i must be one. In
the example represented by Figure 1, there is only a single free πij since π12 must be equal to 1, and
π01 = 1− π02.

Alternatively, one may specify a semi-Markov model as we have done in Section 2, by assuming
latent Tij for each transition and letting these Tij compete with each other to determine the path of
each patient. Most of the literature specify the distributions of the Tij in terms of the intensity transition
functions hij(t), but as stated above we prefer to use the densities fij(t) instead. We will refer to this
approach as the competing risk approach, since this set-up actually amounts to a collection of competing
risk models in each state15. Our impression is that, in the context of interval censoring, the competing
risk approach has been less studied than the embedded Markov chain approach, despite its sparser
parameterisation, which is particularly beneficial when dealing with the heavy computations required
in the interval censoring case. The competing risk appoach is used by Chen et al.30, Kang and Lagakos6

and Kapetanakis et al.8, which we return to in Section 7.
The two types of semi-Markov models are equivalent in the sense that one can always translate from

one type to the other, even with covariates present. The formulas for the translation are provided by
Asanjarani et al.15. Let us denote the density functions for the sojourn times T ∗

ij in the embedded Markov
chain approach by gij(t; γij), with some transition specific parameters γij (which we will omit in the
following for ease of notation). We denote their cumulative distribution functions by Gij(t), and their
associated hazard functions by h∗

ij(t). We can translate from the embedded Markov chain approach to
the competing risk approach by

Sij(t) = exp
{
−
∫ t

0

hij(s) ds
}
= exp

{
−

∫ t

0

πijgij(s)∑
ℓ ̸=i πiℓ(1−Giℓ(s))

ds
}
, (5)

where the sum in the denominator is taken over all possible transitions going out of state i. If the only
possible transition from state i is state j, the formula above simply implies that Tij and T ∗

ij will have
the same distribution, but in general that will not be the case. We can translate from the competing risk
approach to the embedded Markov chain approach by

πij =

∫ ∞

0

fij(t)
∏

ℓ ̸=(i,j)

Siℓ(t) dt, and (6)

gij(t) =
fij(t)

∏
ℓ ̸=(i,j) Siℓ(t)

πij
,

where the product of survival function is taken over all possible transitions going out of state i, other than
the one to state j. As we clearly see here, in the competing risk approach the πij are not free, but functions

Prepared using sagej.cls



13

of the models we assume for the transition times. This approach will therefore have less parameters to
estimate than the embedded Markov chain approach.

The formulas in Equations (5) and (6) clearly imply that if we have assumed named probability
distributions in one approach, we will not necessarily get the same distributions in the other approach,
or even some other named distributions. We will illustrate this (simple) fact, and the use of the formulas
above, by a brief example making use of the three-state illness-death model from Figure 1. Let us first
begin by specifying our model using the competing risk approach (as we do in the rest of this paper),

T01 ∼ Expo(θ0), T12 ∼ Expo(θ1), and T02 ∼ Expo(θ2).

We can use Equations (5) and (6) to find the equivalent embedded Markov chain model. For the transition
between state 0 and 1 we get

π01 =

∫ ∞

0

f01(t)S02(t) dt = θ0/(θ0 + θ2),

g01(t) =
f01(t)S02(t)

π01
= (θ0 + θ2) exp {−(θ0 + θ2)t}.

For the other transitions, we get π12 = 1 and T ∗
12 ∼ Expo(θ1) and π22 = θ2/(θ0 + θ2) and T ∗

02 ∼
Expo(θ0 + θ2). So in this case, both approaches have exponential distributions for the transition/sojourn
times, but with somewhat different parameters. Let us now specify the model using the embedded Markov
chain approach,

T ∗
01 ∼ Expo(θ0), T ∗

12 ∼ Expo(θ1), and T ∗
02 ∼ Expo(θ2),

and with a single free π01 parameter (since π12 = 1, π02 = 1− π01). The implied model for the 0-1
transition from the competing risk approach is then

S01(t) = exp
(
−
∫ t

0

π01θ0 exp {−θ0s}
π01 exp {−θ0s}+ (1− π01) exp {−θ2s}

ds
)

= exp
(
− θ0

θ2 − θ0
log[π01 exp {(θ2 − θ1)t}+ 1− π01]

)
, for θ0 ̸= θ2.

This survival function does not belong to any well-known named distribution. It is straightforward to
see that in this case we only obtain exponential distributions for all transitions if we assume θ0 = θ2,
in which case we have T01 ∼ Expo(π01θ0) for example. Thus, it is only the competing risk approach
that has the general property we describe in Section 4.1, that assuming exponential distributions for all
transition times leads to the homogeneous Markov model. For the embedded Markov chain approach,
this property requires the additional assumption that all sojourn times originating from the same state i
have the same exponential parameter15.

5. Illustration: monitoring heart transplant patients
We illustrate the use of our framework on the coronary allograft vasculopathy (CAV) dataset, one of the
few openly available medical, panel datasets. The dataset was first used by Sharples et al.31, and later as an
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illustration by Jackson2. The patients in the dataset are heart transplant recipients and they are monitored
for the post-transplant condition CAV. The time of heart transplantation constitutes a natural, common
time origin for all patients; meaning that the time variable in the dataset indicates the time (in years)
since heart transplantation. At each observation time-point the patients are assigned to one of four states:
‘well’ if they do not have CAV, ‘mild CAV’, ‘severe CAV’, and ‘dead’. The time of death of the patients
is recorded exactly, while the times of entrance into the CAV states are interval censored. Since CAV is
generally considered an irreversible disease2, we assume the four-state illness-death model in Figure 3
and discard the few observations belonging to patients which appear to move from more severe to less
severe states. We end up with 2398 observations of 556 patients. Alternatively the discarded observations
could have been treated as misclassifications, which would require an extension of our framework, see
comments by Jackson2.

Well (state 0) Mild CAV (state 1) Severe CAV (state 2)

Dead (state 3)

T03
T13

T01 T12

T23

Figure 3. Multi-state graph for the CAV dataset - a four-state illness-death model

There are several potential covariates in the dataset, but in the following we have only made use of
two, dage the age of the heart transplant donor (standardized), and ihd a binary covariate related to
the reason for transplantation (whether the primary diagnosis was ischaemic heart disease or not). These
choices are similar to the ones made by Jackson2; our results can therefore easily be compared. We
include a detailed description of the use of our package for this dataset in a vignette23 - for the model
presented here and for a less complex model too.

One of the great advantages of our framework is the large flexibility available to the user in terms of
specifying models for the transition times. Here we have chosen the following parametric models,

T01,k ∼ Weibull(κ01, λ01,k), T12,k ∼ Weibull(κ12, λ12,k), T23,k ∼ Weibull(κ23, λ23,k),

T03,k ∼ GenWeibull(κ03, λ03,k, θ03), T13,k ∼ Weibull(κ13, λ13).

with k = 1, . . . , 556 patients and the covariates influencing the scale parameter through λ01,k =
exp (α01 + β1,01dagek + β2,01ihdk), and similarly for λ12,k, λ23,k and λ03,k. The generalised Weibull
distribution is a one parameter extension of the ordinary Weibull distribution, see e.g.7, with survival
function

Sij(t) = exp
[
1− {1 + (t/λij)

κij}1/θij
]
.

When θij = 1 we are back to the ordinary Weibull (and when κij = 1 too we have the exponential
distribution). In total this gives us 19 parameters to estimate. The full log-likelihood for this case is given
in Appendix A.
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Estimate 95% confidence interval

κ01 1.52 [1.35, 1.71]
α01 2.33 [2.18, 2.48]
β1,01 -0.15 [−0.24,−0.06]
β2,01 -0.32 [−0.51,−0.13]
κ12 0.88 [0.71, 1.10]
α12 0.98 [0.61, 1.35]
β1,12 0.37 [0.14, 0.60]
β2,12 -0.37 [−0.83, 0.10]
κ23 0.65 [0.50, 0.85]
α23 0.53 [0.04, 1.02]
β1,23 0.38 [0.03, 0.73]
β2,23 0.24 [−0.30, 0.78]

Estimate 95% confidence interval

κ03 0.63 [0.41, 0.95]
α03 1.07 [−2.11, 4.24]
β1,03 -1.26 [−1.91,−0.61]
β2,03 -0.75 [−2.04, 0.53]
θ03 8.03 [2.10, 30.75]
κ13 8.00 [3.31, 19.37]
λ13 6.35 [5.45, 7.38]

Table 1. Estimates and 95% approximate confidence intervals for the 19 parameters in the
Weibull-GenWeibull model applied to the CAV dataset.
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Figure 4. Coloured lines give the fitted occupancy probabilities for the four states (well, mild CAV, severe CAV,
death), for patients without (blue) and with (red) IHD and for younger (17 years old, fully drawn) and older
(around 40 years old, dashed) patients. The grey line are the non-parameteric estimates of the overall state
occupancy probabilities. The shaded areas represent the pointwise (approximate) 95% confidence bands
(obtained by the delta method).

We use our smms package to construct and optimise the log-likelihood. For this dataset, graph and
model this takes around 50 minutes using 5 cores. To obtain approximate variances for all estimates
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we need the observed Fisher information matrix (the hessian matrix from the optimisation) which takes
another 20 minutes to compute. Estimates and approximate 95% confidence intervals are given in Table 1.
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Figure 5. Coloured lines give the fitted overall survival curve for patients without (blue) and with (red) IHD and
for younger (17 years old, fully drawn) and older (around 40 years old, dashed) patients. The black line is the
non-parameteric estimates of the overall survival curve. The shaded areas represent the pointwise
(approximate) 95% confidence bands (obtained by the delta method).

Older donor age appears to make the transition from well to mild CAV more likely, but appears to be
protective for the further CAV progression (making the transition from mild to severe CAV, and from
severe to death, less likely). A primary diagnosis of IHD is associated with a higher risk of developing
CAV. High donor age and IHD are both associated with a higher risk of death without developing CAV.
These effects are also apparent in the figure with state occupancy probabilities (Figure 4). Table 1
also indicates that most transition times have intensity transition functions that are far from constant,
except for the transition between mild and severe CAV which could have been modelled by a simple
exponential distribution instead. Further, this model has a far better fit to the data, as indicated from
AIC, compared with the simple exponential model using the same covariates (AIC = −2786.5 for the
Weibull-GenWeibull model versus AIC = −2851.2 for the exponential model).

Figures 4 and 5 may also be used as diagnostic plots as explained in Section 2.5. We see that the model
fits reasonably well for all transitions, see vignette on GitHub23 for similar figures for the exponential
model.

6. Simulations

6.1. The degree of non-Markovness
Here we briefly investigate to what degree wrongly assuming a simple, homogeneous Markov model
leads to biases in the estimated state occupancy probabilities, when the data are generated from a
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semi-Markov model. Naturally, this will depend on the distance between the true model and the
homogeneous Markov model, as we will see here. We consider a three-state illness-death model where
the transition to the absorbing state is observed exactly, and in the first scenario we let the true model be

T01 ∼ Weibull(5, 3), T12 ∼ Weibull(3, 4) T02 ∼ Weibull(2, 4).

Then we fit a homogeneous Markov model as well as the true Weibull semi-Markov model (using
the framework of this paper). The simulations are performed 100 times, in each simulation run we draw
a dataset of 1000 patients. We estimate the state occupancy probabilities for each simulated dataset. In
Figure 6, we present these state occupancy probabilities. We also include a thicker line indicating the
state occupancy probabilities based on the average estimates from each model. As we would expect, the
estimated state occupancies from the semi-Markov model are very close to the true state occupancy (grey
line), while the Markov model produces state occupancies of widely different shapes. For example if
we consider the plot for state 1, the true state occupancy probability is around 0.6 at time 4, while it
is around 0.3 for the Markov model. In this scenario, the state occupancies are biased when using the
Markov model instead of the semi-Markov model.
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Figure 6. The dashed, coloured lines give the estimated state occupancy probabilities for the semi-Markov
(blue) and Markov model (red) for a 100 simulated datasets, for the scenario where the true model is far away
from the Markov model. The true state occupancy probabilities are given by the grey lines. The solid red and
blue lines are the state occupancy probabilities using the mean of the estimated parameters.

In the next scenario we let the true model be close to a Markov model,

T01 ∼ Weibull(1.1, 0.9), T12 ∼ Weibull(1, 1.1), T02 ∼ Weibull(0.95, 1.1).

Prepared using sagej.cls



18 Journal Title XX(X)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

State 0

 

O
cc

up
an

cy
 p

ro
ba

bi
lit

y

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

State 1

 

O
cc

up
an

cy
 p

ro
ba

bi
lit

y

True
Semi−Markov
Markov

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

State 2

 

O
cc

up
an

cy
 p

ro
ba

bi
lit

y

Figure 7. The dashed, coloured line gives the state occupancy probabilities using the mean of the estimated
parameters, over a 100 simulated datasets, for the semi-Markov (blue) and Markov model (red), for the
scenario where the true model is close to the Markov model. The true state occupancy probabilities are given
by the grey lines.

These results are presented in Figure 7. In this scenario, the true model, semi-Markov model and Markov
model are almost equal, and the state occupancies will have little bias when the Markov model is used
instead of the semi-Markov model.

6.2. The relationship between the two semi-Markov approaches
Even though we can translate between the two semi-Markov approaches as we saw in Section 4, a choice
of a named distributions in one approach will often lead to a non-standard distribution in the other. In
practice, this means that at least one of the approaches will always be misspecified if we restrict ourselves
to using named distributions. In this simulation study, we investigate to what degree using one or the other
approach leads to misguided inference. Our main focus in this section will be the effect of covariates, and
whether both approaches give similar inference for these effects.

We consider a three-state illness-death model with a single binary covariate which influences the
transition times and the transition to the absorbing state is observed exactly. In the first scenario, we
draw the data using the framework of this paper (i.e. the competing risk approach) with

T01,k ∼ Weibull(κ01,k, λ01), T12,k ∼ Weibull(κ12,k, λ12), T02,k ∼ Weibull(κ02,k, λ02,k), (7)

where k = 1, . . . , 1000 patients and the covariates influencing the scale parameter through κ01,k =
exp (α01 + β01xk), and similarly for κ12,k and κ02,k (but for the last one β02 = 0). We run the
simulations 100 times and fit the Weibull models using both the competing risks approach and the
embedded Markov chain approach. We then know that the embedded Markov chain approach will be
misspecified for all transitions, except for T12, as we saw in Section 4. From Section 4 we also know
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that some of the effect of the covariate will spill into π01, and therefore we let π01 = exp(απ,01 +
βπ,01xk)/ exp(απ,01 + βπ,01xk). The results are presented in Table 2. For many of the parameters,
the average estimate in the competing risks approach and in the embedded Markov chain approach are
relatively close to each other. The exceptions are for λ01 and λ02, where the embedded Markov chain
approach gives clearly different results. The relative biases for these parameters in the embedded Markov
chain approach are also much higher than in the competing risk approach. The competing risk approach
has generally slightly lower variances compared to the embedded Markov chain approach, as we would
expect since it has two less parameters to estimate.

Competing risks approach Embedded Markov chain approach

Parameter True Mean Var. Rel. bias RMSE Mean Var. Rel. bias RMSE

απ,01 - - - - - 0.48 0.034 - -
βπ,01 - - - - - 0.50 0.040 - -
α01 0.40 0.40 0.0035 −0.96 0.059 0.41 0.0047 1.33 0.068
β01 −0.90 −0.90 0.0087 −0.27 0.093 −0.93 0.012 3.47 0.11
λ01 1.82 1.83 0.010 0.19 0.10 1.26 0.0095 −30.78 0.57
α12 1.60 1.61 0.019 0.71 0.14 1.61 0.020 0.81 0.14
β12 −1.20 −1.21 0.026 0.72 0.16 −1.21 0.026 0.65 0.16
λ12 0.61 0.60 0.00024 −0.33 0.016 0.61 0.00024 −0.14 0.016
α02 0.20 0.20 0.0052 −0.89 0.072 0.22 0.0074 10.21 0.088
β02 0.00 0.0086 0.0069 - 0.083 −0.048 0.016 - 0.14
λ02 3.00 3.02 0.069 0.69 0.26 1.30 0.018 −56.84 1.71

Table 2. The true value, mean, variance, relative bias and RMSE for the parameters both for the competing
risks and embedded Markov chain approach when we draw the data using the competing risks approach. The
simulations are run 100 times for 1000 patients.

On average, both approaches give similar impressions concerning the effect of the covariate; β01 in
the embedded Markov chain approach is a bit more negative than in the competing risk approach. The
relative bias for this parameter is also relatively high in the embedded Markov chain approach. Also, β02

has a somewhat more negative effect according to the embedded Markov chain approach compared to
the competing risks approach.

We can also compare the two approaches by studying plots of their estimated state occupancy
probabilities, see Figure 8. Again, we see that the two approaches are quite close in this scenario. The
embedded Markov chain displays some degree of bias, particularly for x = 1, and the plots also give the
impression of more spread among the curves from the embedded Markov chain approach (in red) than
among the curves from the competing risk approach (blue), which is consistent with the variances in
Table 2.

In the second scenario, we draw the data using the embedded Markov chain approach with

T ∗
01,k ∼ Weibull(κ01,k, λ01), T ∗

12,k ∼ Weibull(κ12,k, λ12), T ∗
02,k ∼ Weibull(κ02,k, λ02,k),

where k = 1, . . . , 1000 patients and the covariates influencing the scale parameter through κ01,k =
exp (α01 + β01xk), and similarly for κ12,k and κ02,k (but for the last one β02 = 0). We also set the jump
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Figure 8. The dashed lines give the state occupancy probabilities using the estimated parameters for a 100
simulated datasets, for the competing risks approach (blue) and embedded Markov chain approach (red), for
x = 0 and x = 1, when the competing risks approach is the true simulation model. The true state occupancy
probabilities are given by the fully drawn, grey lines.

probability to π01 ≈ 0.5. In this case, we know that the competing risk approach will be misspecified
for all transitions, except for T12, as we saw in Section 4. The results from this simulations study
are presented in Table 3. In this scenario, there are clear differences between the estimates from the
embedded Markov chain approach and the estimates from the competing risk approach for many of the
parameters. The misspecified competing risk approach manages to find estimates of the covariate effect
with the correct sign, but with a considerable bias especially for the 0-1 transition. We see the bias in
the competing risk approach also in the state occupancy probability curves in Figure 9, particularly for
State 1.

For these specific models and parameters, it appears that the embedded Markov chain approach was
less biased, when misspecified (scenario 1), compared to the bias incurred by the competing risk approach
when this was misspecified (scenario 2). In other words, it seems like the embedded Markov chain is
more robust, when faced with the specific type of misspecification studied here, than the competing risk
approach. This is likely related to the two additional parameters in the embedded Markov chain approach
(scenario 1), which should allow for a more flexible fit to the data, even under misspecification. Whether
this effect is true in general, also in the more realistic scenario where both approaches are misspecified,
we leave as a topic for future research.

6.3. Coverage of approximate confidence intervals
As we mention in Section 2.4, we rely on general maximum likelihood theory for estimation and
inference. Here we present a brief simulation study where we compute the realised coverage of the 95%
approximate confidence intervals in a three-state illness-death model with Weibull transition times and
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Embedded Markov chain approach Competing risks approach

Parameter True Mean Var. Rel. bias RMSE Mean Var. Rel. bias RMSE

π01 0.50 0.50 0.0017 0.11 0.041 - - - -
α01 0.40 0.41 0.0074 1.62 0.086 0.16 0.0056 −60.44 0.25
β01 −0.90 −0.90 0.011 0.24 0.11 −0.52 0.0058 −41.76 0.38
λ01 1.82 1.85 0.047 1.37 0.22 4.56 0.35 150.37 2.80
α12 1.60 1.63 0.027 1.91 0.17 1.64 0.026 2.67 0.17
β12 −1.20 −1.22 0.038 1.54 0.20 −1.24 0.038 3.73 0.20
λ12 0.61 0.60 0.00038 −0.35 0.019 0.61 0.00039 0.0079 0.020
α02 0.20 0.21 0.0074 7.40 0.087 0.28 0.0056 38.30 0.11
β02 0.00 0.0031 0.013 - 0.11 −0.044 0.0067 - 0.093
λ02 3.00 2.98 0.13 −0.78 0.36 4.53 0.23 50.82 1.60

Table 3. The true value, mean, variance, relative bias and RMSE for the parameters both for the competing
risks and embedded Markov chain approach when we draw the data using the embedded Markov chain
approach. The simulations are run 100 times for 1000 patients.
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Figure 9. The dashed lines gives the state occupancy probabilities using the estimated parameters for a 100
simulated datasets, for the competing risks approach (blue) and embedded Markov chain approach (red), for
x = 0 and x = 1, when the embedded Markov chain approach is the true simulation model. The true state
occupancy probabilities are given by the fully drawn, grey lines.

a single binary covariate. We use the ordinary confidence interval construction assuming approximate
normality, θ̂ ± 1.96× SE, where the standard error is obtained from the inverse of the observed Fisher
information matrix (the hessian matrix from the optimisation). We simulate data from the model in (7)
and investigate three scenarios with different numbers of patients k = 200, k = 500 and k = 1000. We
simulate 500 datasets for each scenario. For each simulated dataset we compute 95% confidence intervals
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for all nine parameters, and check whether these intervals cover the true values of the parameters. The
realised coverage rates are given in Table 4 and we see that the coverage rates are close to their nominal
value, even for a low sample size of 200.

Parameter True k = 200 k = 500 k = 1000

α01 0.40 0.94 0.95 0.96
β01 −0.90 0.95 0.95 0.95
λ01 1.82 0.92 0.94 0.95
α12 1.60 0.93 0.93 0.94
β12 −1.20 0.92 0.93 0.95
λ12 0.61 0.91 0.94 0.96
α02 0.20 0.93 0.96 0.94
β02 0.00 0.93 0.93 0.94
λ02 3.00 0.92 0.94 0.95

Table 4. The true value and realised coverage rates for 95% confidence intervals for the parameters in a
three-state illness-death model with Weibull transition times and one covariate, with three different sample
sizes k = 200, k = 500 and k = 1000. For each scenario the simulation are run 500 times.

7. Discussion and concluding remarks
We have presented a general framework for parametric inference with interval censored multi-state data.
Semi-Markov models allow for much more flexible, and realistic, multi-state modelling than the simple,
time-homogeneous Markov model, for example allowing for intensity functions with a range of different
shapes. There are few computational tools for fitting semi-Markov models to panel data, and we have
therefore implemented our general framework in an R package, which can accommodate any parametric
model for the transition times and include covariates in various ways.

We have spent some efforts in clarifying the relationship between our framework and existing
methodologies, particularly existing semi-Markov frameworks. In that context we have distinguished
between what we refer to as the embedded Markov chain approach, and the competing risk approach,
within which our framework is found. Chen et al.30, Kapetanakis et al.8 and Kang and Lagakos6 have
also investigated models which belong to the competing risk approach, and are therefore closely related
to our framework. Chen et al.30 and Kapetanakis et al.8 consider specific multi-state structures: Chen et
al.30 focus on simple progressive models, while Kapetanakis et al.8 consider a three-state illness-death
model. Kang and Lagakos6 present a more general framework, but require that the transition intensities
from at least one of the states are time-homogeneous. This allows them to handle multi-state graphs with
cycles, which we come back to below.

An assumption in our model framework that may be criticised is the assumption of independent
transition times. This is a strong assumption, which for some applications may not be realistic, but we
can to some extent get around this assumption by including covariates. Our framework can be extended
to handle dependent transition times, but the results will likely be highly dependent on the form of
dependency structure chosen, and these assumptions would be largely untestable since the transition
times are latent. Similarly to other multi-state frameworks, we also assume that the graph is a correct
representation of the process. If the graph is wrong, the subsequent inference will be wrong too. This has
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to some extent been discussed in Jepsen et al.13, where they study a disease called cirrhosis and discuss
how it is important for clinicians to construct these studies in a way that can be studied using multi-state
models.

In this paper, we do not cover multi-state models with cyclic graphs; often referred to as models with
back transitions in the literature. Cyclic graphs pose serious challenges for inference with panel data.
The problem with interval censoring and cyclic graphs is that when you observe a path, for example
‘01’, you may have infinitely many underlying sample paths; i.e. the patient may have travelled infinitely
many times back and forth between states 0 and 1. In the literature, this problem has been addressed
by simplifying assumptions or particular computational tools. The aforementioned paper by Kang and
Lagakos6 obtain a tractable likelihood by assuming that the transition intensities from at least one of the
states are time-homogeneous. Alternatively, Wei and Kryscio9 circumvented the problem by assuming
that their dataset contains no unobserved states, i.e. that the sequence of states observed is equal to
the sequence of visited states. Both of these approaches may be considered if one seeks to extend our
framework to cover cyclic graphs, but none of these options is completely unproblematic: letting the
transition intensities from one of the states be time-homogeneous may be unsatisfactory if this assumption
does not fit well with the data, and assuming that the dataset contains no unobserved states may lead to
misleading inference unless the patients are observed very frequently.

Some recent papers address the problem of cyclic graphs with panel data by applying missing data
techniques. The idea is based on the fact, which we state in Section 2, that if all transition times had been
observed exactly the likelihood would be a simple product of densities and survival functions, without
any integrals. One can make use of this simple likelihood by sampling a number of likely realisations
of paths and transition times given the observed data and the model, and then proceed with inference
by stochastic expectation-maximization10 or Bayesian methods32,33. Aralis and Brookmeyer10 sample
trajectories by rejection sampling, while Barone and Tancredi32 use Markov Chain Monte Carlo. The
computational tools used in those papers may naturally also be employed in the acyclic case, and it
would be an interesting topic for future research to compare those tools with our framework, both with
respect to estimation quality and computational time.

Above, and in our smms package, we have used the general log-likelihood development in order to
carry out ML estimation, inference, and model selection. One may also use these log-likelihood formulae
to carry out Bayesian estimation and inference, however. In situations with clear prior information, for
some of the components of the model, coupled perhaps with noninformative priors for other components,
posterior distributions may be found via MCMC algorithms. Suitable extensions of our methods can then
be used in setups as for the dementia progression analyses of Williams et al.11. In Williams et al.11, they
study models with a hidden layer. This is also a possible extension for our current model framework.
The start ideas for doing this are discussed by Aastveit16. Another potential extension is to include the
possibility of misclassification of states6,9.

When applying our multi-state setup there will typically be several candidate models, particularly
when it comes to modelling the influence of covariates. In our applications we have been guided by the
AIC model selection criterion, as the relevant theory applies to our classes of log-likelihood functions.
Also versions of the focused information criterion FIC20,34 may be developed here, suitable for occasions
where there is a primary quantity of interest, for which the most accurate estimation is required. One may
also develop extensions of goodness-of-fit monitoring processes, see35, for multi-state models, but this is
outside the scope of the present article.
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Appendix

Here we display the log-likelihoods belonging to a selection of multi-state graphs. These formulae have
been automatically generated by our smms package. For most graphs we present two likelihoods: one for
the case where all transition times are censored, and another for the common case where the transition
time into the absorbing state(s) is observed exactly. For each multi-state graphs a number of likelihood
contribution types may be observed (belonging to different combinations of states), n0 denotes the
number of patients observed only in state 0 for example, and n01 denotes the number of patients observed
in state 0 and in state 1, and so on. θ indicates the full parameter vector. The observation times pertaining
to state i are denoted by tim or tiM , with m indicating the minimal or first observation time in state i (for
a given patient), and M indicating the maximal or last observation time in state i. Sometimes we will
have tim = tiM , but this does not require any changes to the formulae below. When the time of entry into
the absorbing state is observed exactly we denote that time-point by tim (even though there are no more
observations in state i in that case).

A. Four-state illness-death model

When the entry into the absorbing state is interval censored too:

ℓn(θ) =

n0∑
k=0

log{S01(t0M )S03(t0M )}+
n01∑
k=0

log{
∫ t1m

t0M

f01(s)S03(s)S12(t1M − s)S13(t1M − s) ds}+

n012∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)S03(s)S13(u)S23(t2M − s− u) du ds}+

n02∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)S03(s)S13(u)S23(t2M − s− u) du ds}+

n0123∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)(S23(t2M − s− u)− S23(t3m − s− u))S03(s)S13(u) du ds}+

n03∑
k=0

log{
∫ t3m

t0M

∫ t3m−s

0

f01(s)f12(u)(1− S23(t3m − s− u))S03(s)S13(u) du ds+

∫ t3m

t0M

∫ t3m−s

0

f01(s)f13(u)S03(s)S12(u) du ds+

∫ t3m

t0M

f03(s)S01(s) ds}+

n013∑
k=0

log{
∫ t1m

t0M

∫ t3m−s

t1M−s

f01(s)f12(u)(1− S23(t3m − s− u))S03(s)S13(u) du ds+

∫ t1m

t0M

∫ t3m−s

t1M−s

f01(s)f13(u)S03(s)S12(u) du ds}+

n023∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)(S23(t2M − s− u)− S23(t3m − s− u))S03(s)S13(u) du ds}.
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When the entry into the absorbing state is observed exactly:

ℓn(θ) =

n0∑
k=0

log{S01(t0M )S03(t0M )}+
n01∑
k=0

log{
∫ t1m

t0M

f01(s)S03(s)S12(t1M − s)S13(t1M − s) ds}+

n012∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)S03(s)S13(u)S23(t2M − s− u) du ds}+

n02∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)S03(s)S13(u)S23(t2M − s− u) du ds}+

n0123∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)f23(t3m − s− u)S03(s)S13(u) du ds}+

n03∑
k=0

log{
∫ t3m

t0M

∫ t3m−s

0

f01(s)f12(u)f23(t3m − s− u)S03(s)S13(u) du ds+

∫ t3m

t0M

f01(s)f13(t3m − s)S03(s)S12(t3m − s) ds+ f03(t3m)S01(t3m)}+

n013∑
k=0

log{
∫ t1m

t0M

∫ t3m−s

t1M−s

f01(s)f12(u)f23(t3m − s− u)S03(s)S13(u) du ds+

∫ t1m

t0M

f01(s)f13(t3m − s)S03(s)S12(t3m − s) ds}+

n023∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)f23(t3m − s− u)S03(s)S13(u) du ds}.

This is the log-likelihood for the CAV application.

B. Multi-state model from Foucher et al.7

State 0 State 1

State 2

State 3

T02 T12

T01

T03 T13
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When the entry into the absorbing state is interval censored too:

ℓn(θ) =

n0∑
k=0

log{S01(t0M )S02(t0M )S03(t0M )}+
n01∑
k=0

log{
∫ t1m

t0M

f01(s)S02(s)S03(s)S12(t1M − s)S13(t1M − s) ds}+

n012∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)S02(s)S03(s)S13(u) du ds}+

n02∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)S02(s)S03(s)S13(u) du ds+

∫ t2m

t0M

f02(s)S01(s)S03(s) ds}+

n013∑
k=0

log{
∫ t1m

t0M

∫ t3m−s

t1M−s

f01(s)f13(u)S02(s)S03(s)S12(u) du ds}+

n03∑
k=0

log{
∫ t3m

t0M

∫ t3m−s

0

f01(s)f13(u)S02(s)S03(s)S12(u) du ds+

∫ t3m

t0M

f03(s)S01(s)S02(s) ds}.

When the entry into the absorbing state is observed exactly (this is the situation in Foucher et al.7):

ℓn(θ) =

n0∑
k=0

log{S01(t0M )S02(t0M )S03(t0M )}+
n01∑
k=0

log{
∫ t1m

t0M

f01(s)S02(s)S03(s)S12(t1M − s)S13(t1M − s) ds}+

n012∑
k=0

log{
∫ t1m

t0M

f01(s)f12(t2m − s)S02(s)S03(s)S13(t2m − s) ds}+

n02∑
k=0

log{
∫ t2m

t0M

f01(s)f12(t2m − s)S02(s)S03(s)S13(t2m − s) ds+ f02(t2m)S01(t2m)S03(t2m)}+

n013∑
k=0

log{
∫ t1m

t0M

f01(s)f13(t3m − s)S02(s)S03(s)S12(t3m − s) ds}+

n03∑
k=0

log{
∫ t3m

t0M

f01(s)f13(t3m − s)S02(s)S03(s)S12(t3m − s) ds+ f03(t3m)S01(t3m)S02(t3m)}.

C. Four-state progressive model

State 0 State 1 State 2 State 3
T01 T12 T23
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When the entry into the absorbing state is interval censored too:

ℓn(θ) =

n0∑
k=0

log{S01(t0M )}+
n01∑
k=0

log{
∫ t1m

t0M

f01(s)S12(t1M − s) ds}+

n012∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)S23(t2M − s− u) du ds}+

n02∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)S23(t2M − s− u) du ds}+

n0123∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)(S23(t2M − s− u)− S23(t3m − s− u)) du ds}+

n03∑
k=0

log{
∫ t3m

t0M

∫ t3m−s

0

f01(s)f12(u)(1− S23(t3m − s− u)) du ds}+

n013∑
k=0

log{
∫ t1m

t0M

∫ t3m−s

t1M−s

f01(s)f12(u)(1− S23(t3m − s− u)) du ds}+

n023∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)(S23(t2M − s− u)− S23(t3m − s− u)) du ds}.

When the entry into the absorbing state is observed exactly:

ℓn(θ) =

n0∑
k=0

log{S01(t0M )}+
n01∑
k=0

log{
∫ t1m

t0M

f01(s)S12(t1M − s) ds}+

n012∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)S23(t2M − s− u) du ds}+

n02∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)S23(t2M − s− u) du ds}+

n0123∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)f23(t3m − s− u) du ds}+

n03∑
k=0

log{
∫ t3m

t0M

∫ t3m−s

0

f01(s)f12(u)f23(t3m − s− u) du ds}+

n013∑
k=0

log{
∫ t1m

t0M

∫ t3m−s

t1M−s

f01(s)f12(u)f23(t3m − s− u) du ds}+

n023∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)f23(t3m − s− u) du ds}.

Prepared using sagej.cls



30 Journal Title XX(X)

D. A five-state model

State 0 State 1 State 2

State 3 State 4

T01

T03

T12

T13 T23 T24

T34

ℓn(θ) =

n0∑
k=0

log{S01(t0M )S03(t0M )} +

n01∑
k=0

log{
∫ t1m

t0M

f01(s)S03(s)S12(t1M − s)S13(t1M − s) ds}+

n012∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

f01(s)f12(u)S03(s)S13(u)S23(t2M − s − u)S24(t2M − s − u) du ds}+

n02∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

f01(s)f12(u)S03(s)S13(u)S23(t2M − s − u)S24(t2M − s − u) du ds}+

n0123∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

∫ t3m−s−u

t2M−s−u

f01(s)f12(u)f23(r)S03(s)S13(u)S24(r)S34(t3M − s − u − r) dr du ds}+

n03∑
k=0

log{
∫ t3m

t0M

∫ t3m−s

0

∫ t3m−s−u

0

f01(s)f12(u)f23(r)S03(s)S13(u)S24(r)S34(t3M − s − u − r) dr du ds+

∫ t3m

t0M

∫ t3m−s

0

f01(s)f13(u)S03(s)S12(u)S34(t3M − s − u) du ds +

∫ t3m

t0M

f03(s)S01(s)S34(t3M − s) ds}+

n013∑
k=0

log{
∫ t1m

t0M

∫ t3m−s

t1M−s

∫ t3m−s−u

0

f01(s)f12(u)f23(r)S03(s)S13(u)S24(r)S34(t3M − s − u − r) dr du ds+

∫ t1m

t0M

∫ t3m−s

t1M−s

f01(s)f13(u)S03(s)S12(u)S34(t3M − s − u) du ds}+

n023∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

∫ t3m−s−u

t2M−s−u

f01(s)f12(u)f23(r)S03(s)S13(u)S24(r)S34(t3M − s − u − r) dr du ds}+

n01234∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

∫ t3m−s−u

t2M−s−u

f01(s)f12(u)f23(r)(S34(t3M − s − u − r) − S34(t4m − s − u − r))S03(s)S13(u)S24(r) dr du ds}+

n04∑
k=0

log{
∫ t4m

t0M

∫ t4m−s

0

∫ t4m−s−u

0

f01(s)f12(u)f23(r)(1 − S34(t4m − s − u − r))S03(s)S13(u)S24(r) dr du ds+

∫ t4m

t0M

∫ t4m−s

0

∫ t4m−s−u

0

f01(s)f12(u)f24(r)S03(s)S13(u)S23(r) dr du ds+

∫ t4m

t0M

∫ t4m−s

0

f01(s)f13(u)(1 − S34(t4m − s − u))S03(s)S12(u) du ds +

∫ t4m

t0M

f03(s)(1 − S34(t4m − s))S01(s) ds}+
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n014∑
k=0

log{
∫ t1m

t0M

∫ t4m−s

t1M−s

∫ t4m−s−u

0

f01(s)f12(u)f23(r)(1 − S34(t4m − s − u − r))S03(s)S13(u)S24(r) dr du ds+

∫ t1m

t0M

∫ t4m−s

t1M−s

∫ t4m−s−u

0

f01(s)f12(u)f24(r)S03(s)S13(u)S23(r) dr du ds+

∫ t1m

t0M

∫ t4m−s

t1M−s

f01(s)f13(u)(1 − S34(t4m − s − u))S03(s)S12(u) du ds}+

n024∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

∫ t4m−s−u

t2M−s−u

f01(s)f12(u)f23(r)(1 − S34(t4m − s − u − r))S03(s)S13(u)S24(r) dr du ds+

∫ t2m

t0M

∫ t2m−s

0

∫ t4m−s−u

t2M−s−u

f01(s)f12(u)f24(r)S03(s)S13(u)S23(r) dr du ds}+

n034∑
k=0

log{
∫ t3m

t0M

∫ t3m−s

0

∫ t3m−s−u

0

f01(s)f12(u)f23(r)(S34(t3M − s − u − r) − S34(t4m − s − u − r))S03(s)S13(u)S24(r) dr du ds+

∫ t3m

t0M

∫ t3m−s

0

f01(s)f13(u)(S34(t3M − s − u) − S34(t4m − s − u))S03(s)S12(u) du ds+∫ t3m

t0M

f03(s)(S34(t3M − s) − S34(t4m − s))S01(s) ds}+

n0124∑
k=0

log{
∫ t1m

t0M

∫ t2m−s

t1M−s

∫ t4m−s−u

t2M−s−u

f01(s)f12(u)f23(r)(1 − S34(t4m − s − u − r))S03(s)S13(u)S24(r) dr du ds+

∫ t1m

t0M

∫ t2m−s

t1M−s

∫ t4m−s−u

t2M−s−u

f01(s)f12(u)f24(r)S03(s)S13(u)S23(r) dr du ds}+

n0134∑
k=0

log{
∫ t1m

t0M

∫ t3m−s

t1M−s

∫ t3m−s−u

0

f01(s)f12(u)f23(r)(S34(t3M − s − u − r) − S34(t4m − s − u − r))S03(s)S13(u)S24(r) dr du ds+

∫ t1m

t0M

∫ t3m−s

t1M−s

f01(s)f13(u)(S34(t3M − s − u) − S34(t4m − s − u))S03(s)S12(u) du ds}+

n0234∑
k=0

log{
∫ t2m

t0M

∫ t2m−s

0

∫ t3m−s−u

t2M−s−u

f01(s)f12(u)f23(r)(S34(t3M − s − u − r) − S34(t4m − s − u − r))S03(s)S13(u)S24(r) dr du ds}.
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